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Chapter 1 

Introduction 

1.1 Background 

Nowadays, the rapid development of high technology has produced robots not only for 

industrial factories (industrial robots) but also for museums, homes, healthcare institutions and so 

on (non-industrial robots). There are various types of non-industrial robots such as service robots, 

welfare robots, therapeutic robots and domestic robots. In Fig. 1-1 shows the worldwide robotics 

market growth, this information has been gleaned from the Japan Robotics Association. The market 

of service and personal robots is expected to grow increasingly in the future [1]. These robots are 

designed with artificial intelligence (AI) to improve the robotics system is to have them imitate 

human thinking and behavior. Human-robot interaction (HRI) plays an important role in modern 

autonomous robots. HRI requires that robots not only passively receive information from the 

environment, but also can make appropriate decisions and actively change in varying environments, 

thus functioning more autonomously and intelligently [2] - [5]. However, Designing robots are able 

 

 

Fig. 1-1 Worldwide Robotics Market Growth 
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to interact with human beings that is still a huge challenge, for example, demonstrates cognition in a 

complex environment, enable actions to be selected autonomously, or models emotional expression 

and smooth communication. McCarthy’s research has described the essential characteristics of 

robots must have a consciousness, introspective knowledge, and some philosophy to perform in the 

common-sense world and to accomplish tasks effectively [6]. 

Therefore, Hayashi laboratory’s works have focused on studying and investigating the 

application of brain-inspired technology by developing the robots with consciousness resembling 

that of animals and human beings [7] - [9]. Consciousness-Based Architecture (CBA) model (Fig. 

1-2) is constructed to define the relationship between the consciousness field and behavior modules 

based on Tran Duc Thao’s research [10].  Also, the CBA model introduces an evaluation function 

of action selection to realize a practical robot which is able to perform its action and adapt its 

environment. However, if the robot has only the behavior selection system which reflects cognitive 

information, it is limited capability and generating more human-like action [11]. Therefore, an 

artificial emotional system collaborates with an autonomous action selection system that has an 

important role in an intelligent system, decision-making process, perceptions memory and more 
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Fig. 1-2 Consciousness-Based Architecture (CBA) model 
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[12]. There are many studies in the literature focused on the concepts of emotion model for 

developing autonomous systems in various fields [13], [14]. Emotional expression skills are 

necessary in enabling friendly and understanding between human beings and robots [15] – [17].  

 

1.2 Problem statement 

As mentioned in the background. The developers of non-industrial robots have met with 

some problems in determining the motion strategies and the action selection. For instance, if the 

robot’s movements have the same motion or repeated, the robot is a loss of interest to users.  

Although this problem was solved by the conventional model as Consciousness-Based Architecture 

(CBA) model, but the CBA model has limitation in managing and selecting the robot’s behavior 

that only depends on the increase and decrease of the motivation levels. For a truly effective system, 

the robots should not only select the behavior, but also express the appropriate emotional state 

according to changing external stimuli. Moreover, if the robot can perform a behavior and express 

emotion how to define the relationship between the behavioral selection and emotional expression 

models. Consequently, all problems will be considered and solved by the proposed system in this 

thesis. 

 

1.3 Research purpose 

The general objective of this research project is to create the behavioral - emotional 

expression system for Conbe-I robot to enhance intelligent behavior and emotions, and to facilitate 

communication between users and robot. We seek to increase the robot’s behavioral-emotional 

intelligence capabilities so that the robot can distinguish, adapt and react to changes in the 

environment. After reviewing the literature of previous researches done about the behavior 

selection, and emotional expression models based on an artificial intelligence neural network, the 

specific objectives are established as follows: 
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1) To accurately classify all behavior and emotions of robot and generate the behavior and 

emotion maps based on an unsupervised learning as a Self-Organizing Map method. 

2) To create an emotional expression model, that can continuously express emotional state 

based on updating the affective factors and the previous emotional state. 

3) To define and design the relationship between behavior selection system and emotional 

expression model. 

4) To verify the behavioral-emotional selection model with a conscious behavior robot 

(Conbe-I), and confirm the effectiveness of the proposed system with experimental 

results in a realistic environment. 

 

1.4 Overview of the thesis 

 The thesis consists of five chapters covering the background history, research objectives, 

modeling of the behavioral-emotional expression selection system, discussion of the results and 

conclusions. 

Chapter 2 describes the fundamental theories for Conbe-I robot system, including a Self-

Organizing Map (SOM) learning, Markov theory and Kinematics modeling, which are used to 

construct and develop the behavioral-emotional selection system. 

Chapter 3 shows the system structure of Conbe-I robot, it is divided as the system 

configuration and overview of the software. At the end of this chapter, the computation of robotic 

arm posture is explained to perform the sequential movement. 

Chapter 4, the overview of the proposed system is thoroughly described that consists of three 

major processes. The first process, the robot recognizes the external situation and generates the 

robot’s motivation. In the second process, the cognitive process is used for clustering the input 

stimuli (the visual information and the internal motivation of the robot), which analyzes based on an 

unsupervised learning, then the affective factors and behavioral factors are calculated. The last 
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process is a behavioral-emotional expression that is modeled based on the Markov theory, the 

probabilities of emotional and behavioral state transitions are updated with affective and behavioral 

factors.  And then, Conbe-I robot has been implemented to show the effectiveness of the proposed 

system. 

At the end, chapter 5 is a conclusion that summarizes the thesis, and suggestion the future 

works, which has been mentioned in order to develop and improve the behavioral-emotional 

selection system in the future.  
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Chapter 2 

Fundamental Theories for Conbe-I robot System 

Nowadays, the new generation control architectures of autonomous robot systems have been 

contrived to be inspired from cognitive mechanism of the human brain. One of the main problems 

of autonomous robots is how to develop an intelligent system with a learning capability to acquire 

both varieties of knowledge and behavior through the interaction between humans and robots. 

Therefore, this chapter is proposed to explain the fundamental theories such as a Self-Organizing 

Map, Markov theory and Kinematics modeling, which are used to construct the behavioral-

emotional selection system for the robot. Each fundamental theory can be described as follows. 

 

2.1 Self-Organizing Map (SOM) 

2.1.1 Introduction of SOM 

Artificial Neural Networks (ANNs) have been widely studied and used to model the 

information processing systems based on inspired by biological neural networks. The neural 

network methods not only can provide solutions with improved performance when compared with 

traditional problem-solving methods, but also present an understanding of cognitive abilities of 

human. The architecture of neural networks and signal processing is used for modeling nervous 

systems can be classified into three categories. Feedforward networks transform the sets of input 

signals into the sets of output signals [18]. The objective of transformation is usually determined the 

supervised adjustment of the system parameters (Supervised learning) by a direction comparison 

between the actual and desired outputs. In the reinforcement learning [19], the input information 

defines as the states and rewards, this method can learn and relearn based on the actions and the 

effect (rewards). The last category, the neighboring cells in a neural network compete in their 
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activities, and develop adaptively into specific detectors of different signal patterns. In this category 

learning is called competitive learning, unsupervised learning, or self-organizing learning [20]. 

2.1.2 Background of SOM 

There are many the neural network architectures and learning algorithms, but one of the most 

popular neural network models is a Kohonen’s Self-Organizing Map (SOM) [21]. A Self-

Organizing Map (SOM) is a conceptual mathematic model of topographic mapping from the visual 

information to the cerebral cortex. Modeling and analyzing of the mapping are important in 

understanding how the brain perceives, encodes, recognizes and processes the patterns. The SOM is 

able to map a high-dimensional signal onto a lower-dimensional network that implements a 

characteristic based on a nonlinear projection. This section will look into the evolution of relevant 

biological models, from two fundamental models involved in Hebbian learning and Von Malsburg 

& Willshaw’s Self-Organization model to Kohonen’s Self-Organizing Map.  

2.1.2.1 Hebbian learning 

 Hebbian theory is a primary theory in the neurosciences that explains about the adoption of 

neurons in the brain during the learning process. This theory describes a basic mechanism for 

synaptic plasticity, or Hebbian learning. In 1949, a Canadian research named Donald Hebb, who 

proposed a mechanism by which neurons adapt the strength of their connections to other neurons. 

The rule [22] is: 

 

 “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such that 

A’s efficiency, as one of the cells firing B, is increased.”    

 

Hebbian learning is one of the concepts, which is used for unsupervised learning, that 

implemented in neural network models through changes in the strength of connection weights 



8 

 

between units. The weight value between two neurons increases if the two neurons activate 

simultaneously. On the contrary, the weight value will be decreased if they activate separately. 

Neurons tend to be either both positive or both negative at the same time that have positive weights, 

while those that tend to be opposite have negative weights. Through such Hebbian learning, weights 

become to reflect statistical regularities in the environment, with networks self-organizing so that 

different units learn to represent different environmental regularities. Suppose there is a network of 

nodes iN , each connected to other nodes and the strength of the connection between node i and 

node j is ,ij Hebbianw . The mathematical basis for Hebbian learning is described below: 

 

,i ij Hebbian j

j

y w x                                           (2-1)    

 

,ij Hebbian Hebbian j iw x y                  (2-2) 

 

Equation (2-1) shows the state of output nodes as iy , that is the output from neuron i, jx is equal to 

the input from neuron j (for all neurons j connected to i), multiplies by the weight of the connection 

between neuron i and neuron j. And Hebbian’s rule is often generalized as Equation (2-2), where, 

,ij Hebbianw denotes the change in weight from node i to node j, iy (post-synaptic) and jx (pre-

synaptic) denote the activation levels of the node i and j respectively, and Hebbian denotes the 

learning rate. The learning rate is usually a small number (0 < Hebbian < 1) that can be decreased 

through time. If Equation (2-1) is substituted into Equation (2-2) then the result is expressed as 

Equation (2-3).  
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, , ,ij Hebbian Hebbian j ik Hebbian k Hebbian ik Hebbian k j

k k

w x w x w x x                   (2-3) 

 

This sample rule is not enough, because it is unstable; repeated use can increase the weights 

of the connections without bounds, and the performance will degrade since all the neurons will be 

saturated to their maximum values. Due to the fact that is the positive feedback: the larger weights 

will result in a large output, which will result in a larger increase of weights. It’s still difficult to 

develop in the nervous system since there is a limit on the number and efficiency of synapses per 

neuron.  

