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Chapter 1

Introduction

1.1 Background
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Fig. 1-1 Worldwide Robotics Market Growth

Nowadays, the rapid development of high technology has produced robots not only for
industrial factories (industrial robots) but also for museums, homes, healthcare institutions and so
on (non-industrial robots). There are various types of non-industrial robots such as service robots,
welfare robots, therapeutic robots and domestic robots. In Fig. 1-1 shows the worldwide robotics
market growth, this information has been gleaned from the Japan Robotics Association. The market
of service and personal robots is expected to grow increasingly in the future [1]. These robots are
designed with artificial intelligence (Al) to improve the robotics system is to have them imitate
human thinking and behavior. Human-robot interaction (HRI) plays an important role in modern
autonomous robots. HRI requires that robots not only passively receive information from the
environment, but also can make appropriate decisions and actively change in varying environments,

thus functioning more autonomously and intelligently [2] - [5]. However, Designing robots are able
1



to interact with human beings that is still a huge challenge, for example, demonstrates cognition in a
complex environment, enable actions to be selected autonomously, or models emotional expression
and smooth communication. McCarthy’s research has described the essential characteristics of
robots must have a consciousness, introspective knowledge, and some philosophy to perform in the

common-sense world and to accomplish tasks effectively [6].

Consciousness Field Behavior Modules
b >
Level 4 Stable Emotions > etour
Search
>
Temporary Approach
= Level 3 Emotions Avoid
o I Ry sty A=
S |—p N
S Valued Sensation s
Move =
E Level 2 Field g v > 2
Z L
= A || =
>
Primitive
Reflex
Level 1 Sensation > SEIIE
4 ¢
. 4
Level 0 Basic Awake > Sleep g
eve .
Consciousness Rest [€—
<+

Fig. 1-2 Consciousness-Based Architecture (CBA) model

Therefore, Hayashi laboratory’s works have focused on studying and investigating the
application of brain-inspired technology by developing the robots with consciousness resembling
that of animals and human beings [7] - [9]. Consciousness-Based Architecture (CBA) model (Fig.
1-2) is constructed to define the relationship between the consciousness field and behavior modules
based on Tran Duc Thao’s research [10]. Also, the CBA model introduces an evaluation function
of action selection to realize a practical robot which is able to perform its action and adapt its
environment. However, if the robot has only the behavior selection system which reflects cognitive
information, it is limited capability and generating more human-like action [11]. Therefore, an
artificial emotional system collaborates with an autonomous action selection system that has an

important role in an intelligent system, decision-making process, perceptions memory and more
2



[12]. There are many studies in the literature focused on the concepts of emotion model for
developing autonomous systems in various fields [13], [14]. Emotional expression skills are

necessary in enabling friendly and understanding between human beings and robots [15] —[17].

1.2 Problem statement

As mentioned in the background. The developers of non-industrial robots have met with
some problems in determining the motion strategies and the action selection. For instance, if the
robot’s movements have the same motion or repeated, the robot is a loss of interest to users.
Although this problem was solved by the conventional model as Consciousness-Based Architecture
(CBA) model, but the CBA model has limitation in managing and selecting the robot’s behavior
that only depends on the increase and decrease of the motivation levels. For a truly effective system,
the robots should not only select the behavior, but also express the appropriate emotional state
according to changing external stimuli. Moreover, if the robot can perform a behavior and express
emotion how to define the relationship between the behavioral selection and emotional expression
models. Consequently, all problems will be considered and solved by the proposed system in this

thesis.

1.3 Research purpose

The general objective of this research project is to create the behavioral - emotional
expression system for Conbe-I robot to enhance intelligent behavior and emotions, and to facilitate
communication between users and robot. We seek to increase the robot’s behavioral-emotional
intelligence capabilities so that the robot can distinguish, adapt and react to changes in the
environment. After reviewing the literature of previous researches done about the behavior
selection, and emotional expression models based on an artificial intelligence neural network, the

specific objectives are established as follows:



1) To accurately classify all behavior and emotions of robot and generate the behavior and
emotion maps based on an unsupervised learning as a Self-Organizing Map method.

2) To create an emotional expression model, that can continuously express emotional state
based on updating the affective factors and the previous emotional state.

3) To define and design the relationship between behavior selection system and emotional
expression model.

4) To verify the behavioral-emotional selection model with a conscious behavior robot
(Conbe-I), and confirm the effectiveness of the proposed system with experimental

results in a realistic environment.

1.4 Overview of the thesis

The thesis consists of five chapters covering the background history, research objectives,
modeling of the behavioral-emotional expression selection system, discussion of the results and
conclusions.

Chapter 2 describes the fundamental theories for Conbe-I robot system, including a Self-
Organizing Map (SOM) learning, Markov theory and Kinematics modeling, which are used to
construct and develop the behavioral-emotional selection system.

Chapter 3 shows the system structure of Conbe-I robot, it is divided as the system
configuration and overview of the software. At the end of this chapter, the computation of robotic
arm posture is explained to perform the sequential movement.

Chapter 4, the overview of the proposed system is thoroughly described that consists of three
major processes. The first process, the robot recognizes the external situation and generates the
robot’s motivation. In the second process, the cognitive process is used for clustering the input
stimuli (the visual information and the internal motivation of the robot), which analyzes based on an

unsupervised learning, then the affective factors and behavioral factors are calculated. The last



process is a behavioral-emotional expression that is modeled based on the Markov theory, the
probabilities of emotional and behavioral state transitions are updated with affective and behavioral
factors. And then, Conbe-I robot has been implemented to show the effectiveness of the proposed
system.

At the end, chapter 5 is a conclusion that summarizes the thesis, and suggestion the future
works, which has been mentioned in order to develop and improve the behavioral-emotional

selection system in the future.



Chapter 2

Fundamental Theories for Conbe-I robot System

Nowadays, the new generation control architectures of autonomous robot systems have been
contrived to be inspired from cognitive mechanism of the human brain. One of the main problems
of autonomous robots is how to develop an intelligent system with a learning capability to acquire
both varieties of knowledge and behavior through the interaction between humans and robots.
Therefore, this chapter is proposed to explain the fundamental theories such as a Self-Organizing
Map, Markov theory and Kinematics modeling, which are used to construct the behavioral-

emotional selection system for the robot. Each fundamental theory can be described as follows.

2.1 Self-Organizing Map (SOM)
2.1.1 Introduction of SOM

Artificial Neural Networks (ANNs) have been widely studied and used to model the
information processing systems based on inspired by biological neural networks. The neural
network methods not only can provide solutions with improved performance when compared with
traditional problem-solving methods, but also present an understanding of cognitive abilities of
human. The architecture of neural networks and signal processing is used for modeling nervous
systems can be classified into three categories. Feedforward networks transform the sets of input
signals into the sets of output signals [18]. The objective of transformation is usually determined the
supervised adjustment of the system parameters (Supervised learning) by a direction comparison
between the actual and desired outputs. In the reinforcement learning [19], the input information
defines as the states and rewards, this method can learn and relearn based on the actions and the

effect (rewards). The last category, the neighboring cells in a neural network compete in their



activities, and develop adaptively into specific detectors of different signal patterns. In this category
learning is called competitive learning, unsupervised learning, or self-organizing learning [20].
2.1.2 Background of SOM

There are many the neural network architectures and learning algorithms, but one of the most
popular neural network models is a Kohonen’s Self-Organizing Map (SOM) [21]. A Self-
Organizing Map (SOM) is a conceptual mathematic model of topographic mapping from the visual
information to the cerebral cortex. Modeling and analyzing of the mapping are important in
understanding how the brain perceives, encodes, recognizes and processes the patterns. The SOM is
able to map a high-dimensional signal onto a lower-dimensional network that implements a
characteristic based on a nonlinear projection. This section will look into the evolution of relevant
biological models, from two fundamental models involved in Hebbian learning and Von Malsburg
& Willshaw’s Self-Organization model to Kohonen’s Self-Organizing Map.
2.1.2.1 Hebbian learning

Hebbian theory is a primary theory in the neurosciences that explains about the adoption of
neurons in the brain during the learning process. This theory describes a basic mechanism for
synaptic plasticity, or Hebbian learning. In 1949, a Canadian research named Donald Hebb, who
proposed a mechanism by which neurons adapt the strength of their connections to other neurons.

The rule [22] is:

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such that

A’s efficiency, as one of the cells firing B, is increased.”

Hebbian learning is one of the concepts, which is used for unsupervised learning, that

implemented in neural network models through changes in the strength of connection weights



between units. The weight value between two neurons increases if the two neurons activate
simultaneously. On the contrary, the weight value will be decreased if they activate separately.
Neurons tend to be either both positive or both negative at the same time that have positive weights,
while those that tend to be opposite have negative weights. Through such Hebbian learning, weights
become to reflect statistical regularities in the environment, with networks self-organizing so that

different units learn to represent different environmental regularities. Suppose there is a network of

nodes IV, each connected to other nodes and the strength of the connection between node i and

node j is W peppian - The mathematical basis for Hebbian learning is described below:

yi = ZWU',Hebbianxj (2'1)
J

Avv[j,Hebbian = nHebbianx jy i (2'2)

Equation (2-1) shows the state of output nodes as ;, that is the output from neuron i, X; is equal to

the input from neuron j (for all neurons j connected to ), multiplies by the weight of the connection

between neuron 7 and neuron j. And Hebbian’s rule is often generalized as Equation (2-2), where,

AWy‘,Hebbmn denotes the change in weight from node i to node j, y; (post-synaptic) and X; (pre-

synaptic) denote the activation levels of the node i and j respectively, and 7,4, denotes the

learning rate. The learning rate is usually a small number (0 <7z, < 1) that can be decreased

through time. If Equation (2-1) is substituted into Equation (2-2) then the result is expressed as

Equation (2-3).



AM}ij ,Hebbian = 77Hebbian X A z vvik,Hebbian Xp = n Hebbian z M)ik,Hebbian XX J (2‘3)
k k

This sample rule is not enough, because it is unstable; repeated use can increase the weights
of the connections without bounds, and the performance will degrade since all the neurons will be
saturated to their maximum values. Due to the fact that is the positive feedback: the larger weights
will result in a large output, which will result in a larger increase of weights. It’s still difficult to
develop in the nervous system since there is a limit on the number and efficiency of synapses per

neuron.

Fig. 2-1 The sample Hebbian network

Oja and other researchers [23], [24] proposed and developed the rules that have a decay time,
which can be implemented using the negative feedback. The resulting network is shown in Fig. 2-1.
The firing one time cycle is fed back to the next step, it can be expressed by Equation (2-4). And

Equation (2-5) is represented the modified equation for updating the weight,

where X i (t)and x i (¢ +1) differentiates between activation at timef andf +1 .

M
X (1) = X, (0)= D W pemmian Vs (2-4)
k=1



M

AWy epbian = Mrevbian O YiX;E+D) = Nyeppian (D (xj (1) - ;W@,HebbianykJ (2-5)
The resulting of Oja learning algorithm is a so-call “Principal Component Analysis: PCA”, which
learns to extract the most variant directions among the data set [25].
2.1.2.2 Von Malsburg & Willshaw’s Self-Organization model

The self-organizing learning behavior of brains has been studied for long time by many
researchers such as: Hebb’s learning, Marr’s theory of the cerebellar cortex [26], Willshaw,
Buneman and Longnet-Higgins’s non-holographic associative memory [27], Von der Malsburg and
Willshaw’s self-organizing model of the retina-cortex mapping [28], [29], Amari’s mathematical
analysis of self-organization in the cortex [30] and Kohonen’s self-organizing map. But Von der
Malsburg and Willshaw first developed, in the mathematical forms by the self-organizing

topographical mapping from pre-synaptic sheet (two-dimensional layer) to post-synaptic sheet (two-

O 0O
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Fig. 2-2 Von der Malsburg’s self-organizing model
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dimensional layer) based on competitive learning. The competitive learning refers to the fact that
will increase in strength to one neuron results in a relative and decrease in another, and this
competition results in neurons that respond to the correlated inputs. If two inputs are activated by
correlated activity, then they mutually reinforce their connections since they both work together to
activate the target cell. Fig. 2-2 shows Von der Malsburg’s self-organizing model and their basic

idea was described as:

“... The geometrical proximity of pre-synaptic cells is coded in the form of correlations in the
electrical activity. These correlations can be used in post-synaptic sheet to recognize axons of
neighboring pre-synaptic cells and to connect them to neighboring post-synaptic cells, hence

producing a continuous mapping... ”

This model was the first to produce this pattern, and the first to use local connectivity that
had short range excitatory connections and long range inhibitory connections in the sheet. The post-

synaptic activities at time #, can be expressed by the nonlinear differential equation as shown in
Equation (2-6), where, C is the decay constant. Wj; y, (¢) is the synaptic weight between cell i and
cell jin pre-synaptic and post-synaptic sheets respectively. The state of the pre-synaptic cell is
x,(1);i=12,..,N,, x;(t)=1; if celliis active, x;(#)=0; otherwise.e, andb, are excitation
and inhibition constants from other lateral cells. yZ () is an active cell in post-synaptic sheet at time

t . For the cells of post-synaptic fire of their activity by the threshold function as shown in Equation

2-7).

A, (1)

ot

+ey; () = Y Wy pon X+ D€ i ()= by () (2-6)
j k k'
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\ Vi(H)-0, if ,(£)>0
y;) =977 T 2-7)
0 otherwise

The modification of synaptic weights between pre-synaptic and post-synaptic sheets is

determined by the Hebbian learning as expressed in Equation (2-8).

a‘/\}ij,Von (t)
ot

= Nrtevian: )Y ; (1) (2-8)
2.1.2.3 Kohonen’s Self-Organizing Map

Kohonen improved above self-organizing learning rule and proposed a simplified learning
mechanism which incorporates the Hebbian learning and lateral interconnection rules. It is

simplified and generalized model of the above self-organization process as explained in [31]:

“...Kohonen’s model of self-organizing maps represented an important abstraction of the
earlier model of von der Malsburg and Willshaw, the model combines biological plausibility with

proven applicability in a board range of difficult data processing and optimization problems... "

Development of self-organizing maps is motivated by a distinct feature of the human brain
that has been shown to be biologically plausible: The brain is organized in many places in primary
sensory areas, are ordered according to some features dimensions of sensory signals such as tactile
[32], visual information [33], [34] and acoustic [35]. One important point that emerges from the
brief discussion of computerized maps in the brain is the principle of topographic map formation,

which is commented by Kohonen as:

12



“...The spatial location of an output neuron in a topographic map corresponds to a

particular domain or feature of data drawn from the input space...”

The principle has provided the neurobiological motivation for two basically different features-
mapping models as von der Malsburg and Willshaw’s model and Kohonen’s model. The models
differ from each other in the manner in which the input patterns are specified. The Kohonen model
has received much more attention in the research than the von der Malsburg and Willshaw model.
Because, integrating the neural field dynamics is usually every time consuming, and the
replacement of the neural field representations with tuning curves reduces the computational burden
dramatically. Moreover, topographic organizations are easily observable when the plotting centers
of tuning curves.