Oja and other researchers [23], [24] proposed and developed the rules that have a decay time, 

which can be implemented using the negative feedback. The resulting network is shown in Fig. 2-1. 

The firing one time cycle is fed back to the next step, it can be expressed by Equation (2-4). And 

Equation (2-5) is represented the modified equation for updating the weight, 

where ( )jx t and ( 1)jx t  differentiates between activation at time t and 1t  .  

,

1

( 1) ( )
M

j j kj Hebbian k

k

x t x t w y


                     (2-4) 

x1

x2

x3

x4

x5

y1

y2

 

 

Fig. 2-1 The sample Hebbian network 
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, ,

1

( ) ( 1) ( ) ( )
M

ij Hebbian Hebbian i j Hebbian i j kj Hebbian k

k

w t y x t t y x t w y 


 
     

 
     (2-5) 

 

The resulting of Oja learning algorithm is a so-call “Principal Component Analysis: PCA”, which 

learns to extract the most variant directions among the data set [25]. 

2.1.2.2 Von Malsburg & Willshaw’s Self-Organization model 

 The self-organizing learning behavior of brains has been studied for long time by many 

researchers such as: Hebb’s learning, Marr’s theory of the cerebellar cortex [26], Willshaw, 

Buneman and Longnet-Higgins’s non-holographic associative memory [27], Von der Malsburg and 

Willshaw’s self-organizing model of the retina-cortex mapping [28], [29], Amari’s mathematical 

analysis of self-organization in the cortex [30] and Kohonen’s self-organizing map. But Von der 

Malsburg and Willshaw first developed, in the mathematical forms by the self-organizing 

topographical mapping from pre-synaptic sheet (two-dimensional layer) to post-synaptic sheet (two-

Presynaptic sheet Postsynaptic sheet
 

 

Fig. 2-2 Von der Malsburg’s self-organizing model 
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dimensional layer) based on competitive learning. The competitive learning refers to the fact that 

will increase in strength to one neuron results in a relative and decrease in another, and this 

competition results in neurons that respond to the correlated inputs. If two inputs are activated by 

correlated activity, then they mutually reinforce their connections since they both work together to 

activate the target cell. Fig. 2-2 shows Von der Malsburg’s self-organizing model and their basic 

idea was described as: 

 

“… The geometrical proximity of pre-synaptic cells is coded in the form of correlations in the 

electrical activity. These correlations can be used in post-synaptic sheet to recognize axons of 

neighboring pre-synaptic cells and to connect them to neighboring post-synaptic cells, hence 

producing a continuous mapping… ” 

 

This model was the first to produce this pattern, and the first to use local connectivity that 

had short range excitatory connections and long range inhibitory connections in the sheet. The post-

synaptic activities at time t , can be expressed by the nonlinear differential equation as shown in 

Equation (2-6), where, c is the decay constant. , ( )ij Vonw t is the synaptic weight between cell i and 

cell j in pre-synaptic and post-synaptic sheets respectively.  The state of the pre-synaptic cell is 

( ); 1,2,...,i xx t i N , ( ) 1ix t  ; if cell i is active, ( ) 0ix t  ; otherwise. ike and ikb are excitation 

and inhibition constants from other lateral cells.
* ( )ky t is an active cell in post-synaptic sheet at time 

t . For the cells of post-synaptic fire of their activity by the threshold function as shown in Equation 

(2-7). 

 

* *
,

( )
( ) ( ) ( ) ( ) ( )

j

j ij Von i ik k ik k

j k k

y t
cy t w t x t e y t b y t

t
 




   


                 (2-6) 
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* *

* ( ) , ( ) 0
( )

0

j j

j

y t if y t
y t

otherwise

  
 


                                (2-7) 

 

The modification of synaptic weights between pre-synaptic and post-synaptic sheets is 

determined by the Hebbian learning as expressed in Equation (2-8). 

 

, *
( )

( ) ( )
ij Von

Hebbian i j

w t
x t y t

t






                                     (2-8) 

 

2.1.2.3 Kohonen’s Self-Organizing Map 

Kohonen improved above self-organizing learning rule and proposed a simplified learning 

mechanism which incorporates the Hebbian learning and lateral interconnection rules. It is 

simplified and generalized model of the above self-organization process as explained in [31]: 

 

“…Kohonen’s model of self-organizing maps represented an important abstraction of the 

earlier model of von der Malsburg and Willshaw; the model combines biological plausibility with 

proven applicability in a board range of difficult data processing and optimization problems… ” 

 

Development of self-organizing maps is motivated by a distinct feature of the human brain 

that has been shown to be biologically plausible: The brain is organized in many places in primary 

sensory areas, are ordered according to some features dimensions of sensory signals such as tactile 

[32], visual information [33], [34] and acoustic [35]. One important point that emerges from the 

brief discussion of computerized maps in the brain is the principle of topographic map formation, 

which is commented by Kohonen as:  
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“…The spatial location of an output neuron in a topographic map corresponds to a 

particular domain or feature of data drawn from the input space…”   

 

The principle has provided the neurobiological motivation for two basically different features-

mapping models as von der Malsburg and Willshaw’s model and Kohonen’s model. The models 

differ from each other in the manner in which the input patterns are specified. The Kohonen model 

has received much more attention in the research than the von der Malsburg and Willshaw model. 

Because, integrating the neural field dynamics is usually every time consuming, and the 

replacement of the neural field representations with tuning curves reduces the computational burden 

dramatically. Moreover, topographic organizations are easily observable when the plotting centers 

of tuning curves.  

Self-Organizing Map (SOM) also called Kohonen map or Kohonen network [36], [37]. The 

SOM is a neural network model and algorithm that implements a characteristic non-linear 

projection form the high-dimensional space of input signals onto a low-dimensional array of 

neurons. Kohonen network’s properties both make them extremely useful in the visualization and 

exploration of data properties, and preserve the topology of input space during mapping. In 

Kohonen’s model uses soft competitive learning in a post-synaptic like artificial neural network, the 

cells on the map become specifically tuned to various input signal patterns of classes of patterns 

through an unsupervised learning process. Fig. 2-3 shows a diagram of two-dimensional lattice of 

neurons commonly used. Individual neuron (output layer) is fully connected to all nodes in the input 

layer. The feed-forward structure is represented as the two-dimensional map with the neurons 

arranged into rows and columns. 
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2.1.3 The SOM algorithm 

An algorithm for the formation of the self-organizing map proceeds first by initializing the 

synaptic weights in the network, which define them as small values and selected from a random 

number generator. Briefly, that has three essential processes involved in the formation of the self-

organizing map as summarized below: 

Competitive process:  the neurons in each input pattern compute their particular values of the 

discriminant function, which performs for competition among the neurons of input patterns. The 

particular neuron with the largest value of the discriminant function is defined as the winner of the 

individual sample (input) pattern. 

Cooperative process:  the spatial location of a topological neighborhood of excited neurons is 

calculated by the winning neuron in individual group patterns.  

Adaptation of synaptic weight process:  the last process improves the excited neurons to 

increase their individual values of the discriminant function in relation to the input patterns by 

adjustment to their synaptic weights. 

 

Input layer

Output layer

wj = (w1j, w2j, w3j, w4j,…,wnj)

x1 x2 x3 x4 xn
 

 

Fig. 2-3 Kohonen’s Self-Organizing Map 
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The descriptions of the processes of competition, cooperation and adaptation of synaptic 

weight processes are described below. 

2.1.3.1 Competitive process 

Assume the set of input variables { x } is selected from the input space, which is denoted by 

Equation (2-9), where, m denote the dimension of the input space. 

 

  1 2 3, , ,...,
T

mx x x x x                                             (2-9) 

 

Synaptic weight or weight vector of each neuron in the network has the same dimensions as the 

input space. Let the synaptic weight on cell j is defined by Equation (2-10), where, n  is the total 

number of neurons in the network. 

 

   1 2 3, , ,..., , 1,2,3,...,
T

j j j j jmw w w w w j n                             (2-10) 

 

The simplest analytical measurement for matching x  with jw  is the inner product as
T

jw x , based 

on maximizing inner product is mathematically equivalent to minimizing the Euclidean distance 

between vectors x  and jw .  Index c denotes the neuron that is the best matching input vector also 

called “the best matching unit or the winning neuron”, which is able to determine by Equation (2-

11). 

 

   argmin , 1,2,3,...,j
j

c x w j n                                 (2-11) 
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2.1.3.2 Cooperative process 

This section explains the adjustment of the winning neuron, which locates at the center of a 

topological neighborhood and the lateral interaction among a set of excited neurons. In particular, a 

neuron is firing tends to excite the neurons in its immediate neighborhood more than those farther 

away from it. This observation, it makes the topological neighborhood around the winning neuron 

decay smoothly with lateral distance. In order to observe the model, that is suitable for the 

cooperative process. The topological neighborhood and the lateral distance are assumed, such that 

satisfies in two distinct requirements as:  

 -  The topological neighborhood is symmetric about the maximum point, which is defined by 

the lateral distance is zero. Therefore, that point represents the maximum value at the winning 

neuron. 

 -  The amplitude of the topological neighborhood decreases monotonically with increasing 

lateral distance, and decaying to zero when the lateral distance approaches to positive infinity. 

  The typical choice of the topological neighborhood that satisfies these requirements is the 

Gaussian function as expressed in Equation (2-12). 

 

2

2, ( ) exp
2 ( )

j c

j c

r r
h t

t

  
 
 
 

,                                (2-12) 

 

where, , ( )j ch t  denotes the topological neighborhood centered on winning neuron c , and 

encompassing a set of excited neurons, a typical one of which is denoted by neuron j .  j cr r  is 

the lateral distance between winning neuron c and excited neuron j . jr and cr  define the position 

of excited neuron j and the discrete position of winning neuron c respectively. Both positions are 
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measured in the discrete output layer. ( )t  is called the neighborhood radius, this parameter is the 

effective width of the topological neighborhood as shown in Fig. 2-4.  

The Gaussian topological neighborhood equation is more biologically appropriate than a 

rectangular one, and it also makes the SOM algorithm converge more quickly than a rectangular 

topological neighborhood function.  