Self-Organizing Map (SOM) also called Kohonen map or Kohonen network [36], [37]. The
SOM is a neural network model and algorithm that implements a characteristic non-linear
projection form the high-dimensional space of input signals onto a low-dimensional array of
neurons. Kohonen network’s properties both make them extremely useful in the visualization and
exploration of data properties, and preserve the topology of input space during mapping. In
Kohonen’s model uses soft competitive learning in a post-synaptic like artificial neural network, the
cells on the map become specifically tuned to various input signal patterns of classes of patterns
through an unsupervised learning process. Fig. 2-3 shows a diagram of two-dimensional lattice of
neurons commonly used. Individual neuron (output layer) is fully connected to all nodes in the input
layer. The feed-forward structure is represented as the two-dimensional map with the neurons

arranged into rows and columns.
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Input layer

Fig. 2-3 Kohonen’s Self-Organizing Map

2.1.3 The SOM algorithm

An algorithm for the formation of the self-organizing map proceeds first by initializing the
synaptic weights in the network, which define them as small values and selected from a random
number generator. Briefly, that has three essential processes involved in the formation of the self-
organizing map as summarized below:

Competitive process: the neurons in each input pattern compute their particular values of the
discriminant function, which performs for competition among the neurons of input patterns. The
particular neuron with the largest value of the discriminant function is defined as the winner of the
individual sample (input) pattern.

Cooperative process: the spatial location of a topological neighborhood of excited neurons is
calculated by the winning neuron in individual group patterns.

Adaptation of synaptic weight process: the last process improves the excited neurons to
increase their individual values of the discriminant function in relation to the input patterns by

adjustment to their synaptic weights.
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The descriptions of the processes of competition, cooperation and adaptation of synaptic
weight processes are described below.

2.1.3.1 Competitive process

Assume the set of input variables { X } is selected from the input space, which is denoted by

Equation (2-9), where, m denote the dimension of the input space.

X = [xl, X5, x3,...,xm]T (2-9)

Synaptic weight or weight vector of each neuron in the network has the same dimensions as the
input space. Let the synaptic weight on cell j is defined by Equation (2-10), where, 7 is the total

number of neurons in the network.

_ T
Wi = [ Wi Wips Wi Wy, | o = 123,00m (2-10)

p— —_— _T —
The simplest analytical measurement for matching X with W; is the inner product as W; - X , based

on maximizing inner product is mathematically equivalent to minimizing the Euclidean distance

between vectors X and W;. Index ¢ denotes the neuron that is the best matching input vector also

called “the best matching unit or the winning neuron”, which is able to determine by Equation (2-

11).

c :argmjnux—wj , J=123,..,n 2-11)
J
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2.1.3.2 Cooperative process

This section explains the adjustment of the winning neuron, which locates at the center of a
topological neighborhood and the lateral interaction among a set of excited neurons. In particular, a
neuron is firing tends to excite the neurons in its immediate neighborhood more than those farther
away from it. This observation, it makes the topological neighborhood around the winning neuron
decay smoothly with lateral distance. In order to observe the model, that is suitable for the
cooperative process. The topological neighborhood and the lateral distance are assumed, such that
satisfies in two distinct requirements as:

- The topological neighborhood is symmetric about the maximum point, which is defined by
the lateral distance is zero. Therefore, that point represents the maximum value at the winning
neuron.

- The amplitude of the topological neighborhood decreases monotonically with increasing
lateral distance, and decaying to zero when the lateral distance approaches to positive infinity.

The typical choice of the topological neighborhood that satisfies these requirements is the

Gaussian function as expressed in Equation (2-12).

260 | (2-12)

where, /1 i (t) denotes the topological neighborhood centered on winning neuron ¢, and

is

encompassing a set of excited neurons, a typical one of which is denoted by neuron J . Hl” I

the lateral distance between winning neuron ¢ and excited neuron j . #; and 7, define the position

of excited neuron j and the discrete position of winning neuron c respectively. Both positions are
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measured in the discrete output layer. o(¢) is called the neighborhood radius, this parameter is the

effective width of the topological neighborhood as shown in Fig. 2-4.

|
|
|
|
|
|
|
|
|
|
0 dj)c:””j_rc’H

Fig. 2-4 The neighborhood function

Fig. 2-5 The size of the topological neighborhood when it shrinks over time

The Gaussian topological neighborhood equation is more biologically appropriate than a
rectangular one, and it also makes the SOM algorithm converge more quickly than a rectangular
topological neighborhood function.

Another unique feature of the SOM algorithm is the size of the topological neighborhood that
shrinks over time as displayed in Fig. 2-5. It can solve by the exponential decay function [38] as

represented by Equation (2-13).
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o(t) = o, exp[_%j (2-13)

O, denotes the width or radius of the topological neighborhood function at the initiation of the

SOM algorithm. For a good global ordering, &, should initially be large (up to half the size of the

output space). ¢ is the learning step and A is a time constant. The value of time constant depends

on the number of iterations (7), which estimates by Equation (2-14).

_T
A= Jog,(0) (2-14)

2.1.3.3 Adaptation of synaptic weights process

In the self-organized formation of the feature map, the synaptic adaptive process is the last

process of the self-organizing map algorithm. The synaptic weight vector W; of neuron j in the

network is required to change in the relation to the input Vector; . For Hebbian learning’s rule, it is
well suited for associative learning, when a synaptic weight is increased with a simultaneous
occurrence of pre-synaptic and post-synaptic activities. However, the Hebbian learning is not
satisfying formation, because it changes in connectivity neurons occur in one direction only, which

finally drive all the synaptic weights into saturation. In order to solve this problem, the Hebbian
hypothesis is modified by including a forgetting term g( j) “W;j, where & (yj) is some positive

function of the response J/; .

In order to avoid the saturation problem, it can express the change to the weight vector of

neuron J in the lattice as follows in Equation (2-15).
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Aw, = USOMij_g(yj)Wj (2-15)

Nsour 1s called the learning rate of SOM learning. In Equation (2-15), the first term on the right-

hand side is the Hebbian term and the second term is the forgetting term. In order to satisfy the

requirement, that is the constant term in the Taylor series expansion of g(V j)be zero when Y is
zero. Therefore, a linear function is used for £ (v j) as shown by Equation (2-16), and it is able to

simplify Equation (3.15) by setting ' ; as expressed in Equation (2-17).
g(y;) =ny, (2-16)
y; = h; (1) (2-17)

Finally, the formation that given the synaptic weight vector W; (t) of neuron j at time ¢, and

the updated weight vector W; (¢ +1) at time ¢+1 is defined by Equation (2-18),

Wyt +1) = w, () + Dson (OB (O] x=w; (1) | @18)

which is applied to all neurons in the lattice that lie inside the topological neighborhood of the

winning neuron c. The learning rate parameter 7]g.,, (¢) should be time varying throughout the

learning step. In particular, it should start at an initial value as 7]y 5o/ , thereafter it should decrease
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gradually with increasing time ¢. This condition can be satisfied by choosing an exponential decay

for the learning rate 7Jg,,, (£) as shown in Equation (2-19), where 7 is another time constant of the

SOM algorithm.

Msou () = Mosonr 0| .| (2-19)

2.1.4 Quantifying the goodness of SOM

During SOM learning, the several of the SOM parameters, such as learning parameters, map
size and map topology can influence the formation of the final map. Therefore, in order to guarantee
the effectiveness of the mapping, the system should be sure the mapping parameters have been
correctly chosen [39], [40]. The measuring SOM quality can be done in many ways. One most
important feature is the ability to preserve the topology in the projection. Topology preservation is a
property that is not easy to define and even harder to measure, since usually a major reduction of
dimensionality is performed and the information is necessarily lost in the projection process. For
example, the topographic product can be used to optimize the map size for any given dataset, the
average quantization error can be reduced by simply increasing the number of the neurons in the
map, and the topographic error and the trustworthiness both measure the projection quality.

This section presents the widely used quality measurement methods of the self-organizing
map such as the average quantization error and the topographic error [41], which are described
below.

2.1.4.1 The average quantization error
A commonly used measurement is the average quantization error (qu ) that can be used to

determine the quality of the map and helping in choosing the suitable learning parameters and map

20



sizes [42]. The average quantization error is computed by the average distance of the sample input

patterns to its best matching unit as shown in Equation (2-20).

1 N
E, = W,Z_;"x"_WC : (2-20)

where, N is the number of the input patterns used for training the map, ||X; — Wc” is the Euclidean

distance between the weights of the BMU (W, ) and the input pattern ( X; ).

The optimum map is expected to yield the smallest average quantization error, which means
that the data vectors are close to their prototypes. The average quantization error can be reduced by
increasing the number of neurons, because the data samples are distributed more sparsely on the
map. And the SOM with a lower average error is more accurate than the SOM with higher average
error.

2.1.4.2 The topographic error
The topographic error ( £,,) is the most simple of the topology preservation measures. It is

also one of the errors proposed by Kohonen. The topographic error represents the proportion of all
data vectors for which first and second best matching units (1% BMU and 2" BMU) are not adjacent
vectors. This error indicates the accuracy of the mapping in the preserving topology. The

topographic error is calculated as shown in Equation (2-21), where N is the number of the input

samples, the function u#(X;)is one if X;data vector’s first and second BMUs are not adjacent and

otherwise u(x;)is zero.

N

E, = %Zu(ﬁ_ﬂ) 2-21)

i=l1
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The total error is normalized to a range from O to 1, therefore the lower the topographic error is the

better the self-organizing map preserves the topology.

2.2 Markov model

Andrei Markov is the mathematician who proposed the term “Markov model”. The Markov
models refer to the mathematical models as a type of stochastic model (chance model), which
consists of the random variables that are defined on a given probability space, and are indexed by
parameter. An important property of Markov models is “memoryless” property, where the next state
of the system depends only on its current state, not on it is the previous state. Markov models can
analyze as discrete-state or continuous-state, and can be also classified as homogeneous or non-
homogeneous time. In this thesis, the discrete-state homogenous Markov model is proposed,
because this model is very suitable to form the human emotions that is explained by previous
researches [43], [44]. Also, the memoryless property of Markov models is important in modeling
humans.
2.2.1 Markov model fundamentals

A Markov model consists of a list of the possible states of that system, the possible transition
paths between those states and the state transition probabilities of those transitions. For representing
a basic Markov model, the nodes in the model represent certain states and arrows which denote the

probabilities of movement between states or the probabilities of getting out of the states. In the
basic model, Let X,,, n =0,1,2..., is a discrete time stochastic process with a discrete state space
S, if the state space could be assumed as {1,2,...,N} or {0,1,...,N —1}in the finite state, and
either {0,1,...} or {L,2,...}in the countably infinite state. To understand the behavior of a
process, Equation (2-22) shows the finite dimensional distributions, which allows for the calculation

of any path probability, for every # and every finite sequence of states iy, Z;,...,L, € S .
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P{X, =i, X, =i,.., X, =i} = P{X,=i,,X, €5,X,e8,...X,=i} (2-22)
Above Equation, that is a common choice for such structure is the assumption that the processes
satisfies the Markov property, that is to mention, the probability of next state depends only on the

current state. It is called a discrete time Markov chain for any process X, 7> 0, satisfying the

Markov property as expressed by Equation (2-23).

P{X, =i | X,=iy,.,. X, =0,,} = P{X, =i | X, =i} (2-23)

Furthermore, the one step transition probability of a Markov chain from statei to state j can be

denoted as @;; (n) that forms by Equation (2-24).

a;(n) = P{X, =j| X, =i}, 1<i,j<N (2-24)

For the initial probability distribution of the process by 77 , which shows in Equation (2-25).

7, = P{X,=j}, jeS (2-25)

Returning to Equation (2-22) and then the problem of computing probabilities has been converted to

one of simple multiplication as shown in Equation (2-26).
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P{X, =iy X, =0}
= P{X, =i, | Xy =iy X, =i, } - P{Xy =iy X, =i, )
= a, , P{Xy=iyn X, =i}

ln—l ’ln

al‘nflyin .P{anl :lnfl |XO 210""’X1172 :ln72}.P{X0 :l0""’an

= aq ,-a P{X, =iy, X, 5 =1, 5}

15y In—25lp

2= in72} (2-26)

= r7-a .-dad . ....d. . -d. .
0 "ip.g LR T A B Lysly

The first order or one step transition probabilities are mostly expressed in matrix form as

expressed in Equation (2-27), where the matrix A4 is the state transition probability matrix for a

Markov chain with state space $={1,2,3,..., N}, and @, is one step transition probabilities in the

N x N matrix.

a4y ap
azl a22 oo ..

Ad=Aagy=\ 7 7 . : (2-27)
dyy Ay J

A summary of state transition probability matrix, each Markov chain can be defined as the
transition probabilities, @; (n) at step n arranged into the probability matrix according to the current

states as rows and the future states as columns, and row sums to one as shown in Equation (2-28).

da; =1 (2-28)

jes
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2.2.2 Example of the simple Markov model

The above stochastic process can consider as a sample 3 state Markov model of the weather

as illustrated in Fig. 2-6, where S,,5,,5;, ... ,Sy a set of states, N is the number of state (for

simplicity N = 3). The weather is assumed that once a day and observed as being one of the
following: Sunny (State 1), Rainy (State 2) and Cloudy (State 3), and the probabilities of

tomorrow’s weather based on today’s weather is expressed in Table 2.1.

ajp az

State 1 State 2

ass

Fig. 2-6 Markov model with three states.

Table 2.1. The probabilities for tomorrow’s weather based on today’s weather

Tomorrow’s weather
Sunny (S1) Rainy (S2) Cloudy (S3)
0.8 0.1 0.1 Sunny (S1)
0.1 0.6 0.3 Rainy (S2) Today’s weather
0.2 0.3 0.5 Cloudy (S3)

Let the weather on day 1 is Sunny (S1), ask the question: What is the probability that the
weather for next 5 days will be “Sunny — Sunny — Rainy — Rainy — Cloudy ...”? For the
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formally, the observation sequence is defined as O =1{S,,5,,5,,5,,S5,,3;} corresponding to the

time (). The probability of O can be expressed as below:

P(O|Model) = P[S,,5,,5,,5,,S,,5; | Model ]
PLS,1-PLS, 18,1 PLS, |S;]

'P[Sz |Sl]'P[Sz |S2]'P[S3 |Sz]
= Ty Gy Gyt gyt
(1)-(0.8)-(0.8)-(0.1)-(0.6)-(0.3)
1.152x1072

An application of Markov models for the behavior selection system based on emotional

variations is the Markovian emotional model, which will be described in the next chapter.

2.3 Motion Control system
2.3.1 Introduction

Definition: 4 robot is a reprogrammable, multi-functional manipulator designed to move
material, parts, tools, or specialized devices through variable programmed motions for the
performance of a variety of tasks [45]. That is the programmability, which gives a robot its utility
and adaptability. the first successful applications of robot manipulators generally involved transfer
of parts in the factories, or that could be programed to execute the sequential movements, such as
moving to position A, closing a gripper, moving to position B, and opening a gripper, etc., and more
complex applications, such as welding, grinding, deburring, and assembly that require not only
more complex motion but also some form of the external sensing such as vision, tactile, distance, or
force sensing, due to increase accurately the interaction of the robot with its environment.