Another unique feature of the SOM algorithm is the size of the topological neighborhood that 

shrinks over time as displayed in Fig. 2-5. It can solve by the exponential decay function [38] as 

represented by Equation (2-13).  

hj,c

dj,c = ||rj – rc||0
 

 

Fig. 2-4 The neighborhood function 

 

( )t ( 1)t 

 

 

Fig. 2-5 The size of the topological neighborhood when it shrinks over time 
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0( ) exp tt 


 
                                                    (2-13) 

 

0  denotes the width or radius of the topological neighborhood function at the initiation of the 

SOM algorithm. For a good global ordering, 0  should initially be large (up to half the size of the 

output space). t  is the learning step and   is a time constant. The value of time constant depends 

on the number of iterations (T), which estimates by Equation (2-14). 

 

0log ( )e

T


                                                        (2-14) 

 

2.1.3.3 Adaptation of synaptic weights process 

In the self-organized formation of the feature map, the synaptic adaptive process is the last 

process of the self-organizing map algorithm. The synaptic weight vector jw  of neuron j in the 

network is required to change in the relation to the input vector x . For Hebbian learning’s rule, it is 

well suited for associative learning, when a synaptic weight is increased with a simultaneous 

occurrence of pre-synaptic and post-synaptic activities. However, the Hebbian learning is not 

satisfying formation, because it changes in connectivity neurons occur in one direction only, which 

finally drive all the synaptic weights into saturation. In order to solve this problem, the Hebbian 

hypothesis is modified by including a forgetting term ( ) jjg y w , where ( )jg y  is some positive 

function of the response jy .  

In order to avoid the saturation problem, it can express the change to the weight vector of 

neuron j in the lattice as follows in Equation (2-15). 
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( ) jj SOM j jw y x g y w                                                   (2-15) 

 

SOM is called the learning rate of SOM learning. In Equation (2-15), the first term on the right-

hand side is the Hebbian term and the second term is the forgetting term. In order to satisfy the 

requirement, that is the constant term in the Taylor series expansion of ( )jg y be zero when jy is 

zero. Therefore, a linear function is used for ( )jg y as shown by Equation (2-16), and it is able to 

simplify Equation (3.15) by setting jy as expressed in Equation (2-17).  

 

( )j jg y y                                                        (2-16) 

 

, ( )j j cy h t                                                       (2-17) 

 

Finally, the formation that given the synaptic weight vector ( )jw t  of neuron j at time t , and 

the updated weight vector ( 1)jw t  at time t+1 is defined by Equation (2-18), 

 

,( 1) ( ) ( ) ( ) ( )jj j SOM j cw t w t t h t x w t     
                      (2-18) 

 

which is applied to all neurons in the lattice that lie inside the topological neighborhood of the 

winning neuron c. The learning rate parameter ( )SOM t should be time varying throughout the 

learning step. In particular, it should start at an initial value as 0,SOM , thereafter it should decrease 
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gradually with increasing time t. This condition can be satisfied by choosing an exponential decay 

for the learning rate ( )SOM t  as shown in Equation (2-19), where  is another time constant of the 

SOM algorithm. 

 

0,( ) expSOM SOM
tt 


 
                                      (2-19) 

 

2.1.4 Quantifying the goodness of SOM 

During SOM learning, the several of the SOM parameters, such as learning parameters, map 

size and map topology can influence the formation of the final map. Therefore, in order to guarantee 

the effectiveness of the mapping, the system should be sure the mapping parameters have been 

correctly chosen [39], [40]. The measuring SOM quality can be done in many ways. One most 

important feature is the ability to preserve the topology in the projection. Topology preservation is a 

property that is not easy to define and even harder to measure, since usually a major reduction of 

dimensionality is performed and the information is necessarily lost in the projection process. For 

example, the topographic product can be used to optimize the map size for any given dataset, the 

average quantization error can be reduced by simply increasing the number of the neurons in the 

map, and the topographic error and the trustworthiness both measure the projection quality.  

This section presents the widely used quality measurement methods of the self-organizing 

map such as the average quantization error and the topographic error [41], which are described 

below. 

2.1.4.1 The average quantization error 

A commonly used measurement is the average quantization error ( qeE ) that can be used to 

determine the quality of the map and helping in choosing the suitable learning parameters and map 
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sizes [42]. The average quantization error is computed by the average distance of the sample input 

patterns to its best matching unit as shown in Equation (2-20). 

 

1

1 N

qe i c

i

E x w
N 

   ,                                                  (2-20) 

 

where, N is the number of the input patterns used for training the map, i cx w is the Euclidean 

distance between the weights of the BMU ( cw ) and the input pattern ( ix ).  

The optimum map is expected to yield the smallest average quantization error, which means 

that the data vectors are close to their prototypes. The average quantization error can be reduced by 

increasing the number of neurons, because the data samples are distributed more sparsely on the 

map. And the SOM with a lower average error is more accurate than the SOM with higher average 

error. 

2.1.4.2 The topographic error 

The topographic error ( teE ) is the most simple of the topology preservation measures. It is 

also one of the errors proposed by Kohonen. The topographic error represents the proportion of all 

data vectors for which first and second best matching units (1st BMU and 2nd BMU) are not adjacent 

vectors. This error indicates the accuracy of the mapping in the preserving topology. The 

topographic error is calculated as shown in Equation (2-21), where N is the number of the input 

samples, the function ( )iu x is one if ix data vector’s first and second BMUs are not adjacent and 

otherwise ( )iu x is zero. 

 

1

1
( )

N

ite

i

E u x
N 

                                                    (2-21) 
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The total error is normalized to a range from 0 to 1, therefore the lower the topographic error is the 

better the self-organizing map preserves the topology. 

 

2.2 Markov model 

 Andrei Markov is the mathematician who proposed the term “Markov model”. The Markov 

models refer to the mathematical models as a type of stochastic model (chance model), which 

consists of the random variables that are defined on a given probability space, and are indexed by 

parameter. An important property of Markov models is “memoryless” property, where the next state 

of the system depends only on its current state, not on it is the previous state. Markov models can 

analyze as discrete-state or continuous-state, and can be also classified as homogeneous or non-

homogeneous time. In this thesis, the discrete-state homogenous Markov model is proposed, 

because this model is very suitable to form the human emotions that is explained by previous 

researches [43], [44]. Also, the memoryless property of Markov models is important in modeling 

humans. 

2.2.1 Markov model fundamentals 

A Markov model consists of a list of the possible states of that system, the possible transition 

paths between those states and the state transition probabilities of those transitions. For representing 

a basic Markov model, the nodes in the model represent certain states and arrows which denote the 

probabilities of movement between states or the probabilities of getting out of the states. In the 

basic model, Let , 0,1,2...nX n  , is a discrete time stochastic process with a discrete state space 

S, if the state space could be assumed as {1,2,..., } {0,1,..., 1}N or N  in the finite state, and 

either {0,1,...} {1,2,...}or in the countably infinite state. To understand the behavior of a 

process, Equation (2-22) shows the finite dimensional distributions, which allows for the calculation 

of any path probability, for every n  and every finite sequence of states 0 1, ,..., ni i i S .  
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0 0 1 1 0 0 1 2{ , ,..., } { , , ,..., }n n n nP X i X i X i P X i X S X S X i            (2-22) 

 

Above Equation, that is a common choice for such structure is the assumption that the processes 

satisfies the Markov property, that is to mention, the probability of next state depends only on the 

current state. It is called a discrete time Markov chain for any process , 0,nX n satisfying the 

Markov property as expressed by Equation (2-23). 

 

0 0 1 1 1 1{ | ,..., } { | }n n n n n n n nP X i X i X i P X i X i                        (2-23) 

 

Furthermore, the one step transition probability of a Markov chain from state i to state j can be 

denoted as ( )ija n that forms by Equation (2-24). 

 

1( ) { | }, 1 ,ij n na n P X j X i i j N                                  (2-24) 

 

For the initial probability distribution of the process by , which shows in Equation (2-25). 

 

0{ },j P X j j S                                                (2-25) 

 

Returning to Equation (2-22) and then the problem of computing probabilities has been converted to 

one of simple multiplication as shown in Equation (2-26). 
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 (2-26) 

 

The first order or one step transition probabilities are mostly expressed in matrix form as 

expressed in Equation (2-27), where the matrix A  is the state transition probability matrix for a 

Markov chain with state space {1,2,3,..., }S N , and ija is one step transition probabilities in the 

N x N matrix. 

 

 

11 12 1

21 22 2

1 2

{ }

N

N

ij

N N NN

a a a

a a a
A a

a a a

 
 
  
 
 
 

                                     (2-27) 

 

A summary of state transition probability matrix, each Markov chain can be defined as the 

transition probabilities, ( )ija n at step n arranged into the probability matrix according to the current 

states as rows and the future states as columns, and row sums to one as shown in Equation (2-28).  

 

1ij

j S

a


                                                              (2-28) 
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2.2.2 Example of the simple Markov model 

The above stochastic process can consider as a sample 3 state Markov model of the weather 

as illustrated in Fig. 2-6, where 1 2 3, , , ... , NS S S S a set of states, N is the number of state (for 

simplicity N = 3). The weather is assumed that once a day and observed as being one of the 

following: Sunny (State 1), Rainy (State 2) and Cloudy (State 3), and the probabilities of 

tomorrow’s weather based on today’s weather is expressed in Table 2.1. 

 

Table 2.1. The probabilities for tomorrow’s weather based on today’s weather 

Tomorrow’s weather 

Sunny (S1) Rainy (S2) Cloudy (S3) 

0.8 0.1 0.1 Sunny (S1) 

Today’s weather 0.1 0.6 0.3 Rainy (S2) 

0.2 0.3 0.5 Cloudy (S3) 

 

 

Let the weather on day 1 is Sunny (S1), ask the question: What is the probability that the 

weather for next 5 days will be “Sunny → Sunny → Rainy → Rainy → Cloudy …”? For the 

S3

S1 S2

a11

a12

a13

a22

a21

a23

a33

a32

a31

State 1 State 2

State 3

 

 

Fig. 2-6 Markov model with three states. 
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formally, the observation sequence is defined as 1 1 1 2 2 3{ , , , , , }O S S S S S S corresponding to the 

time (t). The probability of O can be expressed as below: 

 

1 1 1 2 2 3

1 1 1 1 1

2 1 2 2 3 2

1 11 11 12 22 23

2

( | ) [ , , , , , | ]

[ ] [ | ] [ | ]

[ | ] [ | ] [ | ]

(1) (0.8) (0.8) (0.1) (0.6) (0.3)

1.152 10

P O Model P S S S S S S Model

P S P S S P S S

P S S P S S P S S

a a a a a

x







  

  

     

     



 

 

An application of Markov models for the behavior selection system based on emotional 

variations is the Markovian emotional model, which will be described in the next chapter. 