Kinematics is the science of motion that studies the body movements without considering the
forces or moments, size, shape and weight. The formulation of the suitable kinematics models for a
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robot mechanism is very important for analyzing the part movements of industrial manipulators.
There are commonly two different spaces used in kinematics modeling of manipulators such as,
Cartesian space and Quaternion space. There are many ways to represent rotation, including the
following: Euler angle, Roll-Pitch-Yaw angles, Cayley-Klein parameters, Pauli spin matrices,
orthonormal matrices and Hamilton’s quaternions. The general transformation between two joints
that requires four parameters is Denavit & Hartenberg [46]. These parameters known as the D-H
parameters have become the standard for describing robot kinematics models. For representing the
rotation and transition in a compact form of transformation vector that can be determined as Dual
quaternion. For example, if the body is represented nine elements in homogeneous transformations,
the dual quaternion can reduce the number of elements to four parameters. It is accepted as an
advantage in terms of computational robustness and storage efficiency for dealing with the

kinematics of robot chains [47].

Forward kinematics Cartesi
Joint Space artesian
Space
61: 62: 63:"-:9)1 . . O
Inverse kinematics ,,T

Fig. 2-7 Schematic representation of forward and inverse kinematics.

The robot kinematics can be divided into forward kinematics and inverse kinematics.
Forward kinematics problem is static geometrical problem in solving the equations. Because the
typically manipulator will be able to sense its own position by using internal sensors (position
encoders) that can be directly measured the joint angles, and then it is determined the position and
orientation of the end effector or tool frame, which relative to the based frame. But the inverse
kinematics problem is much more difficult problem than forward kinematics. Singularities and

nonlinearities that make the problem more difficult to solve the solution of the inverse kinematics
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problem. Relationship between forward and inverse kinematics is shown in Fig. 2-7. There are two
main solution techniques for solving the inverse kinematics problem that are analytical and
numerical methods. In the first type is the analytical method, the joint variables are determined
analytically according to given configuration data. The second type of solution is the numerical
method, the joint variables are obtained based on the numerical technique methods.
2.3.2 Rigid motions and Homogeneous transformations

An essential part of the robot kinematics is involved with establishing various coordinate
frames to represent the positions and orientations of the rigid objects and with transformations
among these coordinate frames. In this section, the operations of rotation and transition are
described, and introduce the notion of homogenous transformations, these transformations combine
the operations of rotation and transition into a single matrix multiplication that are used to derive as
forward kinematics equations of the manipulators.
2.3.2.1 Representing positions and rotations

For the representing positions, that schemes for points and vectors. There are two
fundamental approaches to geometric reasoning as the synthetic approach and the analytic
approach. The first approach is one reason directly about points or lines, while in the latter, one
presents these entities using coordinates or equations, and is performed via algebraic manipulations.
The latter approach requires the choice of the reference coordinate frame. In robotic systems, one

typically uses analytic reasoning, since the robot tasks are often defined as Cartesian coordinates.
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Fig. 2-8 Two coordinate frames, a point p and two vector v; and v>.
The Fig. 2-8 shows two coordinate frames that differ in orientation by angle of 45°. In the
figure, the coordinates of the point p is specified with respect to either frame 0,X,y,or

. : . . T .
frame Oz X5V p . The point p is assigned to the coordinate vector pA =[4,5] , and in the latter

B T o . 4 B .
case p~ =[—3,4] , that means a point in space, while both p” and p~ are coordinate vectors that
represent the location of this point in space with respect to coordinate frames 0,X,V, and

0pXpVp , respectively. The coordinates that can be represented the position of the origin of one

) . 4 T B T .
coordinate frame with respect to another as 0z =[9,4] and 0, =[-9,3] . Therefore, a point

corresponds to a specific location in space, a vector specifies a direction and magnitude. The

vectors can be used to represent displacement or forces. Consider the Fig. 2-8, the displacement
from origin 04 and origin O to point p is given by the vectors V| and V, respectively. Both vectors

are geometric entities that are invariant with respect to the choice of coordinate frames, but the

representation by coordinates of these vectors depends on the choice of the reference coordinate

frames such as VlA =[4,5]", le =[6,11", vf =[-5,1]" and Vf =[-3,4]".

29



In representing rotations, to represent the relative position and orientation of one rigid body
with respect to another, the coordinate frames are attached to each part, and then specify the
relationships between these coordinate frames. In the case of the representing rotations that can be
described as follows:

- Rotation in the plane

VB

04 Op cosO V-XA

Fig. 2-9 Coordinate frame OzXy)p is oriented at angle € with respectto 0,X,)
Consider Fig. 2-9 that shows two coordinate frames, with frame 0zXy) 5 being obtained by
rotating frame 0,X,) , by angle @ . And a way to define the orientation is to specify the coordinate

vectors for the axes of frame OpXp)p with respect to coordinate frame 0,X,V , as expressed by

Equation (2-29).

Ry =[x |yy] (2-29)

y 4 . . . .
Where, Xp and Ypare the coordinates in frame 04X, , of unit vectors Xz and yVp respectively.

This formation is called “Rotation matrix”, which have a number of special properties that discusses

below.
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In the two-dimensional case, it is easy to compute the entries of the rotation matrix as shown

in Equation (2-30).

y cos@ —sind y cos® y —sin@
Ry = . ,where Xz = | . and Yy = (2-30)
sinf cos@ sin cost

. 4. . . .
To summarize, Ry is a matrix whose column vectors are the coordinates of the unit vectors along

the axes of frame OzXyYp expressed relative to frame 0 X,V .
- Rotations in three dimensions

The projection technique is used in three dimensions, each axis of the frame 0zXpVpis

projected onto coordinate frame 0 ,X ;) , . The resulting rotation matrix is given by Equation (2-31).

XpXq Vp X4 Zp Xy
A
Ry =|Xp Y4 Yp-Ya Zp Va (2-31)

Xp Zy Yp 24 Zp 2y

For example, the frame 0,X,y , is rotated through an angle 6 about the z ; axis, in order to find the

result of transformation matrix R;. Form the right hand defines the positive sense for the
angle @ to be such that rotation by & about the z axis would advance a right-hand threaded screw
along the positive z axis as illustrated in Fig. 2-10, where X X, =c0s@, y,-x, =—sinf,
Xg-y,=sin@, y,-y,=cosO and zy-z,=1. While all other dot products are zero. Thus,
the rotation matrix Rg has a particularly simple form as expressed in Equation (2-32) and also is

called a basic rotation matrix (about the z axis) Rz,,g .
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cosd —sinfd O

R} = R ., =|sin@ cos® O (2-32)
0 0 1
AZA} ZB
NIb

Fig. 2-10 Rotation about Z , by an angle 0

Similarity, the basic rotation matrices are able to represent rotation about the x axis and y axis

are shown in Equation (2-33) and (2-34) respectively.

1 0 0
R, =10 cosf -—sinf (2-33)
0 sind cos@

cos@ 0O sind

Ryﬁ = 0 1 0 (2-34)
—sind 0 cos@
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2.3.2.2 Rotational transformations

Fig. 2-11 The rigid object is attached in the coordinate frame

In Fig. 2-11 shows the rigid object that is attatched onto a coordinate frame 0zXzV 5 . Given

the coordinate of point p with respect to the frame OpXpVzand the coordinates

T
pB = [u,v, W] define as Equation (2-35). And a similar way, the coordinate pA can be obtained

by projecting the point P onto coordinate axes of the frame 0 ,X ;) , as shown in Equation (2-36).

p = [uxB + Vg +sz] (2-35)

A

T
pt=pxupyiepz,] (2-36)

In order to explain about the rotaional transformations, these two equations are combined. Finally,

the final equation is solved as Equation (2-37).
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(uxz +vyp +wzg)-x,
P = | (uxg +vyp +wzp)-x,
(uxz +vyp +wzg)-x,

XpXy Yp Xy Zp-Xy || U

=X Vay Vg Va ZpVa||V (2-37)
Xp 24 Vg Va4 Zp Z4||W
=Ry p°

. . . 4 . . .
Briefly, the rotation matrix Ry can be used both to represent the orientation of the coordinate

frame Op X3 ) with respect to frame 04X,y ,, and transform the coordinates of a point from one

frame to another.
2.3.2.3 Composition of rotations

In this sub-topic, the composition of rotations is discussed that can be divided into two types
as the rotation with respect to the current frame and the fixed frame. The details of both types are
described below:

- Rotation with respect to the current frame
Suppose, the third coordinate frame O-X-}is added in the plane that relates to the frames

04X,y and OgpXp)p by rotational transformations. Given a point P is represented by coordinate

specified with respect to any of these three frames, the relationship among the representations of

P is expressed by Equation (2-38).

p" = Ryp”
B B_C
P =Recp (2-38)
p* = R:p©
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4 4 . . . B
Where, Ry and R that represent rotations relative to the frame 0,X,), while R represents a

rotation relative to frame OpXp)p . Consider in the Equation (2-38) that can determine as the

composition law for rotational transformations which shows in Equation (2-39).

R} = RIR} (2-39)

. . . ) . ApB
That means the resulting frame O-X ) has orientation with respect to 0,X ¥, given by Rz R . It
is called the current frame because the frame relative to which the rotation occurs the frame. For

example, if a rotation matrix R represents a rotation of angle ¢ about the current y axis followed

by a rotation of angle € about the current z axis as shown in Fig. 2-12.

Fig. 2-12 Composition of rotations about current frame

Then the resulting matrix R is calculated as:

R = R ;R ,

[ cosp 0 sing|[cos@ —sin@ 0
= 0 1 0 sind cosd O

| —sing 0 cosg|| O 0 1
[ cosgcosf —cosgsind sing
= sin @ cosd 0

| —singcosd  singsinf  cos¢g
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- Rotation with respect to the fixed frame

In many cases, it is to operate a sequence of rotations, each about a given fixed coordinate

frames, rather than about successive current frames. For example, the coordinate frame 0,X,Y ,is

referred as the fixed frame, suppose the 3D plane has two frames 0,X,) , and 0gzXp)p related by
. . 4 . . . . .
the rotational transformation Ry . From the previous section, the representation for rotational matrix

in the current frame 0,X; YV is given by (Rj ) ™' RR; . Therefore, the composition law for applying

about the current axis as shown in Fig. 2-13 and expressed in Equation (2-40).

Fig. 2-13 Composition of rotations about fixed frame

RY = Ry[(R))'RR; | = RR} (2-40)

Thus, when a rotation is performed with respect to the world coordinate frame, the current rotation
matrix is pre-multiplied by R to obtain the desired rotation matrix. Consider in Fig. 2-13 that can be

formed the rotational equation as:
R=R, [Ry,—chzﬂRy,qﬁ] = R.oR,y

Using the rule of composition of rotational transformations, it is an easy for determining the

result of multiple sequential rotational transformations.
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2.3.2.4 Homogeneous transformations
In order to represent both positions and orientations. This section, these two concepts are

combined to define homogeneous transformations.

Fig. 2-14 Homogeneous transformations in two-dimensional
Consider Fig. 2-14, frame 0zXy)yis obtained by rotating frame 0,X,) by angle @, and

frame O-X-)- is obtained by translating frame OzXzVjby the displacement V2. Suppose, the
point p, is attached to coordinate frame 0,X,y ,, then p,is the location of p; after the rotation,

and p;is the location of p;after the translation. Note, the point p5is displaced by the vector
v3 from the origin of frame0,X,),, and the vector V3can be represented asv3 =Vvi +Vv2. The

coordinate for the vector Vican be obtained by the rotation matrix to coordinates that

represent P, in frame OzXp )5 as expressed in Equation (2-41).

v = Ryp? = RpS (2-41)
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If v2denotes by dg that is the displacement of the origin of 0-X-)., expressed relative to

frame 04X ;) , , then the point p3A can determine by Equation (2-42).

pi = Répy +d¢ (2-42)

In definition, a transformation of the form given in Equation (2-42) is called to define a rigid motion

if Ris orthogonal. From Fig. 2-14, the point can be considered as two rigid motions as shown in

Equations (2-43) and (2-44).

p' = RIp®+d} (2-43)

p® = REp©+dl (2-44)

And the Equation (2-45) describe by substituting the expression for pB from Equation (2-44) into

Equation (2-43).

p* = RIREpC +R;d] +d} (2.45)

Since the relationship between pA and pC is also a rigid motion, it can be described by Equation (2-

46).

p' = Rip© +d; (2-46)
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Considering between Equations (2-45) and (2-46), the relationship is expressed by Equation (2-47),

A . . . A
where R represents the orientation transformations and d{ shows the vector from the

. . . . 4
origin 0, to the origin 0 that has coordinates given by the sum of d; .

RZ = RyR:
2-47
dd = RidP +d} 4D
Modify the Equation (2-47) is to be the matrix identity as Equation (2-48).
Ry dj |\|RS df RyRE Ryd} +d}
= 2-48
0 1 0 1 0 1 (2-48)

From the Equation (2-48) that forms as the transformation matrices or called homogenous

transformations as expressed in Equation (2-49).

[ R
~looo 1 (249

The set of basic homogeneous transformations can be calculated by Equations (2-50), (2-51) and (2-

52) for transitions and rotations about the x, y and z axes, respectively.

For x-axis
1 0 0 a 10 0 0]
01 0 O 0 cosa -sina O
Tl”ansxa - ; ROZxa == . (2_50)
’ 0 01 O ’ 0 sina cosa O
_O 0 0 0_ _0 0 0 1_
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For y-axis

(1 0 0 0] [ cosff 0 sinfB 0]
T 01 0 b Rot 0 1 0 O
rans , , = , 1Ko = .
Yo o010 Yl _sinff 0 cosf 0 (2-51)
10 0 0 O] 0 0 O 1]
For z-axis
1 0 0 O cosy —siny 0 O
T 01 00 Rot siny cosy 0 O
rans, . = , Rot, = -
10 01 ¢ 710 0 10 (2-52)
0 00O 0 0 0 1
2.3.3 Robot Kinematics

This section organizes in the following manner, the forward and inverse kinematics
transformations for an open kinematics chain are described based on the homogeneous
transformation.
2.3.3.1 Forward kinematics

A robotic manipulator is composed of serial links which are connected to each other revolute
or prismatic joints from the base frame to the end-effector or tool frame. Determining the position
and orientation of the end-effector in terms of the joint variables is called as forward kinematics.
One method will be used for a suitable kinematics model that is Denavit-Hartenberg method. This

method uses four parameters (D-H parameters) is the most common method for describing the robot

kinematics. The parameters are the link length @, link twist @;_;, link offsetd; and joint angle &, .

i-1»
In Fig. 2-15 that shows coordinate frame assignment for general manipulator. As description in the

figure, the distance from Z;_ to Z; along X is assigned as @,_, , the angle between Z,_, to Z, about

X, is assigned as @;_;, the distance from X, ;to X, alongZ,is assigned asd,and the angle

1 1
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between X,_; to X, about Z; is assigned as &; [48]. Thus, the general transformation matrix iii-T for a

single link can be obtained as follows by Equation (2-53).

Fig. 2-15 Denavit-Hartenberg frame assignment

"7 = R.(e.))D,(a,))R.(6))D.(d))

1 0 0 0|1 0 0 a_|cd -s6 0 Of|1 0 O O
10 ey =sa; OO 1 0 0 fjsg ¢4 0 00 1 0 O
10 sa, ca, O[O0 0 1 010 0 1 0|0 0 1 4,

0 0 0 1|0 0 0 1 0 0 0 1|0 0 0 1

cO, —s0. 0 a.,
i sOca, , cOca,_, -sa,, -sa; d;
T =
; (2-53)

sOsa;, , cOsa,_, ca,_, ca,_d.
0 0 0 1
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The forward kinematics of the end-effector with respect to the based frame determines by

multiplying all transition matrices as expressed by Equation (2-54).

baserp _ O 1l 2 n-1
end—e}fectch - lT 2T 3T nT

i ha h3 Py

_ | T2 T Py (2-54)
B 13y Iy P
0O 0 0 1

7; define as the rotational elements of the transformation matrix (i and j = 1, 2 and 3). The elements

of the position vector denote with p,., P, and p, .

2.3.3.2 Inverse kinematics

In the previous section, the forward kinematics is used to determine the end-effector’s
position and orientation in terms of the joint variables. But in this section, the inverse kinematics
problem is solved in order to find the joint variables in terms of the end-effector’s position and
orientation. There are two solutions approaches namely geometric and algebraic that used for
solving the inverse kinematics problem.

- Geometric Solution

For the common kinematics assignments, the geometric solution approach is based on
decomposing the spatial geometry of the manipulator into several plane geometry problems. 2-
DOFs planar manipulator is the simple robot structures that is considered in order to derive the

kinematics equation as shown in Fig. 2-16, where it has 2 revolute joints and link lengths are

L,and L,. And the components of point p are determined as follow Equations (2-55) and (2-56).

p, = L cosb +L,cos(6 +6,) (2-55)
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p, = Lising +L,sin(6 +6,)

LgSin(91+62)

3
L;sin@,

o) |

v ~

J < - »” X
LcosO, ILZCOS(61+62)I

Fig. 2-16 The 2-DOF planar manipulator

(2-56)

The solution of €, can be computed from summation of squaring both Equations (2-55) and (2-56)

as follows:

P +p, = (LcosB +Lycos(6, +60,))* + (L sinb, + L, sin(6, +6,))’

= L’°(cos’ 6, +sin’ §) + L,*(cos’ (6, + 6,) +sin’ (6, + 6,))
+2L,L,(cos 6, cos(6, +6,) +sin g, sin(b, +6,))
.’ +py2 = L>+L,>+2LL,cosb,

And so

2
pi+p —Li—-L pi+p,—L -1

1
2LL, 2LL,

Finally, two possible solutions for &, can be written as Equation (2-57).
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2
pi+p,—L-L) pi+p-L-L
; (2-57)

0, = Atan2| £ [1—
2L L, 2LL,

Next step, Find the solution of &,in terms of link parameters and known variable &, as follows.
Let’s multiply each side of Equation (2-55) by c0s 8, and Equation (2-56) by siné, .

cos@ p, = L, cos’ 6, + L, cos’ 6 cosf, — L, cosb siné,sin 6,
sinfp, = L, sin® @, + L, sin” 6, cos @, + L, sin f, cos 6, sin 6,

cosp, +sinfp, = L cos’ @, + L, cos” @, cos 6, + L, sin” 6, + L, sin” 6, cos b,

The simplified equation obtained as Equation (2-58).

cosGp, +sinfp, = L, +L,cos0, (2-58)

Again consider in the Equations (2-55) and (2-56) by multiplying —siné, and cosé, respectively,
then adding the resulting equations produce as:

—sin@,p, = — L, sinf,cosé, — L,sin6, cosd, cosb, + L, sin’ ,sin G,
— : : 2 .
cosOp, = L;sing cosb, + L, cos ) sing, cos b, + L, cos” 6 sin 6,

—sinf p, +cosOp, = L,sinb, (cos® 6, +sin* 6))

The simplified equation obtained as Equation (2-59).

—sinf p, +costp, = L,sin6, (2-59)
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Then, multiply each side of Eqaution (2-58) by p, and Equation (2-59) by P, and add the resulting
equations in order to find oS g, as:

cos@, p> +sin 6p,p, = p,(L +L,cos6,)
—sin6 p,p, +cos lei = p,L,sin6,
cosé,p> +cos lei = p, (L +L,ycos6,)+ p L,sin6,

As a result, two possible solutions for &, can be written as Equation (2-60).

p. (L +Lycos0,)+ p L,sinb,
cosf, = ;

3

pi+p;

p. (L, +L,cos6,)+ p,L sin 8,

sing, = %, |1- R
by TPy (2-60)

p(Ly+L,cos6,)+ p,L,sinb,

2 2

_|_
6, = Atan2 by TPy
po(Ly+L,cos6,)+ p,L,sinb,

P+ D,

Although the planar manipulator has a very simple structure, as can be seen its inverse
kinematics solution based on geometric approach, but it is very cumbersome for solving the inverse
kinematics problem. And it is not suitable solutions when the manipulators that have many links
and joints. Thus, the other method is an algebraic solution approach that is chosen for the inverse

kinematics solutions.
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- Algebraic Solution

An algebraic solution approach is a suitable method for the manipulators with more links.

Recall the Equation (2-54) to find the inverse kinematics solution for a 6-DOFs manipulator as
shown in Equation (2-61).
hi ha hs Py

Hhy Ty nhi P,

2-61
B I hBy P, ( )

T = T(q,)37(9,)3T(q3)..sT(qs) =

To find the inverse kinematics solution for the first joint ( g, ) as a function of the known of (T, the

-1
link transformation inverses are pre-multiplied as Equation (2-62), where [2T (ql)] T(q)=1 is

an identity matrix,

(7@ 7 = [T@) ] @) (4T @) q) e
éT(%)%T(%)---zT(%)

For the other variables, the following equations are obtained as a similar manner. All of them show

in by Equation (2-63).

")) | T = 3437 @) ()3T (g)

1
T(@)3T(4:)3T(g5) | ST = T(4,)3T(43)3T (o)
(2-63)

K

k
(470,373 | T = 7(49) 3T (gy)
K

UT(q) 3T (4:) 3T (4) 3T (4) T (ay) | T = iT(qp)
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There are twelve sets of nonlinear equations to be solved. If the elements on the left hand side
which are the function of ¢, are equated with the elements on the right hand side, then the joint
variable ¢, can be solved as functions of 7j1,%25%35--+5133, P> P> P. and the fixed link

parameters. To find the suitable equation for the solution of the inverse kinematics problem, any

equations can be used some trigonometric equations that are given in Table 2.2.

Table 2.2. Some trigonometric equations and solution can be used in inverse kinematics

Equations Solutions

1 asin@+bcosf = ¢ 6’=Atan2(a,b)iAtan2(x/a2+b2—02,c)

2 asin@+bcosf = 0 0 = Atan2(=b,a)or 6 = Atan2(b,—a)

3 cos@ = a;sinf = b 0 = Atan2(b,a)

4 cosf = a 9=Atan2(i\/1—a2,a)
5 sinfd = a 9=Atan2(a,i\/1—a2)

2.4 Summary

In this chapter, the fundamental theories (an unsupervised learning as a Self-Organizing Map
(SOM), Markov theory and Motion control system) have described above that will be used to
generate and develop the behavior selection system based on the emotional variations for Conbe-I
robot, which autonomously determines and outputs the most suitable behavior and emotional

expression according the internal and external situations.
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System Structure of Conbe-I robot

Designing robots with cognition and consciousness resembling for humans and animal have
become an important application of intelligent autonomous robots, in order to achieve a more
effective human-robot interaction. Thus, in this thesis, the behavioral-emotional selection model is
proposed based on the Self-Organizing Map (SOM) learning and the discrete stochastic state-space
mathematical model (Markovian model) that mainly consider the issues of an autonomous action
selection corresponds to the emotional state transition. The system structure of Conbe-I robot and

the details of each part will be clearly described in this chapter.

3.1 System Configuration

Chapter 3

Personal Computer

J

Camera program
Motor program
Arm program
Motivation program
Eye program
SOM model
Markov model

FCB-HI11
camera

HD-SDI
< > interface board
USB-RS485 Robotic Head
actuators
USB-RS485 Robotic Arm
actuators
—}l Web camera

Fig. 3-1 The basic configuration of Conbe-I robot

Fig 3-1 shows the basic configuration of the robot, consisting of an autonomous control
system (Camera program, Motivation program, Arm program, Eye program and Motor program),
Self-Organizing Map module (Behavior map and Emotion map) and Markovian model in a personal

computer and the actuator system (Arm and Head parts). The configuration of the Conbe-I is

divided into 2 parts, namely an arm part and a head part.
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3.1.1 Robot arm configurations

Fig. 3-2 Configurations of the robot arm

In Fig.3-2 that shows the configurations of the robot arm. The total length of each arm part is
450 mm, and the weight of the body is about 0.8 kg. Each arm has 7 levels of flexibility: the
shoulder (Joint 1, Joint 2), the elbow (Joint 3, Joint 4), the wrist (Joint 5, Joint 6) and the hand part
(Joint 7). The hand part has 3 fingers and a small web camera which is installed on the palm of the

robotic hand in order to recognize the target objects and external situation.

49



3.1.1.1 Actuators in robot arm

An actuator for each joint uses a Dynamixel DX-117 manufactured by ROBOTIS, which has
a decelerator and an angular sensor, and it is able to control the position and velocity using a target
angle, torque limit, speed limit. In communicating, the RS-485 serial data communication is used to
control multiple actuators with the personal computer. Fig. 3-3 shows the external dimension of

Dynamixel DX-117 actuator and the main specifications are presented in Table 3.1.

37
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Fig. 3-3 Dimension of DX-117

Table 3.1 The specifications of Dynamixel DX-117 actuator

Weight 66 g

Dimension 31 mm x 46 mm x 37 mm

Resolution 0.29°

Gear Reduction Ratio 192.6:1

Stall Torque 3.7N'm (at 185V, 1.9 A)

No load speed 85 rpm (at 18.5 V)

Running Degree 0°~300°

Running Temperature -5°C ~+80°C

Voltage 12 V ~ 18.5 V (Recommended Voltage : 14.8 V)
Link (Physical) RS-485 Multi Drop (daisy chain type connector)
ID actuator 254 1D (0~253)

Communication Speed 7343 bps ~ 1 Mbps

Types of Feedback Position, Temperature, Load, Input voltage, etc.
Material Full Metal Gear, Engineering Plastic Body
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3.1.1.2 Web camera

Fig. 3-4 UCAM-DLV3000T (a web camera)

Fig 3-4 shows an UCAM-DLV3000T web camera that is used to get the images from its
surrounding environment. It is 3 million pixels of web camera realizing high-definition and high
resolution of wonder. In correspondence with “UVC” (USB video class) which is standard of USB
2.0, it is not necessary to install driver from CD-ROM and is “blow connection” to only connect to
the universal serial bus port of a desktop PC or all of notebook PC and to be usable immediately
type.

3.1.2 Robot head configurations

+—+— LCD monitors

Fig. 3-5 Configurations of the robot head
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For the robot head, it has two actuators, a CCD camera and 2 small LCD monitors. LCD
monitors are installed that use to display the eye emotions of Conbe-I as shown in Fig. 3-5. The eye
emotions are suitable for the intelligent expression of emotions. The eye movement simulator is
created by the Open Graphics Library (OpenGL) software in order to express the basic emotions of
the robot.
3.1.2.1 Actuators in robot head

The Conbe-I head has two degree-of-freedom robotic active head. Dynamixel RX-64 and
DX-117 actuators are used to be yaw and pitch movements. For the RX-64 servo actuator is one of
ROBOTIS most powerful smart actuator. It can provide a 888 o0z*in of torque at 18 VDC, and it can
traverse its entire 300° range in under 1 second. Each servo motor has the ability to track its speed,
temperature, shaft position, voltage, and load. All of the sensor management and position control is
handled by the servo motor’s built-in microcontroller. The dimension of RX-64 servo actuator is

shown in Fig. 3-6 and Table 3.2 illusates the specification of the RX-64 servo actuator.

8-M2.5TAP THRU

%
775
A=ole e
=) o
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- - 000
°
ol 0] (0]
S
\\o O)!’
| 22 |
29
34.6
40.2

Fig. 3-6 Dimension of RX-64 motor
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Table 3.2 The specifications of RX-64 servo actuator

Operating Voltage 18V 15V

Stall Torque 888 0z-in (64 kg-cm) 736 0z:in (53 kg-cm)
No-load Speed 0.162 sec/60° 0.198 sec/60°
Weight 125 ¢

Size 40.2 mmx 61.1 mmx 41 mm

Resolution 0.29°

Reduction Ratio 1/200

Operating Angle 300° or Continuous turn

Max Current 1200 mA

Standby Current 50 mA

Operating Temperature -5°C ~ +85°C

Protocol RS-485 Asynchronous serial

Types of Feedback Ec:;nitri)(l)illa,n"l;:?;}l)le)rature, Load voltage, Input voltage and
Module Limit 254 valid addresses

Communication Speed 7343bps ~ 1Mbps

Material Metal Gears & Engineering Plastic Body

Motor Maxon RE-MAX

3.1.2.2 FCB-H11 camera and Interface board

The SONY FCB-HI11 camera is installed on the Conbe-I head, which is also used to
recognize and observe the objects and external situation. The FCB-H11camera achieves a minimum
illumination of 1.0 1x by dynamically removing the infrared cut filter and allowing the spectral

responsivity range to extend into the near infrared. The FCB-11 incorporates a 1/3 type HD CMOS

SONY FCB-H11 HD-SDI Interface Board
- v Power

| (R5:232

CVBS, Y/C

Fig. 3-7 Connection diagram for FCB-H11 camera
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image sensor boasting approximately two million effective pixels and provides a 16x9 aspect ratio,
making it ideal for use with wide-screen displays. The FCB-H11 inherits a multitude of functions
with a 120x zooming capability picture freeze function, and slow shutter. For this system, the FCB-
H11 camera is connected to the HD-SDI interface board for simplifying and operating in the image

processing as shown in Fig. 3-7. And the specification of HD-SDI interface board is expressed by

Table 3.3.
Table 3.3 The specifications of HD-SDI Interface Board
Video input LVD for HD Digital video data, Analog video
HD-SDI (available only in HD mode, 720p, 10801)
Video output HD Analog video (Bypass, available only in HD camera mode)

SD Analog video (Bypass, available only in SD camera mode)
Control RS-232, Remote Control Interface (VISCA protocol)

HD-SDI Interface Module (Recommend input range : 6~12 VDC)
Sony camera (Input range: 6~12 VDC, 4.8W)

Operation Conditions | 0 to 45°C /20 to 90 %RH

Power

Dimensions Width: 42mm, Height: 42mm, Thickness: Approx. 12.65mm (PCB 1.6mm)

3.2 Overview of software
In this section, the overview of software for the behavioral-emotional selection system based
on Self-Organizing Map (SOM) and Markovian model is developed by Borland C++ Builder 5. The

details of Conbe-I program are shown in Fig. 3-8 and described below.

| Main GUI Control |

Image processing module |

Motivation module |

SOM module and Markov model |

Robot head control module |

|—>| Motor drive module (Head) |

| 111

Robot arm control module |

|—>| Motor drive module (Arm) |

Fig. 3-8 The details of Conbe-I robot program
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3.2.1 Main GUI control
Fig. 3-9 shows the Main GUI control program, which is the major program for controlling the

sub-programs such as an image processing module, Motivation module, SOM module and Markov

model, Robot head and arm control modules.