 

2.3 Motion Control system 

2.3.1 Introduction 

Definition: A robot is a reprogrammable, multi-functional manipulator designed to move 

material, parts, tools, or specialized devices through variable programmed motions for the 

performance of a variety of tasks [45]. That is the programmability, which gives a robot its utility 

and adaptability. the first successful applications of robot manipulators generally involved transfer 

of parts in the factories, or that could be programed to execute the sequential movements, such as 

moving to position A, closing a gripper, moving to position B, and opening a gripper, etc., and more 

complex applications, such as welding, grinding, deburring, and assembly that require not only 

more complex motion but also some form of the external sensing such as vision, tactile, distance, or 

force sensing,  due to increase  accurately the interaction of the robot with its environment. 

Kinematics is the science of motion that studies the body movements without considering the 

forces or moments, size, shape and weight. The formulation of the suitable kinematics models for a 
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robot mechanism is very important for analyzing the part movements of industrial manipulators. 

There are commonly two different spaces used in kinematics modeling of manipulators such as, 

Cartesian space and Quaternion space. There are many ways to represent rotation, including the 

following: Euler angle, Roll-Pitch-Yaw angles, Cayley-Klein parameters, Pauli spin matrices, 

orthonormal matrices and Hamilton’s quaternions. The general transformation between two joints 

that requires four parameters is Denavit & Hartenberg [46]. These parameters known as the D-H 

parameters have become the standard for describing robot kinematics models. For representing the 

rotation and transition in a compact form of transformation vector that can be determined as Dual 

quaternion. For example, if the body is represented nine elements in homogeneous transformations, 

the dual quaternion can reduce the number of elements to four parameters. It is accepted as an 

advantage in terms of computational robustness and storage efficiency for dealing with the 

kinematics of robot chains [47].  

The robot kinematics can be divided into forward kinematics and inverse kinematics. 

Forward kinematics problem is static geometrical problem in solving the equations. Because the 

typically manipulator will be able to sense its own position by using internal sensors (position 

encoders) that can be directly measured the joint angles, and then it is determined the position and 

orientation of the end effector or tool frame, which relative to the based frame. But the inverse 

kinematics problem is much more difficult problem than forward kinematics. Singularities and 

nonlinearities that make the problem more difficult to solve the solution of the inverse kinematics 

Joint Space

Ө1, Ө2, Ө3,…,Өn

Cartesian 

Space

0
nTInverse kinematics

Forward kinematics

 

 

Fig. 2-7 Schematic representation of forward and inverse kinematics. 
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problem. Relationship between forward and inverse kinematics is shown in Fig. 2-7. There are two 

main solution techniques for solving the inverse kinematics problem that are analytical and 

numerical methods. In the first type is the analytical method, the joint variables are determined 

analytically according to given configuration data. The second type of solution is the numerical 

method, the joint variables are obtained based on the numerical technique methods.   

2.3.2 Rigid motions and Homogeneous transformations 

An essential part of the robot kinematics is involved with establishing various coordinate 

frames to represent the positions and orientations of the rigid objects and with transformations 

among these coordinate frames. In this section, the operations of rotation and transition are 

described, and introduce the notion of homogenous transformations, these transformations combine 

the operations of rotation and transition into a single matrix multiplication that are used to derive as 

forward kinematics equations of the manipulators. 

2.3.2.1 Representing positions and rotations 

For the representing positions, that schemes for points and vectors. There are two 

fundamental approaches to geometric reasoning as the synthetic approach and the analytic 

approach. The first approach is one reason directly about points or lines, while in the latter, one 

presents these entities using coordinates or equations, and is performed via algebraic manipulations. 

The latter approach requires the choice of the reference coordinate frame. In robotic systems, one 

typically uses analytic reasoning, since the robot tasks are often defined as Cartesian coordinates. 
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The Fig. 2-8 shows two coordinate frames that differ in orientation by angle of 45°. In the 

figure, the coordinates of the point p is specified with respect to either frame A A Ao x y or 

frame B B Bo x y . The point p is assigned to the coordinate vector [4,5]A Tp  , and in the latter 

case [ 3,4]B Tp   , that means a point in space, while both
Ap and 

Bp are coordinate vectors that 

represent the location of this point in space with respect to coordinate frames A A Ao x y  and 

B B Bo x y , respectively. The coordinates that can be represented the position of the origin of one 

coordinate frame with respect to another as [9,4]A T
Bo  and [ 9,3]B T

Ao   . Therefore, a point 

corresponds to a specific location in space, a vector specifies a direction and magnitude. The 

vectors can be used to represent displacement or forces. Consider the Fig. 2-8, the displacement 

from origin Ao and origin Bo  to point p is given by the vectors 1v and 2v respectively. Both vectors 

are geometric entities that are invariant with respect to the choice of coordinate frames, but the 

representation by coordinates of these vectors depends on the choice of the reference coordinate 

frames such as 1 [4,5]A Tv  , 1 [6,1]B Tv  , 2 [ 5,1]A Tv   and 2 [ 3,4]B Tv   . 

yA

xA
oA

yB
xB

oB

45° 
v2

v1

p

 

 

Fig. 2-8 Two coordinate frames, a point p and two vector v1 and v2. 
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In representing rotations, to represent the relative position and orientation of one rigid body 

with respect to another, the coordinate frames are attached to each part, and then specify the 

relationships between these coordinate frames. In the case of the representing rotations that can be 

described as follows:  

-  Rotation in the plane 

Consider Fig. 2-9 that shows two coordinate frames, with frame B B Bo x y being obtained by 

rotating frame A A Ao x y by angle . And a way to define the orientation is to specify the coordinate 

vectors for the axes of frame B B Bo x y with respect to coordinate frame A A Ao x y as expressed by 

Equation (2-29). 

 

[ | ]A A A
B B BR x y                                                      (2-29) 

 

Where, 
A
Bx and 

A
By are the coordinates in frame A A Ao x y of unit vectors Bx and By respectively. 

This formation is called “Rotation matrix”, which have a number of special properties that discusses 

below. 

yA

xA
oA

yB

xB

oB

Ө

sinӨ

cosӨ

 

 

Fig. 2-9 Coordinate frame B B Bo x y is oriented at angle  with respect to A A Ao x y  
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In the two-dimensional case, it is easy to compute the entries of the rotation matrix as shown 

in Equation (2-30). 

 

cos sin

sin cos

A
BR

 

 

 
  
 

, where 
cos

sin

A
Bx





 
  
 

and
sin

cos

A
By





 
  
 

             (2-30) 

 

To summarize, 
A
BR  is a matrix whose column vectors are the coordinates of the unit vectors along 

the axes of frame B B Bo x y  expressed relative to frame A A Ao x y . 

-  Rotations in three dimensions 

 The projection technique is used in three dimensions, each axis of the frame B B Bo x y is 

projected onto coordinate frame A A Ao x y . The resulting rotation matrix is given by Equation (2-31).  

B A B A B A

A
B B A B A B A

B A B A B A

x x y x z x

R x y y y z y

x z y z z z

   
 

   
 
    

                                            (2-31) 

 

For example, the frame A A Ao x y is rotated through an angle about the Az axis, in order to find the 

result of transformation matrix
A
BR .  Form the right hand defines the positive sense for the 

angle to be such that rotation by about the z axis would advance a right-hand threaded screw 

along the positive z axis as illustrated in Fig. 2-10, where cosB Ax x   , sinB Ay x    ,  

sinB Ax y   ,  cosB Ay y    and 1B Az z  . While all other dot products are zero. Thus, 

the rotation matrix
A
BR  has a particularly simple form as expressed in Equation (2-32) and also is 

called a basic rotation matrix (about the z axis) ,zR  .  
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,

cos sin 0

sin cos 0

0 0 1

A
B zR R 

 

 

 
 

 
 
  

                                          (2-32) 

 

Similarity, the basic rotation matrices are able to represent rotation about the x axis and y axis 

are shown in Equation (2-33) and (2-34) respectively. 

 

,

1 0 0

0 cos sin

0 sin cos

xR   

 

 
 

 
 
  

                                            (2-33) 

 

,

cos 0 sin

0 1 0

sin 0 cos

yR 

 

 

 
 


 
  

                                            (2-34) 
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Fig. 2-10 Rotation about Az by an angle   
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2.3.2.2 Rotational transformations 

 In Fig. 2-11 shows the rigid object that is attatched onto  a coordinate frame B B Bo x y . Given 

the coordinate of point p  with respect to the frame B B Bo x y and the coordinates 

 , ,
TBp u v w define as Equation (2-35). And a similar way, the coordinate 

Ap can be obtained 

by projecting the point p  onto coordinate axes of the frame A A Ao x y as shown in Equation (2-36). 

 B B Bp ux vy wz                                                   (2-35) 

 

 , ,
TA

A A Ap p x p y p z                                               (2-36) 

 

In order to explain about the rotaional transformations, these two equations are combined. Finally, 

the final equation is solved as Equation (2-37). 

 

yA

xA

zA

yB

oA oB
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Fig. 2-11 The rigid object is attached in the coordinate frame 
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                          (2-37) 

 

Briefly, the rotation matrix 
A
BR can be used both to represent the orientation of the coordinate 

frame B B Bo x y with respect to frame A A Ao x y , and transform the coordinates of a point from one 

frame to another.  

2.3.2.3 Composition of rotations 

In this sub-topic, the composition of rotations is discussed that can be divided into two types 

as the rotation with respect to the current frame and the fixed frame. The details of both types are 

described below: 

-  Rotation with respect to the current frame 

Suppose, the third coordinate frame C C Co x y is added in the plane that relates to the frames 

A A Ao x y and B B Bo x y by rotational transformations. Given a point p  is represented by coordinate 

specified with respect to any of these three frames, the relationship among the representations of 

p is expressed by Equation (2-38). 