MAIN GUI

Main

&MERA POSITION _AUTONOMOUS _MECHANICAL _SHOW MODELl

Load patt1 | Load patta | ArmTimels] [

GUI Menu

Eye Open | Eye Close | Save data |

Image Processing module

=T

+

Hiztozram

Target recoenition of the arm

Mo ereen
Mo blue
Mo skin
Mo red

Labeling result

_object is nathing on Head!!

Histozram

Target recognition of Head

No Green
No Blue
Mo Flesh
No Red

Labeling result

object is nothing!!
Number lsbe! 0

i

082241608059 122150177

|object iz nothine!!

Cabel rumber 0 L

082241 608059122 150177

GX Gy
E —_———
Glutch flag  Mativation flag  Maotivation Diff flag  Diff Moti  Object RED Ohbject GREEN Object BLUE  Flech CLEERA !
BLUE
Memo7
RED
F ¢ Murmber Learning Behawior|?0 Mumber Learnine Emation |20
Times . foe . ]
Learning Rate Behavior T Timee Learning Rate Emation [ Times
] n Emotional Expression
Memo9

Behavior Selection

Memol0

SOM and Markov model

Fig. 3-9 Main GUI Control
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3.2.2 Image processing module

Image processing is a form of signal processing where the input signals are images such as
photographs or video frames. The output could be a transformed a version of the input image or a
set of parameters related to the image. The computer revolution has taken place over the last 20
years that has led to great advancement in the field of the digital image processing. This has, in turn,
opened up a multitude of applications in various fields. In this research, the images of the objects
and surrounding environment are obtained using a small web camera and a CCD camera. The visual
information is considered to determine the natural occurring dopamine waveform. And the example
of image processing module is shown in Fig. 3-10, which consists of the capture image window for

showing an image, the histogram of the image, the position of target objects and the labeling results.

(EI Capturelmage_Head =8 & i _ Target recognition of Head
Histogram € €

GREEM obj145 [66,28]
BLUE obj:14% [74,14]
Mo Flesh

Mo Red

Labeling result

ST[18] CO:4 DIM: 145 [66,28]
1 I.Lh STL11] GO:E DIM: 148 [74.14]

082241 608099122 150 17] [Number label 2

Fig. 3-10 The image processing module
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3.2.3 Motivation module

The Motivation module shows the motivation of the robot, it is determined by using the total
of all dopamine values (the positive and negative dopamine models). This module operates under an
autonomous action. Fig. 3-11 illustrates the GUI Motivation module, the details of each part are
explained as follows; 1. Start and end of the calculation of robot’s motivation. 2. The motivation
graph shows not only the robot’s motivation, but also each dopamine waveform. In addition, the

module is able to generate the typical pattern of dopamine waveforms manually by clicking the

manual buttons as shown in the figure.

[2=42] 1 Start and End for calculating the robot’s motivation

Mot ivalion Graph

Positive dopamine

T Total dopamine

—

Robot’s motivation ‘N\\T““mﬁq.;xa

Negative dopamine

2
GREEM | 4mall GREEN Cons Time |17 ot
BLUE Il BLUE el 2
Ema
Motbation |15
RED small RED 3

Generate the dopamine waveform (Manual)

Fig. 3-11 GUI Motivation module

57

Robot’s behaivor

IEF st
i {approach)
WOK irerest)

RET{gam sroursd




3.2.4 Self-Organizing Map module

For a Self-Organizing Map (SOM) module, it is used for clustering the behavior and

emotions of the Conbe-I robot. The SOM technique is a type of neural network model that is can

provide topologically preserved mapping from high-dimensional input data to a low-dimensional

(typically two-dimensional) array. The SOM consists of an input layer and an output layer

(competitive layer), which determines as an unsupervised learning. The GUI of SOM module is

shown in Fig. 3-12, it has the behavior map and emotion map. This program can set the common

parameters for computing the SOM learning such as the number of learning, the initial

neighborhood radius, the initial learning rate, the input neurons, the output neurons and the map

size. Moreover, the average quantization error is also used in this system in order to guarantee the

effective mapping.
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Fig. 3-12 The behavior and emotion maps in SOM module
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3.2.5 Robot head and arm control modules

In Figs. 3-13 (a) and 3-13 (b) display the GUI of arm control module and GUI of head control
module respectively. 1 and 8 are the open and close ports for communication between the program
control and Conbe-I robot. 2 is the buttons for adjusting the degree of each joint in the arm part. 3
shows the actual angle and the estimated angle of each motor. 4 displays the position of the hand
part and the target’s position. 5 is created for adapting the hand’s view about £5 cm in x, y, z,
directions. 6 is the group of buttons that is used for selecting the robot modes as a manual behavior
mode and an autonomous behavior mode. The last group of the GUI arm control module is 7, each
button is expressed the sub-behavior of the robot. For the GUI head control, 9 is the buttons that are

used to adjust the yaw and pitch movements. And 10 displays the values of yaw and pitch rotations.

Arm_Contral 1 4 = | B |t
1 - 7
HAND POINT
’H— ,T ’[I_ ,T Memal - Giood morning ‘ Glutch |
2 . 3 . TARGET POINT Good night ‘ Open hand |
| Motor operation Actual angles” Calc fai ([T 0 -1
- = =
Motor [1]-10  Motor [1] +10 HAND VIEW Up ‘ twist shoulder |
Motor [21-10|  Mator [2] +10jff =189 wEEH N A -2
Twicting ‘ Play Green |
Motor (31-10]  Motor [3] +10]) | [-2 - k- | e
Mator [41-10|  Motor [41 +10/f| |30 &0 V- ﬁ v+ g ‘ nait |
Motar [5]-10|  Motor [8] +1a][f |0 0 B= | Z+ 6 Approch ‘ Meglect |
Motor [6]-10|  Motor [6] +10]f| |98 96 futo behavior{OF F) Manual Initial posture Manual Vertical pozition - ‘
wotr 71 =10 mater 171 +10l]| FE1 a0 Semi-auta behavioriOFF) Manual Ball erip Manus| Goodbye
Manual OFF Manual Bow

Fig. 3-13 (a) GUI of arm control module
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Fig. 3-13 (b) GUI of head control module
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3.3 Computation of the robotic arm posture

Fig. 3-14 shows the robotic arm, which is divided into 4 parts: a shoulder, an elbow, a wrist
and the fingers, because that is difficult to determine the angles of all joints from the target position
by using inverse kinematics. Thus, in the research that uses the forward kinematics, which
expresses using homogeneous coordinates and is able to calculate the posture from the joints of a

shoulder to a wrist.

\ 1{; ! Wiist
\ /

Shoulder'\
N

L;=0.045m L,=0.04m

z L,=0.1Im Ls=0.11m
y L;=0.04m Ls=0.13m
X

Fig. 3-14 Arrangement of degrees of freedom

[T777

3.3.1 Calculation of the position for each joint

Each joint is shown in Fig.3-14, the homogeneous transformations that described in the
previous chapter is used for calculating the position of each joint, has a formation in Equation (2-
49). Thus, the transformation matrices for each joint can be expressed by Equation (3-1) to

Equation (3-6).

cosf, —sinb,
1= 0 0 (3-1)

0
sinf, cosg O
1
0 0 0

— o O O
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[ cos@, 0 sin@, L,cos6, |
T = 0 1 0 0
> | =sin 6, 0 cos@, L,sinb, (3-2)
0 0 0 1
1 0 0 L,
|0 cosf; —sind; 0
710 sing, cosé, 0 (3-3)
0 0 0 1
cosd, 0 sinf, L,cosb,
T - 0 1 0 0
*"|=sinf, 0 cos@, L,sinb, (3-4)
0 0 0 1
1 0 0 L]
0 cosf; —sinb; O
I = 0 sinf; cos6y O (3-5)
5 5
0 0 0 1|
[ cos, 0 sinf, Lscosd
T 0 1 0 0
®"|-sing, 0 cosf, L,sin6, (3-6)
0 0 0 I

where, the position vector of the first joint is £}, the positon vector of joint i can be considered in
Equation (3-7), the local coordinate system of joint is calculate by using the inverse of the
transformation matrix (7' 7]) as shown in Equation (3-8).

P=T_.T,T,T,T P (3-7)

1
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T = {R P } (3-8)

3.3.2 Methods of posture control

As described above, if the angle joints in the robotic arm are calculated by the inverse
kinematic, that is difficult to solve the inverse kinematics problem and tend to take a long time.
Therefore, in this study, the robotic arms are will be considered and determined all angle joints by
dividing as the shoulder, the elbow and the wrist parts, each part that has 2 degrees of freedom.
Then, the hand of the robotic arm is able to move to the target position without the inverse
kinematics function. In order to create the movement patterns, the robotic arm can be divided into 3
steps according to the following sequence of step.

3.3.2.1 The wrist movement

PN

Z/

Fig. 3-16 Geometric diagram
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Fig. 3-15 shows the relationship between the robotic hand and the target position. For the Fig.
3-16 illustrates Geometric diagram that can determine the local coordinates of the wrist part by

Equations (3-9) and (3-10).

0, = cos” R (3-9)

—X

«/xz +y*+7°

0, = cos”' (3-10)

By the above explanation, if there is the target object within the range of wrist movement, the
robot hand can direct toward the target position at all times as shown in Fig. 3-17 (a). However, if
the target position seems to be out of the range of wrist movement as illustrated in Fig. 3-17 (b), the
robotic hand cannot approach to the target object, consequently the previous joints (an elbow) that

are considered.

Target object Target object —

Range of Movement

(a) (b)

Range of Movement

Fig. 3-17 The range of wrist movement
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3.3.2.2 The elbow movement

If the target object is moved outside the operating range of the wrist movement, the robotic
hand is impossible to capture the target position. The final posture is calculated using 2 DOF of the
wrist part and 2 DOF of the elbow part. The elbow movement is based on pattern motions
dependent on a deviation from the object, an adaptive posture can select the movement patterns
based on the 9 ways of posing allowing the hand is to reach a position close to the target object.
After that, the wrist movement is performed. The elbow and wrist movements are operated together

as shown in Fig. 3-18.

Target object

Target position

_______

Elbow movement

Range of Movement

Target object

Target position

......

Elbow and wrist movements

Range of Movement
[T1T7 £

Fig. 3-18 The elbow and wrist movements
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3.3.2.3 The combination of the elbow and shoulder movements

In this case, that uses 2 DOF of the shoulder part as a way of achieving the posture for
gripping the target object. Therefore, the total of posing 81 ways is calculated, that is a combination
of an elbow and a shoulder movements. In Fig. 3-19 (a), Fig. 3.19 (b) and Fig. 3.19 (c) show the
sequential movement of the robotic arm that can continuously operate the movement, and toward to

the target object without inverse kinematic solution.

(a) (b)

Target object

(©)

Fig. 3-19 The sequential movement of the robotic arm
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3.4 Summary

In this chapter, the system structure of Conbe-I robot is described that has the system
configuration and an overview of the software. The system configuration is explained such as a
CCD camera and a web camera are installed for obtaining the images (target object and the external
situation). Dynamixel servo motors are used at each joint in the arm part and head part. For the
overview of software, Main GUI control is the main program, which can operate the sub-programs
for controlling each servo motor in the robot. Finally, the computation of robotic arm posture is

explained in order to perform the sequential movement.
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Chapter 4

Behavioral-Emotional Selection System

Designing robot with cognition and consciousness resembling that of human beings or
animals has become an important application of intelligent autonomous robot, in order to achieve a
more effective human-robot interaction (HRI). In this thesis, the proposed method has been focused
on considering and developing the primary structure of a conscious action, when an animal or
human beings take an action that can be represented by the sequence of processes as follows:
Recognition and Perception — Motivation — Behavior selection and Emotional expression.

In this chapter, the behavioral-emotional selection system is proposed that autonomously
determines and outputs the most suitable behavior and emotional expression based on internal and
external situations. From the primary structure as described above, the behavioral-emotional
selection system can be divided into three processes. The first process, the robot recognizes the
external situation and determines the robot’s motivation. In the second process, the cognition
module is generated and used for clustering the input stimuli (the intrinsic motivation and external
situation) based on an unsupervised learning neuron network as a Self-Organizing Map (SOM),
then the affective and behavior factors are calculated in order to update the elements of behavioral
and emotional transition matrices. The last process is behavioral-emotional selection system. The
emotion model of the proposed method is improved based on Plutchik’s research. Robert Plutchik
proposed the theory of emotion that is one of the most influential classification approaches for
general emotional responses [49]. The emotional model consists of six basic emotions: Neutral,
Hope, Happiness, Sadness, Fear and Disgust. The proposed emotional model is based on Markov

modeling theory, which models emotional and dynamic states and uncertainly.
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Behaviral-Emotional Selection System

v Recognition process

Recognition of the external situation by web camera

A4

Calculating the naturally occurring dopamine and
Determine the robot’s motivation

Cognitive process
The training data The training data
' v r (Behavior) ' v : (Emotion)
SOM: Behavior Map SOM: Emotional Map
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®

Calculating Calculating
the behavioral factors the affective factors
@} Behavioral-Emotional

y Expresszon process
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Initial
probability
emotion vector

Emotion(t)
Action selection by the Emotional expression by
robotic arm the robotic head
i . i
T

Fig. 4-1 Behavioral-emotional selection system for Conbe-I robot

The proposed method is the behavior selection system based on emotional variations as

shown in Fig. 4-1. All processes are detailed below.
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4.1 Recognition process

The recognition system has two fundamental parts as shown in Fig. 4-1. First part is the
perception part which should recognize an external situation using the web camera and CCD
camera, the visual information about the objects is corrected in terms of the shape, size, labeling
and the central point of the target-color object. The second part is the calculation of the naturally
occurring dopamine waveform and robot’s motivation. Subsequently, the details of the recognition
process will be described.
4.1.1 Recognition of the external situation

In this study, Conbe-I robot uses only the acquired images from the web camera and CCD
camera for performing actions and emotional expression, the robot is not usable the other sensors
such as the tactile sensor and laser range finder sensor. Thus, it is able to evaluate the rough position
of the target object by without the other sensors. The simple image processing techniques for
Conbe-I robot is described as follows.
4.1.1.1 The simplication of images

Typically, an important point of the robot control systems is an accurate recognition of the
external environment. For example, an autonomous robots that are used in an indoor navigation task
based on self-position recognition system and an obstacle recognition system by using the Laser
Range Sensor (LRS) and visual methods. However, the most important in this study is to give a
consciousness to our robot, is not to emphasize with high-precision formation control. Therefore,
the system can simplify the acquired images from cameras by divided into 5 color groups: red,
green, blue, flesh-color and the other colors, but only four colors (red, green, blue and flesh-color)
that are used to recognize the target objects. And the acquired images are analyzed by using
OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine

learning software library.
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In the simplification, it is composed of processes as:

- Reduce the image size

The images obtained by the CCD camera (the robot head) and web camera (the robot arm)
are read into the personal computer. However, the raw images from two cameras have the high-
resolution and are difficult to process in the image processing. So, the original image size should be
reduced to a lower resolution as 80x60 pixels, by using cvResize(); function and Bicubic
interpolation method in OpenCV library.

- HSV color model

The RGB color model is based on the theory that all visible colors can be created using the
primary additive colors: red, green and blue (in the range of 0 to 255) as shown in Fig. 4-2. These
colors are known as primary colors because when combined in equal amounts they produce white.

But if two or three of them are combined in different amounts, other colors are produced.

YELLOW

Fig. 4-2 RGB color model
The other model is HSV color model, this model defines a type of color space that is widely
used to generate high quality computer graphic. It is similar to the RGB and CMYK color models.
The HSV color space has three components: hue, saturation and value. Hue is expressed as a
number from 0 to 360 degrees representing hues red (0°-60°), yellow (60°-120°), green(120°-180°),
cyan(180°-240°), blue(240°-300°) and magenta(300°-360°). Saturation indicates the range of grey
in the color space. It ranges from 0% to 100% or sometime the value is calculated from 0 to 1. A

faded color is due to a lower saturation level, which means the color contains more grey. Value (or
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Brightness) works in conjunction with saturation and describes the brightness or intensity of the
color from 0% to 100%. When the value is ‘0’ the color space will be totally black color. If the
increase in the value, the color space brightness up and shows various colors. The HSV color model
is illustrated in Fig. 4-3. Each component (Hue, Saturation and Value) can be determined from the

RGB color model by the simple flowchart as shown in Fig. 4-4.

Fig. 4-3 HSV color model

START

MAX = max(R,G,B)
MIN = min(R,G,B)

MAX No
Yes § o MAX-MIN c- MAX -R
MAX MAX — MIN
_ MAX-G . _ MAX-B
£ MAX-MIN" " MAX - MIN
END

Fig. 4-4 RGB-to-HSV color algorithm

71



- Specification of images in HSV color model

From the algorithm as shown in Fig. 4-4, the visual information of image (80x60 pixels) can
be converted from the RGB color model to HSV color model. The range of each component (Hue,
Saturation and Value) used to recognize the target object and human as shown in Fig. 4-5 and the

threshold values of each color are defined in Table 4.1.

Fig. 4-5 The range of each component in HSV color model

Table 4.1 The threshold values for RGB-to-HSV color method

Red | Flesh-color Green Blue
Hue [°] 0~10 10~30 70~160 160~240
Saturation [%] 59 10 18 39
Value [%] 20 20 20 39

4.1.1.2 Labeling process and landmark recognition

- Labeling process based on the color of visual information

Typically, in order to extract specific features of the objects from the image, it is necessary to
perform a segmentation process to original image. Therefore, an object labeling algorithm which is
used for labeling the distinct objects from a binary (black and white) image is presented. This

algorithm is useful for the separation of distinct objects for further analyses applied to each
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individual object, it is possible to recognize the target object. Fig. 4-6 shows the simplified image

and labeling image.

Fig. 4-6 Simplified image and labeling image

- Position recognition of target object

The geometric center coordinates of the obtained color information that will be used to
calculate approximately the position of the target object. However, it is very difficult to evaluate the
depth perception using the camera. Consequently, in order to recognize the image obtained from the
camera, the perspective projection plane is created for determining the position of the target object

as described in Fig. 4-7.

@

\1"The target object

\

\

The perspective projection plane

Camera

Fig. 4-7 Estimation of a target position
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- Shape recognition

However, only the color recognition is not enough to perceive the surrounding environment.
Thus, the shape recognition method is considered and used in the recognition process. This method
is the drawing circle from the results of the labelling process. Fig. 4-8 shows the example of the

details of each element, how to determine the object frame.

X2

y1) '

_Oy) h

P(x2,y2)

w

Fig. 4-9 The result of the recognition process

First, the results of the original image from labeling process are set the bounding rectangle.
Q(x1,y1) and P(x2,y2) coordinates are used to calculate the size of a rectangle (height and width) and
then O(x,y) is determined as the center point. Next step, the radius of the object is calculated in

order to draw the circle by comparing the edge of the object frame as shown in Fig. 4-9.
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4.1.1.3 The desired settings of the object for Conbe-I

When, the Conbe-I robot performs an autonomous behavior, it should recognize the
important components of the object. The images are simplified by dividing into four color groups:
red, green, blue and flesh-color that are distinguished and perception in terms of the shape, size,
center-of-gravity position. In this study, the liking behavior is performed when the robot is able to
recognize the red or green objects. On the other hand, the robot should perform disliking behavior if

it faces of recognizes the blue object. And the sample color objects are shown in Fig. 4-10.

Fig. 4-10 The sample color objects. (Blue, Green and Red)

4.1.2 Computation of the naturally occurring dopamine

Next step, the visual information (the color, shape, size, labeling and distance of the target
object) defines as the input data in order to determine and form the naturally occurring dopamine
waveform. When animals and human beings take various actions, the dopamine is secreted in the
brain [50]. Dopamine is a neurotransmitter, one of those chemicals that is responsible for
transmitting signals between the nerve cells (neurons) of the brain, and plays vital roles in a variety
of different behaviors. The major behavior of dopamine affects a movement, cognition, pleasure
and motivation. Therefore, in this section, the computation of naturally occurring dopamine is

explained.
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4.1.2.1 A drug involves levels of the naturally occurring dopamine

In order to generate the typical pattern of dopamine secretion for determining the robot’s
motivation. The pattern of dopamine model is referred based on changing of amounts of drugs. For
example, the p-chloroamphetamine is injected into the rat, the concentration is about 0.02 molar,
and the dopamine releases in the rat’s brain as shown in Fig. 4-11. Therefore, the waveform in the
dotted box will be considered for generating the typical pattern of dopamine waveform in the next

section.
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Fig. 4-11 The sample of dopamine waveform in the rat’s brain

4.1.2.2 Imitation dopamine waveform
As mentioned above, the waveform of naturally occurring dopamine can be evaluated and

divided into rise and fall portions as shown in Fig. 4-12.

A
Rise | Fall

Dopamine

pTime

Fig. 4-12 Occurrence of dopamine model
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- The rising part of dopamine waveform

In order to create the rising part of dopamine waveform, the 2™ order system is used for

calculating by Equation (4-1), where the input variable X(?)is an accelerator of dopamine, the

output variable »(¢)is a naturally occurring dopamine, ¢ is the damping factor and @, is the

natural frequency.

V(1) +2£0,y'(t) + @) y(t) = 0, x(1) (4-1)

At initial step (t=0), and the input variable is a unit step as X(#) =1 and Equation (4-1) is
able to be verified by depending on the values of damping factor as follows.
Case 1 (4 <1)

From Equation (4-1) that is modified as Equation (4-2).

Y(t)=1—e " | cosy1 -2 a)nt+1#§2sin«/1—§2 w,t (4-2)

Case2 (¢4 =1)

From Equation (4-1) that is modified as Equation (4-3).
Y1) =1-e (1+a,r) (4-3)
Case3 (¢ >1)

From Equation (4-1) that is modified as Equation (4-4).

y(t)=1-e""| cosh [¢? —lw,t + ——=—sinh+/{* — 1wt (4-4)

ﬁ

Moreover, the time of peak (7, p) for ¢ <land ¢ =1can be expressed as Equations (4-5) and (4-6)

respectively.
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T =
p.s<l > (4-5)
o, N1=¢&
2r
Tp,gzl = a)_ (4-6)

- The falling part of dopamine waveform

For the falling part of dopamine’s waveform process, the peak value of the rising part

(Y pear ) defines as the initial input variable for determining by using the exponential equation as

expressed in Equation (4-7), where ¥(f)is the output of dopamine waveform, 7.is the time

constant.

_t
i

Y(t) =e ) ypeak (4'7)

4.1.2.3 Controlling the amount of dopamine waveform

In this section, the stimulus variables are described for controlling the amount of dopamine’s

waveform such as the natural angular frequency (@, ), the damping factor ({ ) and the time
constant (T},).

The first stimulus variable is the natural angular frequency ( @, ) that affects the speed of the
rising part in the occurrence of dopamine model. The next stimulus variable is the damping factor

(&), it has effect the peak value of the dopamine’s waveform, and the last one is the time constant
(T,) it influences the decay of the falling part of dopamine’s waveform. Therefore, in Fig. (4-13),
Fig. (4-14) and Fig. (4-15) that show the waveforms of dopamine model when the stimulus

variables (@, ,¢{ and T, ) are changed respectively.
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Fig. 4-13 Dopamine’s waveform when @, is changed

1.6 T | T T T T T
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Fig. 4-14 Dopamine’s waveform when & is changed

16 ! ! ! ! ! ! !

Fig. 4-15 Dopamine’s waveform when 7, is changed

As described above, that is possible to set and generate the naturally occurring dopamine by

controlling the stimulus variables according to the external situation.
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4.1.2.4 Derivation of the feeling distance

The feeling distance (between the target object and the camera) is the important variable that
is used for developing the robot’s motivation. Therefore, this section will explain how to calculate
the feeling distance. Suppose, the green ball (a favorite object) is recognized by a web camera. And
the object’s distance is changed from 0 cm to 50 cm. The result of the relationship between the

number of pixels and the feeling distance is shown in Fig. 4-16.

5000

4000

3000

2000

1000

Number of pixels (pixels)

0 10 20 30 40 50 60
Feeling distance (cm)

Fig. 4-16 Relationship between the number of pixels and feeling distance

In Fig. 4-16, the result of waveform seems as the exponential function, thus the relationship

between the feeling distance and number of pixels can be expressed by Equations (4-8) and (4-9).

log(Pixel )
. 3983.0) .. .
Dist = ;if 0 < Pixel <1500 4-
—0.0682 i/ (4-8)
10g(Pixel )
. 7796.0) .. .
Dist = ;if 1500 < Pixel <4800 R
—-0.1099 s “4-9)

The feeling distance will be used as the input variable for calculating naturally occurring

dopamine and determining the stimulus variables.
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4.1.2.5 Determination of the stimulus variables

In this section, the stimulus variables are specified by the conditions of the liking object
(green object) and disliking object (blue object) recognitions.

- Condition of the liking object (green object)

Here, the setting parameters are assigned in the conditions of the favorite object when the robot
is able to recognize the liking object. In this situation can divide into 4 conditions for generating the
dopamine’s waveform as:

o If the robot can recognize the green object at the first time.

The movable range of the robot arm and the feeling distance are used to set the stimulus

variables as expressed by Equations (4-10), (4-11) and (4-12), where Feeling dist is the feeling

distance of the robot and Movement dist is the movable range of the robot arm.

», =100 (4-10)
¢ = 0.1+ (Feeling dist/10) — (5Movement dist) (4-11)
T, = 60.0+ 60.0{(50 — Feeling dist) /100 + Movement dist} (4-12)

o If the distance between the green object and the robot’s hand has changed.

In this case, when the distance is changed between previous time and current time, which
interprets as the shrinking of the dopamine’s waveform or the expanded waveform. diff vallue s
the variable that presents the different value of the feeling distance as expressed by Equation (4-
13), where Feeling dist back is the feeling distance at the previous time and Feeling dist is the

feeling distance at the current time.

Feeling dist back—Feeling dz'st)
50.0

(
diff value = e{ (4-13)
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Therefore, in this case, the setting parameters are calculated by Equations (4-14), (4-15) and (4-16).

®, = 10.0 (4-14)

— 30.0
¢ = /z’zﬁ’ value (4-15)

1. = diff value (4-16)

o If the green object is unmoved.

The stationary state is defined by the center of gravity point is not changed. In this state, the

stimulus variables will be assigned as @, =20.0,4 =15.0 and 7, =0.05 . But if the green object

is not the same position, 7, will be increased in order to decrease the dopamine level dramatically

correspond to the Equation (4-16).

o [f the green object is a ball

In this situation, that is similarly the previous condition (if the green object is unmoved), it
means the robot can recognize the green ball for a long time, the dopamine is continuously
increasing. And the setting parameters is also @, =20.0,{ =15.0 and 7, =0.05.

- Condition of the disliking object (blue object)

The other condition is described when the robot recognizes the blue object (disliking object). In
this case, it can divide as 2 conditions for generating the dopamine’s waveform:

o If the robot can recognize the blue object.

In this study, the robot should perform disliking behavior or negative emotion when it can
recognize the blue object. And in this situation, the robot doesn’t need to consider the movable
range of the robot. The dopamine’s waveform is represented as the negative value and the all setting

parameters are also indicated by Equations (4-14), (4-15) and (4-16).
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o If the feeling distance of green object and blue object are different
In this case that describes about the recognition of the green and blue objects at the same time.

Equations (4-8) and (4-9) are used again for calculating the feeling distance of blue object

( Dist Blue), in order to determine the ratio of the feeling distance between the green object and

blue object ( Ratio of GtoB ) as illustrated in Equation (4-17).

Dist Green
Ratioof GtoB = ——— .
f Dist Blue @-17)

If Ratioof GtoB =1 that means the blue object is near the camera, the negative dopamine is
increasingly created. The setting parameters are set by @, =20.0,4 =15.0 and 7, =0.05 . On the

other hand ( Ratio of GtoB <1), the time constant will be modified by multiplying with the ratio of

the feeling distance as expressed in Equation (4-18).

T, = T.- Ratioof GtoB (4-18)

4.1.3 Calculation the intrinsic robot’s motivation

From the computation of the naturally occurring dopamine model as described above, the
total sum of their positive (the green object) and negative (the blue object) values that is used as the
input variable for calculating the robot’s motivation shown in Fig. 4-17 and the motivation waveform

is estimated by the 2™ order system of linear differential equation as expressed by Equation (4-19).

Robot's motivation(t) = 2-Total of dopamine(t)

1 dz ' . 7
——5 —— Robot's motivation(t)

w,” dt (4-19)

- 2%1R0b0t 's motivation(t)
W~ dt

n
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Here, Total of dopamine(t)is the total of the naturally occurring dopamine that is described in the

above section, Robot's motivation(t)is the output variable, @, and{ are considered by the

outside environment and the internal state.

Positive

Negative

4.2 Cognitive process

Motivation model

Postive do;ia «

*

|
The total of dopamine time

Negative dopamine

Fig. 4-17 Robot’s motivation model

After recognition process, the robot’s motivation and the visual information are used to

specify the input parameters of the Cognitive model which analyses by a Self-Organizing Map

(SOM) learning in order to generate the behavior and emotion maps. In this process, the nine

behaviors and six emotional expressions are set up for the Conbe-I robot as shown in Table 4.2.

Table 4.2 The behavioral and emotional states of Conbe-I robot

Liking behavior Approach (green object), Catch (green object) and

Look around (green object), Interest (green object),

Interest (flesh-color)

Disliking behavior

Look around (blue object), Be alert (blue object),
Avoid (blue object) and Be alert (flesh-color)

Emotion expressions

Neutral, Hope and Happiness (Positive emotion)

Sadness, Fear and Disgust (Negative emotion)
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In order to classify and select the most appropriate behavior and emotion correspond to the
surrounding environment of the robot, the results of the SOM learning will be verified.
4.2.1 Formation of behavior and emotion maps by SOM

The theory of the SOM learning is explained in Chapter 2 that can summarize in this section.
The Self-Organizing Map (SOM) is a neural network architecture. It is well known as an effective
pattern classifier that uses the unsupervised learning method. The SOM is composed of map units
called nodes or neurons, which connect to adjacent neurons by a neighborhood relation that provided
topology-preserving mapping from high-dimensional input data onto a low-dimensional array of

neurons (usually two dimensional), as illustrated in Fig. 4-18.