 

A A B
B

B B C
C

A A C
C

p R p

p R p

p R p







                                                       (2-38) 
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Where, 
A
BR and

A
CR that represent rotations relative to the frame A A Ao x y while 

B
CR represents a 

rotation relative to frame B B Bo x y . Consider in the Equation (2-38) that can determine as the 

composition law for rotational transformations which shows in Equation (2-39). 

 

A A B
C B CR R R                                                          (2-39) 

 

That means the resulting frame C C Co x y has orientation with respect to A A Ao x y given by
A B
B CR R . It 

is called the current frame because the frame relative to which the rotation occurs the frame. For 

example, if a rotation matrix R  represents a rotation of angle  about the current y axis followed 

by a rotation of angle   about the current z axis as shown in Fig. 2-12.  

Then the resulting matrix R  is calculated as: 

, ,

cos 0 sin cos sin 0

0 1 0 sin cos 0

sin 0 cos 0 0 1

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

y zR R R 

   

 

 

    

 

    

 

   
   


   
      

 
 


 
  

 

yA, yB
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xB

zAzB

yB

xCxB

zCzB

yC

Ө
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yC

 

 

Fig. 2-12 Composition of rotations about current frame 
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-  Rotation with respect to the fixed frame 

In many cases, it is to operate a sequence of rotations, each about a given fixed coordinate 

frames, rather than about successive current frames. For example, the coordinate frame A A Ao x y is 

referred as the fixed frame, suppose the 3D plane has two frames A A Ao x y and B B Bo x y related by 

the rotational transformation
A
BR . From the previous section, the representation for rotational matrix 

in the current frame B B Bo x y is given by
1( )A A

B BR RR
. Therefore, the composition law for applying 

about the current axis as shown in Fig. 2-13 and expressed in Equation (2-40). 

 

1( )A A A A A
C B B B BR R R RR RR                                             (2-40) 

 

Thus, when a rotation is performed with respect to the world coordinate frame, the current rotation 

matrix is pre-multiplied by R to obtain the desired rotation matrix. Consider in Fig. 2-13 that can be 

formed the rotational equation as: 

, , , , , ,y y z y z yR R R R R R R     
     

 Using the rule of composition of rotational transformations, it is an easy for determining the 

result of multiple sequential rotational transformations. 

yA, yBxA

xB

zAzB

yA

xB

zA

yB

Φ

 
yA

xA

zA

xC

zC

yC

xA

Ө

 

 

Fig. 2-13 Composition of rotations about fixed frame 



37 

 

2.3.2.4 Homogeneous transformations 

In order to represent both positions and orientations. This section, these two concepts are 

combined to define homogeneous transformations.  

Consider Fig. 2-14, frame B B Bo x y is obtained by rotating frame A A Ao x y by angle , and 

frame C C Co x y  is obtained by translating frame B B Bo x y by the displacement 2v . Suppose, the 

point 1p is attached to coordinate frame A A Ao x y , then 2p is the location of 1p after the rotation, 

and 3p is the location of 1p after the translation. Note, the point 3p is displaced by the vector 

3v from the origin of frame A A Ao x y , and the vector 3v can be represented as 3 1 2v v v  . The 

coordinate for the vector 1v can be obtained by the rotation matrix to coordinates that 

represent 2p in frame B B Bo x y as expressed in Equation (2-41). 

 

1 2 3
A A B A C

B Cv R p R p                                                   (2-41) 

 

yA

xAoA

Ө

p1

yB

xB

oB

p2

yC

xC

oC

p3

1v

2v

3v

 

 

Fig. 2-14 Homogeneous transformations in two-dimensional 
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If 2v denotes by 
A
Cd  that is the displacement of the origin of C C Co x y , expressed relative to 

frame A A Ao x y , then the point 3
Ap can determine by Equation (2-42). 

 

3 3
A A C A

C Cp R p d                                                         (2-42) 

 

In definition, a transformation of the form given in Equation (2-42) is called to define a rigid motion 

if R is orthogonal. From Fig. 2-14, the point can be considered as two rigid motions as shown in 

Equations (2-43) and (2-44). 

 

A A B A
B Bp R p d                                                        (2-43) 

 

B B C B
C Cp R p d                                                        (2-44) 

 

And the Equation (2-45) describe by substituting the expression for 
Bp from Equation (2-44) into 

Equation (2-43). 

 

A A B C A B A
B C B C Bp R R p R d d                                            (2.45) 

 

Since the relationship between
Ap and

Cp is also a rigid motion, it can be described by Equation (2-

46). 

 

A A C A
C Cp R p d                                                         (2-46) 
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Considering between Equations (2-45) and (2-46), the relationship is expressed by Equation (2-47), 

where 
A
CR  represents the orientation transformations and 

A
Cd  shows the vector from the 

origin Ao to the origin Co  that has coordinates given by the sum of
A
Bd .  

 

A A B
C B C

A A B A
C B C B

R R R

d R d d



 
                                                     (2-47) 

 

Modify the Equation (2-47) is to be the matrix identity as Equation (2-48). 

 

0 1 0 1 0 1

A A B B A B A B A
B B C C B C B C BR d R d R R R d d     

     
     

                           (2-48) 

 

From the Equation (2-48) that forms as the transformation matrices or called homogenous 

transformations as expressed in Equation (2-49).  

 

000 1

R d
H

 
  
 

                                                             (2-49) 

 

The set of basic homogeneous transformations can be calculated by Equations (2-50), (2-51) and (2-

52) for transitions and rotations about the x, y and z axes, respectively. 

For x-axis 

, ,

1 0 0 1 0 0 0

0 1 0 0 0 cos sin 0
s ;

0 0 1 0 0 sin cos 0

0 0 0 0 0 0 0 1

x a x

a

Tran Rot 

 

 

   
   


    
   
   
   

                 (2-50) 
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For y-axis 

, ,

1 0 0 0 cos 0 sin 0

0 1 0 0 1 0 0
s ;

0 0 1 0 sin 0 cos 0

0 0 0 0 0 0 0 1

y b y

b
Tran Rot 

 

 

   
   
    
   
   
   

                 (2-51) 

 

For z-axis 

, ,

1 0 0 0 cos sin 0 0

0 1 0 0 sin cos 0 0
s ;

0 0 1 0 0 1 0

0 0 0 0 0 0 0 1

z c zTran Rot
c



 

 

   
   
    
   
   
   

                   (2-52) 

 

2.3.3 Robot Kinematics 

This section organizes in the following manner, the forward and inverse kinematics 

transformations for an open kinematics chain are described based on the homogeneous 

transformation.  

2.3.3.1 Forward kinematics 

A robotic manipulator is composed of serial links which are connected to each other revolute 

or prismatic joints from the base frame to the end-effector or tool frame. Determining the position 

and orientation of the end-effector in terms of the joint variables is called as forward kinematics. 

One method will be used for a suitable kinematics model that is Denavit-Hartenberg method. This 

method uses four parameters (D-H parameters) is the most common method for describing the robot 

kinematics. The parameters are the link length 1ia  , link twist 1i  , link offset id  and joint angle i . 

In Fig. 2-15 that shows coordinate frame assignment for general manipulator. As description in the 

figure, the distance from 1iZ  to iZ  along iX is assigned as 1ia  , the angle between 1iZ  to iZ  about 

iX  is assigned as 1i  , the distance from 1iX  to iX  along iZ is assigned as id and the angle 
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between 1iX  to iX about iZ is assigned as i [48]. Thus, the general transformation matrix
1i
iT


for a 

single link can be obtained as follows by Equation (2-53).           

 

1
1 1

1

1 1

1 1

( ) ( ) ( ) ( )

1 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

i
i x i x i z i z i

i i i

i i i i

i i i

T R D a R D d

a c s

c s s c

s c d

 

 

   

 


 



 

 



       
       


       
       
       
       

 

 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i ii
i

i i i i i

c s a

s c c c s s d
T

s s c s c c d

 

     

     



   

   

 
 

 
 
 
 
 

                               (2-53) 
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Fig. 2-15 Denavit-Hartenberg frame assignment  
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The forward kinematics of the end-effector with respect to the based frame determines by 

multiplying all transition matrices as expressed by Equation (2-54). 

 

0 1 2 1
1 2 3

11 12 13

21 22 23

31 32 33

...

0 0 0 1

base n
end effector n

x

y

z

T T T T T

r r r p

r r r p

r r r p


 

 
 
 
 
 
 

                                            (2-54) 

 

ijr  define as the rotational elements of the transformation matrix (i and j = 1, 2 and 3). The elements 

of the position vector denote with xp , yp and zp . 

2.3.3.2 Inverse kinematics 

In the previous section, the forward kinematics is used to determine the end-effector’s 

position and orientation in terms of the joint variables. But in this section, the inverse kinematics 

problem is solved in order to find the joint variables in terms of the end-effector’s position and 

orientation. There are two solutions approaches namely geometric and algebraic that used for 

solving the inverse kinematics problem.  

-  Geometric Solution 

For the common kinematics assignments, the geometric solution approach is based on 

decomposing the spatial geometry of the manipulator into several plane geometry problems. 2-

DOFs planar manipulator is the simple robot structures that is considered in order to derive the 

kinematics equation as shown in Fig. 2-16, where it has 2 revolute joints and link lengths are 

1L and 2L .  And the components of point p are determined as follow Equations (2-55) and (2-56). 

 

1 1 2 1 2cos cos( )xp L L                                                (2-55) 
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1 1 2 1 2sin sin( )yp L L                                                (2-56) 

The solution of 2 can be computed from summation of squaring both Equations (2-55) and (2-56) 

as follows: 

2 2 2 2
1 1 2 1 2 1 1 2 1 2

2 2 2 2 2 2
1 1 1 2 1 2 1 2

1 2 1 1 2 1 1 2

2 2 2 2
1 2 1 2 2

( cos cos( )) ( sin sin( ))

(cos sin ) (cos ( ) sin ( ))

2 (cos cos( ) sin sin( ))

2 cos

x y

x y

p p L L L L

L L

L L

p p L L L L

     

     

     



      

     

   

   

 

And so 

2
2 2 2 2 2 2 2 2

1 2 1 2

2 2

1 2 1 2

cos ; sin 1
2 2

x y x yp p L L p p L L

L L L L
 

      
     

 
   

Finally, two possible solutions for 2 can be written as Equation (2-57). 