X1 Xj Xn

L5 ‘ v/,,r
CFAT
RN\
R
L5 ooy
QQ‘

Weight Vector W;

nput Layer

AN

Fig. 4-18 Structure of the SOM model

Each neuron in the output map (the competitive layer) is associated with a vector representing
the “weight vector”, which are updated toward a center of gravity of the input vectors weighted by
neighborhood function. And the procedure of the basic SOM learning can explain by the following
steps:

Step 1. Each node must be initialized with the weight value. Typically the weights will be set

to small standardized random value. The value of W; (0) are initialized in [0, 1].
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Step 2. At each training step, the Euclidean distance at node j on the map between the weight
vector and input vector is calculated as expressed by Equation (4-20), where X;is the value of
parameter / in the input vector, W (¢)is the weight value between parameter i and node j on the

SOM, and N is the number of parameters.

d (1) = \/Z(xi —W,-j(t))2 (4-20)

i=0
Step 3. The best-matching unit (BMU), whose weight vector is closest to the input vector
(denoted here by ¢ ), is determined, as shown in Equation (4-21).

c = argmjjn{dj} (4-21)

Step 4. After finding the BMU, the weight vectors of the BMU, and its topological neighbors

are moved closer to the input vector. The new weight vectors are updated by Equation (4-22), where
t is the training step index, 77(¢) is the learning rate, and / i e (%) defines as the neighborhood kernel

function around the winner nodes; there are expressed by Equations (4-23) and (4-24), respectively.

All variables that are described in Chapter 2.

Wt +1) = w,(O)+ (O, (O x=w; (1) | (4-22)

n@ =, eXp[_%] (4-23)

2

h(f) = b
.f,C() = €Xp 2G(f)2 (4-24)
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Step 5. The training steps increase to 4 1. Steps 2 to 4 are repeated with decreasing the
width of the neighborhood function.

To verify the experimental results in the SOM learning, the data normalization is necessary for
preparing the input data. The neural network training could be made more efficient by performing
certain preprocessing steps in the networks input and target. The normalization process for the raw
inputs has great effect on preparing the data to be suitable for training. Without this normalization,
training the neural networks would be very slow. There are many types of data normalization. It can
be used to scale the data in the same range of values for each input feature. Data normalization can
also speed up the training time by starting the training process for each feature within the same scale.
It is particularly useful for modeling applications where the inputs are generally at widely different
scales. Different techniques can use different rules such as Statistical normalization, Min-Max
normalization, Median normalization, Sigmoid normalization, Mean, Standard Deviation

normalization and so on. In this study, the Min-Max normalization is used, which can calculate by

the following Equation (4-25), where X; is the original data values (the motivation value, pixels of

green color, blue color and flesh color), X,;, and X_,, are the minimum and maximum of

feature X .
X X, .
_ i min
inew ( max,new xmin,new ) + 'xmin,new (4'25)
xmax - xmin

This function is used to scale into a new interval [0, 1], so define Xy 50y = 0 and Xpay e, = 1 in

the above Equation (4-25). Now the simplified formula of normalization is shown in Equation (4-
26). Each feature will lie within the new range of values and remain the same. Min-Max

normalization has the advantage of preserving exactly all relationships in the data.

X —X_.
Xigl = ———— (4-26)

max xmin
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For instance, the motivation values, the slope of motivation values, the pixels of colors are
normalized using Equation (4-26), and they are defined as the details of input data for testing the
SOM learning as illustrated in Table 4.3. And Table 4.4 shows the parameters of SOM learning.

Table 4.3 The details of the input data for SOM learning

Value Description
) The positive motivation value is True = 1,
Moti_flag True or False ) )
and the negative value is False = 0.
Moti_value Oto1 The motivation value
) The positive slope of motivation value is
Moti_slope flag True or False ) ]
True = 1, the negative slope is False = 0.
Moti slope value O0tol The slope of motivation value
Green O0tol Pixels of green color
Blue O0to1 Pixels of blue color
Flesh O0tol Pixels of flesh color

Table 4.4 The parameters of SOM learning

Value Description
T 200 The number of learning
Mo 0.08 The initial learning rate
oy 15 The initial neighborhood radius
Map size 30x 30 The rectangular SOM topology size

For example, if the robot recognized a green object and the target object was near the robot’s
hand, the testing input data were the motivation flag = 1 (positive level), the motivation value =
0.45, the slope of motivation value = 0.003, the motivation waveform is a positive slope
(Moti_slope_flag = 1), the green pixels = 0.6, the blue pixels = 0.02 and the flesh-color pixels = 0.2.
During the learning of SOM process, we haven't only observed the changing position of the winner
nodes of each output pattern in the behavior and emotion, but also considered the evolution of the
form of both maps as shown from Figs. 4-19 to Figs. 4-26. For the input patterns (Behavior and

emotion patterns) are shown in Appendix A.
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the similarity of the mapped actions and emotions is presented which is determined by the weight

values of each action and emotion group.

In Fig.4-27 showed the winner node of “Approach” action and the response action, and

expressed the similarity of approach action when the robot recognized the green object respectively.
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Moreover, during SOM learning, the several of the SOM parameters, such as learning
parameters, map size and map topology can influence the formation of the final map. Therefore, in
order to guarantee the performance of the map, that has to be sure the mapping parameters have
been chosen correctly. Several measures have been used to evaluate the quality of a SOM. A widely
used measurement is the average quantization error, this error shows the quality of learning and
fitting of the map. It can calculate by the average of all Euclidean distances between each input

pattern and its BMU as expressed by Equation (2-20) in Chapter 2.

The average quantization error
T T T T T T T

0.5 T T

Behavior map
—————— Emotion map

80 100 120 140 160 180 200
The number of learning

Fig. 4-29 Average quantization error of behavior and emotion maps (Map size 30x30)
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Fig. 4-30 Average quantization error of the different map sizes
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The results of the average quantization error of behavior and emotion maps in Fig. 4-27 and
Fig. 4-28 can be verified and shown in Fig. 4-29. The optimum map is expected to yield the
smallest average quantization error, which means that the data vectors are close to their prototypes.
The average quantization error can be reduced by simply increasing the number of map neurons,
because the data samples are then distributed more sparsely on the map. Fig. 4-30 shows the
average quantization error of the different map sizes, and how the average quantization error of
behavior and emotion maps decreases when the map’s size increases.
4.2.2 Affective factors and Behavioral factors

After SOM learning, the results from behavior and emotion maps are defined as the
behavioral and affective factors, which provide for updating the state transition matrices in the next
process. The behavioral and affective factors are determined by averaging the sum of the weights of

each group in the behavior and emotional patterns as expressed by Equations (4-27) and (4-28),
respectively, where, bk is the behavioral factor value of each k behavior class, € ; 1s the affective

factor value of each jemotion, 7 and7 are the number of the behavior and emotion weights the

contained in each class.

1 m
by = —> wf (4-27)
m-ig
I~
e, = ;ng (4-28)
i=1

The resulting value of each affective and behavioral factor is in the range of [0, 1]. For example,

Happiness appiness Happiness | . . .
€Happiness — {Wl w ,Wfpp seees Wi i } is the set of weights of affective factor that are
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. . . . Happiness
contained in “Happiness” emotion, W, P

is the weight of the i™ affective factor contained in
“Happiness”. From the emotion map in Fig. 4-28, the weight values in the emotion map are used to

calculate the affective factor values as shown in Fig. 4-31.

0.35 ; ; f f ; ;
03 : :

e .o
—_ W N W

Affective factor value

o
o L
93]

[e)

Neutral Hope Happiness Sadness Fear Disgust

Fig. 4-31 Affective factor values after SOM learning

4.3 Behavioral-Emotional expression process

In recent years, there has been increasing interest in the field of intelligent robots in the study
of emotion-generation schemes in order to give the robots more human-like behavior. Several
different types of emotion models are available for application level model, task level model,
Circumplex model [51], Markovian property [52], [53], PAD model [54], FLAME [55] and so on.

In this study, the Markov model is proposed, because the computational model of emotion
based on the Markov theory that adapts emotions in a dynamic and uncertain environment.
Therefore the overview of the Behavioral-Emotional expression process can express by Fig. 4-32. It
has the emotional state transition module and behavior selection module based on emotional

variations, the details of both modules and some the experimental results will be described and

verified.
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Fig. 4-32 Overview system of Behavioral-Emotional expression process

4.3.1 Emotional state transition

From the theory of the Markov theory is explained in Chapter 2 that can summarize the in
this section. A Markov model is a state-space representation of a stochastic process, which can be
used to model a random system and changes the states according to a transition rule that depends
only on the current state. An application of the modeling theory of this proposed system is

described by the Emotional Markovian model as shown in Fig. 4-33.

a
NN H
Hope
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Neutral & Happiness
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S D
Sadness F Disgust
Fear

Fig. 4-33 Topology of the Emotional Markovian model
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The topology of the Emotional Markovian model consists of the nodes representing the six basic

emotional states. The arcs in the model represent the probabilities of getting out of the states. The
emotional states transition at time k is given by Equation (4-29), where Emotion, is the current

emotional state vector, and A is the emotional state transition matrix as expressed in Equation (4-

30).

Emotion,,, = A-Emotion, (4-29)

an/N an/g aAn/H4a  9Nss ay/F ay/p

ag/n 20074 Agiga 4mHss Ay r A/p

4 = Aga/N  9H4/H  9H4/HA PH4/s  QHA/F 9QHA/D
as/N as/ g As/ina  4sss as/r as/p (4-30)

ar/N Ar/ g Ar/ga  9F/s ar/p ar/p

| 4D/N Ap/g Ap/g4a 4pss % Ap/p

Here, @ 4pis the probability of a transition from state B to state A, and the arc values are set to

initial values as ¢;,4,,43,---,43¢, Which give the initial state transition matrix of Markov model.

The wvalues can be changed Ilater by the influence of the affective factors:
€Neutral » eHope > eHappiness » €Sudness » €Fear and eDisgust . For example, the prObability of the emotional

state transition from Neutral to other states can be expressed by Equation (4-31). And all elements

in transition matrix are update by using similar equations.

Ay -~ = Dt (eHope ~ @Neutral )92

AH4/N =4q;+ (eHappiness ~ €Neutral )6]3

as/n =gyt (eSadness ~ €Neutral )CI4

Ap/y = 45+ (eFear ~ €Neutral )95 (4-31)
dpiv = 46t (eDisgust ~ @Neutral )%

ayy = 1- (aH/N Tapyn TN TApn TAap/N )
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4.3.2 Behavior selection based on emotional variations

The second stochastic forms a behavior selection module based on its emotional expression.
The behavior selection probability vector Behavior, ,is determined by Equation (4-32), where,
Emotion,_, is the predicted emotion, C is the behavioral state transition matrix and the elements

of Behavior vector are the selection probability of each behavior of the robot.

Behavior,,, = C- Emotion, (4-32)

The elements of the behavioral state transition mean a probability of transition from emotional state

to behavioral state as represented by Cpenavior/emotion @nd shown in Equation (4-33).

CL(G)/N CLGyH CL(G)/HA CLGy/s CLG)IF CLGy/D
Cin(G)/N Cin(G) H CinGyHAe  Cim(G)is Cin(G)IF Cin(Gy/D

CapG)yN  Cappcya  CappyHAs  CappG)s  CappGyF  Capp(G)ID

Cca(G)/N Cca(G)/H CcaGyHa  Cca(G)/s Cca(G)/F Cca(G)/D
C = |cmyn Cr(By/H Cr(B)/HA Cr(By/s CL(B)/F CL(B)/D
(4-33)
Cai(B)/N Ca1(By/H Caigyua  CaiBys Ca1B)/F C41(B)/D

CavoBYN  CavoByH  CavoByHA CavoB)S  CavoB)YF  Cavo(B)/D

Cn(F)/IN Cin(Fy/H Crryaa  CmF)s Cin(F)/F Cin(F)/D

| Cai(F)/N Cai(Fy/H Cairya  CaiFys Cal(FYIF Ca1(F)/ID

All element values in the behavioral state transition matrix can be modified later on with
behavioral factors and affective factors, for example, if the element values of the behavioral state
transition matrix will be updated corresponding to the emotional state transition, the probability of

the emotional state from “Neutral” to other behavioral states can be expressed by Equation (4-34).
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=q,+(b - '
CL(G)/N = 4q Look around (Green) ENeutral )41
= q,+(b - )
Cln(G)/N =4 Interest(Green) ENeutral )42
=q;+(b - 4
CApp(G)/N = 45 Approach(Green) ENeurral )43
=q,+|b - '
cCa(G)/N =4, Catch(Green) €Neural )44
= q:+(b - :
CL(B)/N = d4s Look around (Blue) ENeutral )45
(4-34)
= qs+|b —e ‘
Cayn = Y ( Alert(Blue) Neutral)q6
= q,+(b - ;
CavoB))N = 47 Avoid (Blue) — €Normal |47
= qq +(b - ‘
c]n(F )N — qs Interest(Flesh) CNeutral )48

!

=qo+(b - ;
CairyN = 4o dlert(Flesh) — €Neutral |49

Where, the initial values of the behavioral state transition matric are defined as ¢,,4,,43,---sqs4,

and these values can be changed later by the influence of the affective factors and behavioral

factors.

4.4 Experimental results

The complete system for an intelligent behavioral-emotional capability of the robot was
tested and evaluated. Tests confirmed its effectiveness in the realistic environment. The Conbe-I
robot was performed the autonomous behavior and expressed the basic emotions with the robotic
arm and the eye movement simulator. In this thesis, the experimental results of the behavioral-
emotional selection system were divided into two parts as described below.
4.4.1 Experiment I

The purpose of this experiment, the robotic system was observed the emotions of the robot,
which changed depending on the emotional state transition model with affective factors. The

situation for testing that defined the green object was near the robot’s hand as shown in Fig. 4-34,
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the emotion map was generated by the SOM learning. The weight values in the emotion map were
used to determine the affective factor values as illustrated in Fig. 4-31.

In this situation, suppose, the Conbe-I robot expressed the current emotional state was
“Hope” emotion. Then after computing the emotional state transition model using Markov theory,
the robot was able to predict the next emotional state as “Happiness” emotion, corresponding to the

intensity of emotion as shown in Fig. 4-35.

Fig. 4-34 Situation for testing in Experiment I
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Fig. 4-35 Emotional state with step
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4.4.2 Experiment 11

The robotic system was observed the behavioral selection based on the emotional variations

throughout the task period, which can divided into 2 conditions as liking and disliking behavior.

- Condition 1 (Liking behavior)

The Conbe-I robot was verified its behavior and emotional expression when it recognized the
favorite object (the green object) in the realistic environment. The individual input data for testing

that consist of robot’s motivation values and the visual information as illustrated in Fig. 4-36. And

all the input parameters were normalized into a new interval [0, 1].
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Fig. 4-36 Input data for testing in condition 1
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Throughout the task period of condition 1 (T1-T4), the Conbe-I was able to perform the appropriate

behaviors and emotional expressions continuously as shown in Fig. 4-37.
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Catch(G)[
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Interest(G)[
Look_around(G)
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(b) Sequence of Behavioral states

Fig. 4-37 Emotional states and behavioral states (Condition 1)

After the robot was started, it searched around its environment, the robot selected the action
as “Look around” and “Interest (Flesh)” when it recognized the flesh-color that means the robot is
possible to communicate with humans. At T1, the robot recognized a favorite object (green object).
The robot’s motivation value increased and the robot performed the action between “Look around”

and “Interest (Green)”; the robot expressed the emotion as “Neutral” (shown in Fig. 4-38).
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Fig. 4-39 Behavioral and Emotional selections at period time T2-T3

From T2-T3, the robot expressed “Hope” with “Happiness” emotions and performed the
behavior as “Interest (Green)” and “Approach” continuously, because the robot tried to get close to
the target object until it was able to catch the green ball as represented in Fig. 4-39. Then the time
period between T3-T4, the robot was able to possess the favorite object, and it expressed

“Happiness” emotion as shown in Fig. 4-40.
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Fig. 4-40 Behavioral and Emotional selections at period time T3-T4

- Condition 2 (Disliking behavior)

In this condition, a disliking (blue) object was presented in order to decrease the robot’s

motivation. And the input data for testing in condition 2 represented in Fig. 4-41.

T5 T6 T7 T8

0.1 :

|
I N N
02k
03F
S04
05k

Motivation value

0.035F -

|
|
!
|
|
|
|
|
|
|
|
I
|
\g/ 0.03 Lo :
|
!
|
|
|
|
|
?
|
|
|
|
|
!

value)

20.025F
0.02L
0.015 koo
001 kL
0.005 b oo

1va

Slope of motivation (flag)

Slope of mot

(o]
(=]

035F-eneed

=]
w
T

025 ................................................... L. L B

015 ................... B I || B y

005 ......
0 20 40 60 80 100 120 140 160

Number of pixels
=}
[\)

e
-

il
180 200
Time (s)

Fig. 4-41 Input data for testing in condition 2
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The task period in condition 2 (T5-T8), the Conbe-I was able performed and adapted its behaviors

and emotions correspond to the several situations as shown in Figs. 4-42 and 4-43.

Disgust
Fear
Sadness
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Hope
Neutral

0 20 40 60 80 100 120 140 160 180 200 Time (s)
(a) Sequence of Emotional states
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Interest(F)
Avoid(B)
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Look_around(B)
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Approach(G)
Interest(G)

Look around(G)

[

(b) Sequence of Behavioral states
Fig. 4-42 Emotional states and behavioral states (Condition 2)

At TS5, the motivation of the robot achieved a negative value, from T5-T6 (Fig. 4-43), the
robot recognized the blue object and performed the actions between “Look around (Blue)” and
“Alertness”. At the same time, the robot felt unhappiness when it confronted the disliking object,
therefore it expressed emotions as “Sadness” and “Fear”. During the period time T6-T7, the blue
object was moved closer to the robot’s hand. The Conbe-I robot felt dislike at this situation, and so
performed “Alertness” and “Avoidance” behaviors and expressed “Disgust” emotion. Moreover at
period time T6-T8, the robot was able to express “Hope” emotion, when it did not capture the

disliking object or the robot’s motivation had increased to the positive motivation level.
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Fig. 4-43 Behavioral and Emotional selection at period time T5-T8

The other research that has the similar results, namely the PIL head robot system [56]. For the PIL
robot’s emotion model is based on the linear dynamic system, which is difficult to adapt the
emotional state immediately. Therefore, the proposed system is possible to improve and fulfill in
the dynamics of emotional expression as illustrated by the weight variation of emotional expression

in Fig. 4-44 (example in condition 1).
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Fig. 4-44 Weight variation of emotional expression (Condition 1)
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4.5 Verification
4.5.1 Verification I

There is the question, why emotions need to be twice calculated (they are computed by the
Self-Organizing Map and by the Markov theory again). For the answer, the emotions are considered
by the Self-Organizing Map to calculate the affective factors. Basically, the value of affective
factors can be used to express the emotion, but the Markov model is used for determining in the
second time, because an important property is the memoryless property whereby the probability of
the next emotional states can be changed by the influence of the affective factors based on the
transition rules and the previous emotional states, and one of the reasons is to improve the robot’s
ability to “think over” for the self-conscious emotional expression. Fig. 4-45 shows the results of
emotional states (Condition 2), which is the comparison of differences between before and after

using the Markovian model.
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Fig. 4-45 Emotional states in condition 2 (before and after using Markov model)
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In Fig. 4-45, that can be considered with 3 points as described below:

At point 1, the emotional expression (without Markov model) in this period that changed
emotion states between “Neutral”, “Hope” and “Happiness” suddenly, but for including Markov
model with SOM learning, the robot was able to remain “Neutral” emotion and the robot expressed
the emotional sequence correspond to the weight variation of “Neutral” emotion as illustrated in

Figs. 4-46(a) and 4-46(b). The robot can express emotions evolutionary. At period i, the robot felt a

Q000000000

(a) The eye movements based on the weight variation (at point 1)

alue

S <
W

(]

U]D—‘

ht variation v:
S
(98]

eig

Disgust
Fear
Sadness
Happiness ;
Hope ‘_'

Neutral:

0 20 40 60 80 100 120 140 160 180 200
Time (s)

(b) Emotional expression (SOM and Markov models)

Fig. 4-46 The weight variation of “Neutral” emotion at point 1
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bit sadness because the weight variation decreased and the robot became to have a little bit hope
when weight variation of emotion increased as illustrated during period ii. The last period, the robot
felt quite a sadness due to the weight variation decreased again.

At point 2, the emotional expression (without Markov model) expressed emotions between
“Hope” and “Happiness”, the robot should not express these emotions while the blue object was
near the robot’s hand and the motivation value was continuously decreased. But the system with
Markov model was able to suppress “Happiness” emotion in this situation and express the emotions
between “Sadness” and “Hope”, because it should not be feeling so hopeless although it confronted
with a bad situation.

At point 3, the robot’s motivation was reduced. During this situation, the emotional
expression without a Markov model that express only “Sadness” and “Hope” emotions, but the
system with the Markov model can perform and express “Disgust” emotion.

4.5.2 Verification II

In this verification that is the requirement to verify the behavior selection systems (before and
after using Markov model). For instance, the behavior selection system is considered in the
condition 2 as described above. Fig. 4-47 shows the results (Condition 2) as the comparison of
differences between before and after using the Markov model in the behavioral states.

During the task period at T5-T6, the behavior selection system without Markov model
selected the actions between “Approach” and “Catch”, the robot should not perform these behaviors
in this situation, because the robot should be able to just deny the disliking object (Blue object). On
the other hand, the behavioral selection system with the Markov model that was able to perform the
actions “Alertness” and “Avoidance” without “Approach” and “Catch” behavior based on the

emotional state transition between “Sadness” and “Neutral” emotions.
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Fig. 4-47 Behavioral states in condition 2 (before and after using Markov model)

4.6 Summary

In this chapter, the overview of the proposed system is thoroughly described that consist of
three major processes: the recognition process, cognitive process and behavioral-emotional
expression process. The proposed system is executed by the Conbe-I robot in a realistic
environment. All experimental results confirmed the effectiveness of the proposed system by
dividing as the experiment I (Change emotions based on the emotional state transition model with
affective factors), the experiment II (Behavioral selection based on the emotional variations) and the

verification I and II showed the comparison of differences of behavioral selection and emotional

expression systems between before and after using the Markov model.
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Chapter 5

Conclusions

5.1 Conclusions

The implementation of the proposed system (Behavioral-Emotional selection system based
on Self-organizing map and Markovian model) is developed from the conventional model
(Consciousness-Based Architecture model) and the other researches, which takes its inspiration
from the attempt to give the Conbe-I robot need to have the recognition, consciousness and
motivation corresponding to the introspective knowledge and some philosophy, in order to select
the suitable behavior and emotional expression that look like humans and animals. The main
concept and contribution of our proposed method involves in creating behavioral and emotional
expressions for the robots based on three neurotransmitters such as dopamine, noradrenaline and
serotonin combined with an artificial neural network. However, in this work that used only
dopamine to generate a robot’s intrinsic motivation. The proposed method has three significant
processes. The first process is recognition process that composes of the simple image processing,
the calculation of the naturally occurring dopamine and determination of the robot’s motivation. In
second process, that presents an evolutionary computation of the artificial neuron network method
as the unsupervised learning (Self-Organizing Map learning) for clustering the input stimuli (the
internal motivation and external situation). The last process is the behavioral-emotional expression
process, which develops the model of basic emotions based on Robert Plutchik’s research, which
consists of six basic emotions: neutral, hope, happiness, sadness, fear and disgust. Moreover, the

robot can choose and perform the appropriate behavior based on variations of the emotional state.
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From the research purpose that is explained in Chapter 1, That has the attempt to reach all
objectives of this research such as trying to classify all behavior and emotions of the robot and
generate the behavior and emotion maps based on a Self-Organizing Map (SOM) learning, to create
an emotional expression model, which can autonomously express emotional state based on updating
the elements of emotional transition state and the affective factors. And the last objective is attempt
to define and design the relationship between behavior selection system and emotional expression
model. All objectives are achieved by the proposed system and they are verified the effectiveness of
system in Chapter 4.

In this thesis, the behavioral-emotional selection system is modeled into the conscious
behavior robot (Conbe-I) based on a Self-Organizing Map (SOM) learning and Markovian model.
The proposed system can be summarized by dividing to five chapters as described below:

Chapter 1 explains with the background history of the human and robot interaction, the
problem statement. The objective of research is to develop a Consciousness-Based Architecture
model, which can select the behavior based on changing the emotional state and robot’s motivation.
Thus, the neuron network learning is presented for improving the conventional model and to solve
the problem statements of the research. At the end of chapter 1, the specific objectives of the thesis
are illuminated.

Chapter 2 describes briefly in the fundamental theories such as the SOM learning, Markov
theory and the kinematics model, which are used to model the behavioral-emotional selection
system for the robot. For the background of SOM learning, that is the evolution of relevant
biological models such as from two fundamental models (Hebbian learning and Von Malsburg &
Willshaw’s Self-Organization models) to Kohonen’s Self-Organizing Map. A SOM learning is a
conceptual mathematic model of topographic mapping from the visual information to the cerebral
cortex for modeling and analyzing a high dimensional signal onto a lower dimensional network that

implements a characteristic based on a nonlinear projection. In addition, the mathematical model is
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also presented as a type of stochastic model, which is called “Markov model”. This model has an
important property is “memoryless” property. It means the next state of the system depends only on
its current state. In this work, the discrete-state homogenous Markov model is presented and
described, because this model is very appropriate for the formation of the human emotions. At the
last of chapter 2, the motion control system is described that is called “the kinematics model”. There
are two types of kinematic models namely forward kinematics and inverse kinematics models.

Chapter 3 shows the system structure of Conbe-I robot that explains the system configuration
and overview of software. The system configuration is explained such as a CCD camera and a web
camera are installed for obtaining the images (target object and the external situation). Dynamixel
servo motors are used at each joint in the arm part and head part. For the overview of software,
Main GUI control is the main program, which can operate the sub-programs such as the image
processing module, motivation module, SOM and Markov models and for controlling each servo
motor in the robot. Finally, the computation of robotic arm posture is explained in order to perform
the sequential movement that can continuously operate the movement, and toward to the target
object without the inverse kinematic solution.

Chapter 4 the overview system is described, which consists of three processes (namely, the
recognition process, the cognitive process and the behavioral-emotional expression process). At the
end of chapter 4 shows the experimental results, all behaviors and emotions were classified on
behavior and emotion maps based on SOM learning. The robot’s emotional expression was
evaluated by the affective factors, which were used to update the probabilities of emotional state
transition based on Markov modeling theory. All experimental results confirmed the effectiveness
of the proposed model by dividing as the experiment I (Change emotions based on the emotional
state transition model with affective factors), the experiment Il (Behavioral selection based on the

emotional variations) and the verification I and II showed the comparison of differences of
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behavioral selection and emotional expression systems between before and after using the Markov
model.

In this chapter is the conclusion that summarizes an autonomous behavioral-emotional
system. The robot can perform both select autonomous actions in response to a motivation module
and to express intelligent emotions. Most importantly, the advantages of the proposed method, not
only Conbe-I robot can use this method, but also the other robot systems can perform by the
proposed method with improving or adding the new recognition objects in the SOM learning. In
addition, the proposed method is able to predict the next emotion based on the previous emotion. To
achieve this proposed method, the emotional transition of Conbe-I robot can be changed easily by
modifying the emotional state transition matrix, thus the behavioral-emotional selection system is

very flexible and can apply to multiple applications of the robotics system.
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5.2 Recommendations for future research

The present approach is able to be further extended to improve the overall performance of the
proposed system, some recommendations for future research are suggested as follows:

1. To increase the ability of the robotic system by applying artificial intelligence for
memorizing the situation and developing a robot capable to think, learn and take on tasks it hasn’t
tried before.

2. To study and investigate other neurotransmitters, such as noradrenaline and serotonin, to
combine with the dopamine system for generating a dynamic emotional expression model that is

similar to Lovheim cube of emotional model as shown in Fig. 5-1.
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Fig. 5-1 Lovheim cube of emotional model
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Appendix

A. The input patterns (Behavior and Emotion patterns)

Table A.1 Behavior pattern for SOM learning (behavior map)

Moti_flag | Moti_value | Moti_slope flag | Moti slope value | Green | Blue | Flesh

Look around 1 0.01 1 0.001 0.05 | 0.001 | 0.01
(green object)
Interest 1 02 | 0.01 0.1 | 0.001 | 001
(green object)
Approach 1 0.4 1 0.02 0.4 | 0.001 | 0.01
(green object)
Catch 1 0.6 1 0.001 0.8 | 0.001 | 0.01
(green object)
Look around
(blue object) 0 0.01 1 0.001 0.001 | 0.05 | 0.01
Be alert
(blue objec) 0 0.4 0 0.01 0.001 | 0.4 | 0.01
Avoidance
(blue object) 0 0.6 0 0.001 0.001 | 0.8 | 0.01
Interest
(flosh-color) 1 0.15 1 0.001 0.001 | 0.001 | 0.2
Be alert 0 0.15 0 0.001 0.001 | 0.001 | 0.2

(flesh-color)

Table A.2 Emotion pattern for SOM learning (emotion map)

Moti_flag | Moti_value | Moti_slope flag | Moti_slope value | Green | Blue | Flesh

Neutral 1 0.01 1 0.001 0.05 | 0.001 | 0.01
Hope 1 0.4 1 0.002 0.3 | 0.001 | 0.01
Happiness 1 0.6 1 0.005 0.8 0.001 | 0.01
Sadness 0 0.1 0 0.01 0.001 0.1 0.01
Fear 0 0.25 0 0.02 0.001 0.3 0.01
Disgust 0 0.5 0 0.001 0.001 0.6 0.01
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