 

Ө1

Ө2

L1

L2

P(px,py)

x

y

L2sin(Ө1+Ө2)

L1sinӨ1

L1cosӨ1 L2cos(Ө1+Ө2)
 

 

Fig. 2-16 The 2-DOF planar manipulator 
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2
2 2 2 2 2 2 2 2

1 2 1 2

2

1 2 1 2

tan 2 1 ,
2 2

x y x yp p L L p p L L
A

L L L L


 
       

    
  

   

                (2-57) 

 

Next step, Find the solution of 1 in terms of link parameters and known variable 2 as follows. 

Let’s multiply each side of Equation (2-55) by 1cos and Equation (2-56) by 1sin . 

2 2
1 1 1 2 1 2 2 1 1 2

2 2
1 1 1 2 1 2 2 1 1 2

2 2 2 2
1 1 1 1 2 1 2 1 1 2 1 2

cos cos cos cos cos sin sin

sin sin sin cos sin cos sin

cos sin cos cos cos sin sin cos

x

y

x y

p L L L

p L L L

p p L L L L

      

      

       

  

  

    

 

The simplified equation obtained as Equation (2-58). 

 

1 1 1 2 2cos sin cosx yp p L L                                               (2-58) 

 

Again consider in the Equations (2-55) and (2-56) by multiplying 1sin  and 1cos  respectively, 

then adding the resulting equations produce as: 

2
1 1 1 1 2 1 1 2 2 1 2

2
1 1 1 1 2 1 1 2 2 1 2

2 2
1 1 2 2 1 1

sin sin cos sin cos cos sin sin

cos sin cos cos sin cos cos sin

sin cos sin (cos sin )

x

y

x y

p L L L

p L L L

p p L

       

       

    

    

  

   

 

The simplified equation obtained as Equation (2-59). 

 

1 1 2 2sin cos sinx yp p L                                               (2-59) 
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Then, multiply each side of Eqaution (2-58) by xp and Equation (2-59) by yp and add the resulting 

equations in order to find 1cos as:  

2
1 1 1 2 2

2
1 1 2 2

2 2
1 1 1 2 2 2 2

cos sin ( cos )

sin cos sin

cos cos ( cos ) sin

x y x x

y x y y

x y x y

p p p p L L

p p p p L

p p p L L p L

  

  

   

  

  

   

 

As a result, two possible solutions for 1 can be written as Equation (2-60). 

 

1 2 2 2 2

1 2 2

2

1 2 2 2 2

1 2 2

2

1 2 2 2 2

2 2

1

1 2 2 2 2

2 2

( cos ) sin
cos ;

( cos ) sin
sin 1

( cos ) sin
1 ,

tan 2

( cos ) sin

x y

x y

x y

x y

x y

x y

x y

x y

p L L p L

p p

p L L p L

p p

p L L p L

p p
A

p L L p L

p p

 


 


 



 

 




  
    

  

 
   

       
  
 
  

                  (2-60) 

 

Although the planar manipulator has a very simple structure, as can be seen its inverse 

kinematics solution based on geometric approach, but it is very cumbersome for solving the inverse 

kinematics problem. And it is not suitable solutions when the manipulators that have many links 

and joints. Thus, the other method is an algebraic solution approach that is chosen for the inverse 

kinematics solutions. 
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-  Algebraic Solution 

An algebraic solution approach is a suitable method for the manipulators with more links. 

Recall the Equation (2-54) to find the inverse kinematics solution for a 6-DOFs manipulator as 

shown in Equation (2-61). 

 

11 12 13

21 22 230 0 1 2 5
6 1 1 2 2 3 3 6 6

31 32 33

( ) ( ) ( )... ( )

0 0 0 1

x

y

z

r r r p

r r r p
T T q T q T q T q

r r r p

 
 
  
 
 
 

                   (2-61) 

 

To find the inverse kinematics solution for the first joint ( 1q ) as a function of the known of 0
6T , the 

link transformation inverses are pre-multiplied as Equation (2-62), where 
1

0 0
1 1 1 1( ) ( )T q T q I


   

 is 

an identity matrix,  

 

1 1
0 0 0 0 1 2 5
1 1 6 1 1 1 1 2 2 3 3 6 6

1 2 5
2 2 3 3 6 6

( ) ( ) ( ) ( ) ( )... ( )

( ) ( )... ( )

T q T T q T q T q T q T q

T q T q T q

 
      


                  (2-62) 

 

For the other variables, the following equations are obtained as a similar manner. All of them show 

in by Equation (2-63). 

 

 

1
0 1 0 2 3 4 5
1 1 2 2 6 3 3 4 4 5 3 6 6

1
0 1 2 0 3 4 5
1 1 2 2 3 3 6 4 4 5 3 6 6

1
0 1 2 3 0 4 5
1 1 2 2 3 3 4 4 6 5 3 6 6

1
0 1 2 3 4 0
1 1 2 2 3 3 4 4 5 3 6

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T q T q T T q T q T q T q

T q T q T q T T q T q T q

T q T q T q T q T T q T q

T q T q T q T q T q T









   

   

   

 
 

5
6 6( )T q

                      (2-63) 
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There are twelve sets of nonlinear equations to be solved. If the elements on the left hand side 

which are the function of 1q are equated with the elements on the right hand side, then the joint 

variable 1q can be solved as functions of 11 12 13 33, , ,..., , , ,x y zr r r r p p p  and the fixed link 

parameters. To find the suitable equation for the solution of the inverse kinematics problem, any 

equations can be used some trigonometric equations that are given in Table 2.2.  

 

Table 2.2. Some trigonometric equations and solution can be used in inverse kinematics 

 Equations Solutions 

1 sin cosa b c     2 2 2tan 2( , ) tan 2 ,A a b A a b c c      

2 sin cos 0a b     tan 2( , ) tan 2 ,A b a or A b a      

3 cos ;sina b    tan 2( , )A b a   

4 cos a    2tan 2 1 ,A a a     

5 sin a    2tan 2 , 1A a a     

 

2.4 Summary 

In this chapter, the fundamental theories (an unsupervised learning as a Self-Organizing Map 

(SOM), Markov theory and Motion control system) have described above that will be used to 

generate and develop the behavior selection system based on the emotional variations for Conbe-I 

robot, which autonomously determines and outputs the most suitable behavior and emotional 

expression according the internal and external situations. 

 



48 

 

Chapter 3 

System Structure of Conbe-I robot 

Designing robots with cognition and consciousness resembling for humans and animal have 

become an important application of intelligent autonomous robots, in order to achieve a more 

effective human-robot interaction. Thus, in this thesis, the behavioral-emotional selection model is 

proposed based on the Self-Organizing Map (SOM) learning and the discrete stochastic state-space 

mathematical model (Markovian model) that mainly consider the issues of an autonomous action 

selection corresponds to the emotional state transition. The system structure of Conbe-I robot and 

the details of each part will be clearly described in this chapter. 

3.1 System Configuration 

Fig 3-1 shows the basic configuration of the robot, consisting of an autonomous control 

system (Camera program, Motivation program, Arm program, Eye program and Motor program), 

Self-Organizing Map module (Behavior map and Emotion map) and Markovian model in a personal 

computer and the actuator system (Arm and Head parts). The configuration of the Conbe-I is 

divided into 2 parts, namely an arm part and a head part.  

USB-RS485

Camera program

Motor program

Arm program

Motivation program

Eye program

SOM model

Markov model

Personal Computer

Robotic  Arm

actuators

Web camera

FCB-H11

camera

Robotic  Head 

actuators

USB-RS485

HD-SDI 

interface  board

 

 

Fig. 3-1 The basic configuration of Conbe-I robot 
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3.1.1 Robot arm configurations 

In Fig.3-2 that shows the configurations of the robot arm. The total length of each arm part is 

450 mm, and the weight of the body is about 0.8 kg. Each arm has 7 levels of flexibility: the 

shoulder (Joint 1, Joint 2), the elbow (Joint 3, Joint 4), the wrist (Joint 5, Joint 6) and the hand part 

(Joint 7). The hand part has 3 fingers and a small web camera which is installed on the palm of the 

robotic hand in order to recognize the target objects and external situation. 
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Fig. 3-2 Configurations of the robot arm 
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3.1.1.1 Actuators in robot arm 

An actuator for each joint uses a Dynamixel DX-117 manufactured by ROBOTIS, which has 

a decelerator and an angular sensor, and it is able to control the position and velocity using a target 

angle, torque limit, speed limit. In communicating, the RS-485 serial data communication is used to 

control multiple actuators with the personal computer. Fig. 3-3 shows the external dimension of 

Dynamixel DX-117 actuator and the main specifications are presented in Table 3.1. 

 

Table 3.1 The specifications of Dynamixel DX-117 actuator 

Weight 66 g 

Dimension 31 mm x 46 mm x 37 mm 

Resolution 0.29° 

Gear Reduction Ratio 192.6 : 1 

Stall Torque 3.7 N·m (at 18.5 V, 1.9 A) 

No load speed 85 rpm (at 18.5 V) 

Running Degree 0° ~ 300° 

Running Temperature -5°C ~ +80°C 

Voltage 12 V ~ 18.5 V (Recommended Voltage : 14.8 V) 

Link (Physical) RS-485 Multi Drop (daisy chain type connector) 

ID actuator 254 ID (0~253) 

Communication Speed 7343 bps ~ 1 Mbps  

Types of Feedback Position, Temperature, Load, Input voltage, etc. 

Material Full Metal Gear, Engineering Plastic Body 
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Fig. 3-3 Dimension of DX-117 
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3.1.1.2 Web camera 

Fig 3-4 shows an UCAM-DLV3000T web camera that is used to get the images from its 

surrounding environment. It is 3 million pixels of web camera realizing high-definition and  high 

resolution of wonder. In correspondence with “UVC” (USB video class) which is standard of USB 

2.0, it is not necessary to install driver from CD-ROM and is “blow connection” to only connect to 

the universal serial bus port of a desktop PC or all of notebook PC and to be usable immediately 

type.  

3.1.2 Robot head configurations 

 

 

Fig. 3-4 UCAM-DLV3000T (a web camera) 

 

CCD camera Yaw

Pitch
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Fig. 3-5 Configurations of the robot head 



52 

 

 For the robot head, it has two actuators, a CCD camera and 2 small LCD monitors. LCD 

monitors are installed that use to display the eye emotions of Conbe-I as shown in Fig. 3-5. The eye 

emotions are suitable for the intelligent expression of emotions. The eye movement simulator is 

created by the Open Graphics Library (OpenGL) software in order to express the basic emotions of 

the robot. 

3.1.2.1 Actuators in robot head 

The Conbe-I head has two degree-of-freedom robotic active head. Dynamixel RX-64 and 

DX-117 actuators are used to be yaw and pitch movements. For the RX-64 servo actuator is one of 

ROBOTIS most powerful smart actuator. It can provide a 888 oz*in of torque at 18 VDC, and it can 

traverse its entire 300° range in under 1 second. Each servo motor has the ability to track its speed, 

temperature, shaft position, voltage, and load. All of the sensor management and position control is 

handled by the servo motor’s built-in microcontroller. The dimension of RX-64 servo actuator is 

shown in Fig. 3-6 and Table 3.2 illusates the specification of the RX-64 servo actuator. 
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Fig. 3-6 Dimension of RX-64 motor 
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Table 3.2 The specifications of RX-64 servo actuator 

Operating Voltage  18V 15V 

Stall Torque 888 oz·in (64 kg·cm) 736 oz·in (53 kg·cm) 

No-load Speed 0.162 sec/60° 0.198 sec/60° 

Weight 125 g 

Size 40.2 mm x 61.1 mm x 41 mm 

Resolution 0.29° 

Reduction Ratio 1/200 

Operating Angle 300° or Continuous turn 

Max Current 1200 mA 

Standby Current 50 mA 

Operating Temperature -5°C ~ +85°C 

Protocol RS-485 Asynchronous serial 

Types of Feedback 
Position, Temperature, Load voltage, Input voltage and 

Compliance/PID 

Module Limit 254 valid addresses 

Communication Speed 7343bps ~ 1Mbps 

Material Metal Gears & Engineering Plastic Body 

Motor Maxon RE-MAX 

 

3.1.2.2 FCB-H11 camera and Interface board 

The SONY FCB-H11 camera is installed on the Conbe-I head, which is also used to 

recognize and observe the objects and external situation. The FCB-H11camera achieves a minimum 

illumination of 1.0 lx by dynamically removing the infrared cut filter and allowing the spectral 

responsivity range to extend into the near infrared. The FCB-11 incorporates a 1/3 type HD CMOS 

SONY FCB-H11 HD-SDI Interface Board

Power

Control

Video

Power

RS-232

HDI-SDI

HD YPbPr, 

CVBS, Y/C
 

Fig. 3-7 Connection diagram for FCB-H11 camera 
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image sensor boasting approximately two million effective pixels and provides a 16x9 aspect ratio, 

making it ideal for use with wide-screen displays. The FCB-H11 inherits a multitude of functions 

with a 120x zooming capability picture freeze function, and slow shutter. For this system, the FCB-

H11 camera is connected to the HD-SDI interface board for simplifying and operating in the image 

processing as shown in Fig. 3-7. And the specification of HD-SDI interface board is expressed by 

Table 3.3. 

Table 3.3 The specifications of HD-SDI Interface Board 

Video input LVD for HD Digital video data, Analog video 

Video output 

HD-SDI (available only in HD mode, 720p, 1080i) 

HD Analog video (Bypass, available only in HD camera mode) 

SD Analog video (Bypass, available only in SD camera mode) 

Control RS-232, Remote Control Interface (VISCA protocol) 

Power 
HD-SDI Interface Module (Recommend input range : 6~12 VDC) 

Sony camera (Input range: 6~12 VDC, 4.8W) 

Operation Conditions 0 to 45°C / 20 to 90 %RH 

Dimensions Width: 42mm, Height: 42mm, Thickness: Approx. 12.65mm (PCB 1.6mm) 

 

3.2 Overview of software 

In this section, the overview of software for the behavioral-emotional selection system based 

on Self-Organizing Map (SOM) and Markovian model is developed by Borland C++ Builder 5. The 

details of Conbe-I program are shown in Fig. 3-8 and described below. 

Main GUI Control

Image processing module

Motivation module

SOM module and Markov model

Robot head control module

Robot arm control module

Motor drive module (Head)

Motor drive module (Arm)
 

Fig. 3-8 The details of Conbe-I robot program 
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3.2.1 Main GUI control 

 Fig. 3-9 shows the Main GUI control program, which is the major program for controlling the 

sub-programs such as an image processing module, Motivation module, SOM module and Markov 

model, Robot head and arm control modules. 

 

 

 

 

 

 

 

Main  GUI Menu
Image Processing module

SOM and Markov model

 

 

Fig. 3-9 Main GUI Control 
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3.2.2 Image processing module 

Image processing is a form of signal processing where the input signals are images such as 

photographs or video frames. The output could be a transformed a version of the input image or a 

set of parameters related to the image. The computer revolution has taken place over the last 20 

years that has led to great advancement in the field of the digital image processing. This has, in turn, 

opened up a multitude of applications in various fields. In this research, the images of the objects 

and surrounding environment are obtained using a small web camera and a CCD camera. The visual 

information is considered to determine the natural occurring dopamine waveform. And the example 

of image processing module is shown in Fig. 3-10, which consists of the capture image window for 

showing an image, the histogram of the image, the position of target objects and the labeling results. 

 

 

 

 

 

 

 

 

 

Fig. 3-10 The image processing module 
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3.2.3 Motivation module 

The Motivation module shows the motivation of the robot, it is determined by using the total 

of all dopamine values (the positive and negative dopamine models). This module operates under an 

autonomous action. Fig. 3-11 illustrates the GUI Motivation module, the details of each part are 

explained as follows; 1. Start and end of the calculation of robot’s motivation. 2. The motivation 

graph shows not only the robot’s motivation, but also each dopamine waveform. In addition, the 

module is able to generate the typical pattern of dopamine waveforms manually by clicking the 

manual buttons as shown in the figure. 

 

 

 

 

 

Negative dopamine

Pos itive dopamine

Total dopamine

Robot’s motivation

Robot’s behaivor

Generate the dopamine waveform (Manual)

Start and End for calculating the robot’s motivation

 

 

Fig. 3-11 GUI Motivation module 
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3.2.4 Self-Organizing Map module 

For a Self-Organizing Map (SOM) module, it is used for clustering the behavior and 

emotions of the Conbe-I robot. The SOM technique is a type of neural network model that is can 

provide topologically preserved mapping from high-dimensional input data to a low-dimensional 

(typically two-dimensional) array. The SOM consists of an input layer and an output layer 

(competitive layer), which determines as an unsupervised learning. The GUI of SOM module is 

shown in Fig. 3-12, it has the behavior map and emotion map. This program can set the common 

parameters for computing the SOM learning such as the number of learning, the initial 

neighborhood radius, the initial learning rate, the input neurons, the output neurons and the map 

size. Moreover, the average quantization error is also used in this system in order to guarantee the 

effective mapping. 

 

 

 

The setting of common parameters

Behavior map Emotion map

The input data

 

 

Fig. 3-12 The behavior and emotion maps in SOM module 
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3.2.5 Robot head and arm control modules 

In Figs. 3-13 (a) and 3-13 (b) display the GUI of arm control module and GUI of head control 

module respectively. 1 and 8 are the open and close ports for communication between the program 

control and Conbe-I robot. 2 is the buttons for adjusting the degree of each joint in the arm part. 3 

shows the actual angle and the estimated angle of each motor. 4 displays the position of the hand 

part and the target’s position. 5 is created for adapting the hand’s view about ±5 cm in x, y, z, 

directions. 6 is the group of buttons that is used for selecting the robot modes as a manual behavior 

mode and an autonomous behavior mode. The last group of the GUI arm control module is 7, each 

button is expressed the sub-behavior of the robot. For the GUI head control, 9 is the buttons that are 

used to adjust the yaw and pitch movements. And 10 displays the values of yaw and pitch rotations. 

1

2 3

4

5

6
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Fig. 3-13 (a) GUI of arm control module 
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Fig. 3-13 (b) GUI of head control module 
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3.3 Computation of the robotic arm posture  

Fig. 3-14 shows the robotic arm, which is divided into 4 parts: a shoulder, an elbow, a wrist 

and the fingers, because that is difficult to determine the angles of all joints from the target position 

by using inverse kinematics. Thus, in the research that uses the forward kinematics, which 

expresses using homogeneous coordinates and is able to calculate the posture from the joints of a 

shoulder to a wrist. 

3.3.1 Calculation of the position for each joint 

 Each joint is shown in Fig.3-14, the homogeneous transformations that described in the 

previous chapter is used for calculating the position of each joint, has a formation in Equation (2-

49). Thus, the transformation matrices for each joint can be expressed by Equation (3-1) to 

Equation (3-6). 
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Fig. 3-14 Arrangement of degrees of freedom 
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where, the position vector of the first joint is 1P , the positon vector of joint i  can be considered in 

Equation (3-7), the local coordinate system of joint is calculate by using the inverse of the 

transformation matrix (
1T 
) as shown in Equation (3-8). 

 

1 4 3 2 1 1...i iP T T T T T P                                                 (3-7) 
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3.3.2 Methods of posture control 

As described above, if the angle joints in the robotic arm are calculated by the inverse 

kinematic, that is difficult to solve the inverse kinematics problem and tend to take a long time. 

Therefore, in this study, the robotic arms are will be considered and determined all angle joints by 

dividing as the shoulder, the elbow and the wrist parts, each part that has 2 degrees of freedom. 

Then, the hand of the robotic arm is able to move to the target position without the inverse 

kinematics function.  In order to create the movement patterns, the robotic arm can be divided into 3 

steps according to the following sequence of step. 

3.3.2.1 The wrist movement 
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Fig. 3-15 The relationship between the robotic hand and the target position 
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Fig. 3-16 Geometric diagram 
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Fig. 3-15 shows the relationship between the robotic hand and the target position. For the Fig. 

3-16 illustrates Geometric diagram that can determine the local coordinates of the wrist part by 

Equations (3-9) and (3-10). 
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By the above explanation, if there is the target object within the range of wrist movement, the 

robot hand can direct toward the target position at all times as shown in Fig. 3-17 (a).  However, if 

the target position seems to be out of the range of wrist movement as illustrated in Fig. 3-17 (b), the 

robotic hand cannot approach to the target object, consequently the previous joints (an elbow) that 

are considered. 
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Fig. 3-17 The range of wrist movement 
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3.3.2.2 The elbow movement 

If the target object is moved outside the operating range of the wrist movement, the robotic 

hand is impossible to capture the target position. The final posture is calculated using 2 DOF of the 

wrist part and 2 DOF of the elbow part. The elbow movement is based on pattern motions 

dependent on a deviation from the object, an adaptive posture can select the movement patterns 

based on the 9 ways of posing allowing the hand is to reach a position close to the target object. 

After that, the wrist movement is performed. The elbow and wrist movements are operated together 

as shown in Fig. 3-18.  
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Fig. 3-18 The elbow and wrist movements 
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3.3.2.3 The combination of the elbow and shoulder movements 

In this case, that uses 2 DOF of the shoulder part as a way of achieving the posture for 

gripping the target object. Therefore, the total of posing 81 ways is calculated, that is a combination 

of an elbow and a shoulder movements. In Fig. 3-19 (a), Fig. 3.19 (b) and Fig. 3.19 (c) show the 

sequential movement of the robotic arm that can continuously operate the movement, and toward to 

the target object without inverse kinematic solution.  
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(a) (b)

Target object
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Fig. 3-19 The sequential movement of the robotic arm 
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3.4 Summary 

In this chapter, the system structure of Conbe-I robot is described that has the system 

configuration and an overview of the software. The system configuration is explained such as a 

CCD camera and a web camera are installed for obtaining the images (target object and the external 

situation). Dynamixel servo motors are used at each joint in the arm part and head part. For the 

overview of software, Main GUI control is the main program, which can operate the sub-programs 

for controlling each servo motor in the robot. Finally, the computation of robotic arm posture is 

explained in order to perform the sequential movement. 
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Chapter 4 

Behavioral-Emotional Selection System 

Designing robot with cognition and consciousness resembling that of human beings or 

animals has become an important application of intelligent autonomous robot, in order to achieve a 

more effective human-robot interaction (HRI). In this thesis, the proposed method has been focused 

on considering and developing the primary structure of a conscious action, when an animal or 

human beings take an action that can be represented by the sequence of processes as follows: 

Recognition and Perception → Motivation → Behavior selection and Emotional expression. 

In this chapter, the behavioral-emotional selection system is proposed that autonomously 

determines and outputs the most suitable behavior and emotional expression based on internal and 

external situations. From the primary structure as described above, the behavioral-emotional 

selection system can be divided into three processes. The first process, the robot recognizes the 

external situation and determines the robot’s motivation. In the second process, the cognition 

module is generated and used for clustering the input stimuli (the intrinsic motivation and external 

situation) based on an unsupervised learning neuron network as a Self-Organizing Map (SOM), 

then the affective and behavior factors are calculated in order to update the elements of behavioral 

and emotional transition matrices. The last process is behavioral-emotional selection system. The 

emotion model of the proposed method is improved based on Plutchik’s research. Robert Plutchik 

proposed the theory of emotion that is one of the most influential classification approaches for 

general emotional responses [49]. The emotional model consists of six basic emotions: Neutral, 

Hope, Happiness, Sadness, Fear and Disgust. The proposed emotional model is based on Markov 

modeling theory, which models emotional and dynamic states and uncertainly. 
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The proposed method is the behavior selection system based on emotional variations as 

shown in Fig. 4-1. All processes are detailed below. 

 

Behaviral-Emotional Selection System
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Fig. 4-1 Behavioral-emotional selection system for Conbe-I robot 
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4.1 Recognition process 

The recognition system has two fundamental parts as shown in Fig. 4-1. First part is the 

perception part which should recognize an external situation using the web camera and CCD 

camera, the visual information about the objects is corrected in terms of the shape, size, labeling 

and the central point of the target-color object. The second part is the calculation of the naturally 

occurring dopamine waveform and robot’s motivation. Subsequently, the details of the recognition 

process will be described. 

4.1.1 Recognition of the external situation 

In this study, Conbe-I robot uses only the acquired images from the web camera and CCD 

camera for performing actions and emotional expression, the robot is not usable the other sensors 

such as the tactile sensor and laser range finder sensor. Thus, it is able to evaluate the rough position 

of the target object by without the other sensors. The simple image processing techniques for 

Conbe-I robot is described as follows. 

4.1.1.1 The simplication of images 

Typically, an important point of the robot control systems is an accurate recognition of the 

external environment. For example, an autonomous robots that are used in an indoor navigation task 

based on self-position recognition system and an obstacle recognition system by using the Laser 

Range Sensor (LRS) and visual methods. However, the most important in this study is to give a 

consciousness to our robot, is not to emphasize with high-precision formation control. Therefore, 

the system can simplify the acquired images from cameras by divided into 5 color groups: red, 

green, blue, flesh-color and the other colors, but only four colors (red, green, blue and flesh-color) 

that are used to recognize the target objects. And the acquired images are analyzed by using 

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine 

learning software library.  
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In the simplification, it is composed of processes as: 

-  Reduce the image size 

The images obtained by the CCD camera (the robot head) and web camera (the robot arm) 

are read into the personal computer. However, the raw images from two cameras have the high-

resolution and are difficult to process in the image processing. So, the original image size should be 

reduced to a lower resolution as 80x60 pixels, by using cvResize(); function and Bicubic 

interpolation method in OpenCV library. 

-  HSV color model 

The RGB color model is based on the theory that all visible colors can be created using the 

primary additive colors: red, green and blue (in the range of 0 to 255) as shown in Fig. 4-2. These 

colors are known as primary colors because when combined in equal amounts they produce white. 

But if two or three of them are combined in different amounts, other colors are produced.   

The other model is HSV color model, this model defines a type of color space that is widely 

used to generate high quality computer graphic. It is similar to the RGB and CMYK color models. 

The HSV color space has three components: hue, saturation and value. Hue is expressed as a 

number from 0 to 360 degrees representing hues red (0°-60°), yellow (60°-120°), green(120°-180°), 

cyan(180°-240°), blue(240°-300°) and magenta(300°-360°). Saturation indicates the range of grey 

in the color space. It ranges from 0% to 100% or sometime the value is calculated from 0 to 1. A 

faded color is due to a lower saturation level, which means the color contains more grey. Value (or 
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GREEN
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Fig. 4-2 RGB color model 
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Brightness) works in conjunction with saturation and describes the brightness or intensity of the 

color from 0% to 100%. When the value is ‘0’ the color space will be totally black color. If the 

increase in the value, the color space brightness up and shows various colors. The HSV color model 

is illustrated in Fig. 4-3. Each component (Hue, Saturation and Value) can be determined from the 

RGB color model by the simple flowchart as shown in Fig. 4-4. 

 

Fig. 4-3 HSV color model 

 

MAX

START

MAX = max(R,G,B)

MIN  = min(R,G,B)

;

;

r

g b

MAX MIN MAX R
S C

MAX MAX MIN

MAX G MAX B
C C

MAX MIN MAX MIN

 
 



 
 

 

R=MAX

b gH C C 

G=MAX

2 r bH C C  

B=MAX

2 r bH C C  

END

0H 

60H H 

Yes

No

Yes

No

Yes

No

Yes

No

60H H 

 

Fig. 4-4 RGB-to-HSV color algorithm 
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-  Specification of images in HSV color model 

From the algorithm as shown in Fig. 4-4, the visual information of image (80x60 pixels) can 

be converted from the RGB color model to HSV color model.  The range of each component (Hue, 

Saturation and Value) used to recognize the target object and human as shown in Fig. 4-5 and the 

threshold values of each color are defined in Table 4.1.  

 

Table 4.1 The threshold values for RGB-to-HSV color method 

 Red Flesh-color Green Blue 

Hue [°] 0~10 10~30 70~160 160~240 

Saturation [%] 59 10 18 39 

Value [%] 20 20 20 39 

 

4.1.1.2 Labeling process and landmark recognition 

-  Labeling process based on the color of visual information 

Typically, in order to extract specific features of the objects from the image, it is necessary to 

perform a segmentation process to original image. Therefore, an object labeling algorithm which is 

used for labeling the distinct objects from a binary (black and white) image is presented. This 

algorithm is useful for the separation of distinct objects for further analyses applied to each 
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Fig. 4-5 The range of each component in HSV color model 
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individual object, it is possible to recognize the target object. Fig. 4-6 shows the simplified image 

and labeling image. 

-  Position recognition of target object 

The geometric center coordinates of the obtained color information that will be used to 

calculate approximately the position of the target object. However, it is very difficult to evaluate the 

depth perception using the camera. Consequently, in order to recognize the image obtained from the 

camera, the perspective projection plane is created for determining the position of the target object 

as described in Fig. 4-7. 

x

y z

a

The target object

The perspective projection plane

Camera
 

 

Fig. 4-7 Estimation of a target position  

 

 

Fig. 4-6 Simplified image and labeling image 
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-  Shape recognition 

However, only the color recognition is not enough to perceive the surrounding environment. 

Thus, the shape recognition method is considered and used in the recognition process. This method 

is the drawing circle from the results of the labelling process. Fig. 4-8 shows the example of the 

details of each element, how to determine the object frame. 

 First, the results of the original image from labeling process are set the bounding rectangle. 

Q(x1,y1) and P(x2,y2) coordinates are used to calculate the size of a rectangle (height and width) and 

then O(x,y) is determined as the center point. Next step, the radius of the object is calculated in 

order to draw the circle by comparing the edge of the object frame as shown in Fig. 4-9. 
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Fig. 4-8 The target object (green ball) frame 

 

 

 

Fig. 4-9 The result of the recognition process 
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4.1.1.3 The desired settings of the object for Conbe-I 

When, the Conbe-I robot performs an autonomous behavior, it should recognize the 

important components of the object. The images are simplified by dividing into four color groups: 

red, green, blue and flesh-color that are distinguished and perception in terms of the shape, size, 

center-of-gravity position. In this study, the liking behavior is performed when the robot is able to 

recognize the red or green objects. On the other hand, the robot should perform disliking behavior if 

it faces of recognizes the blue object. And the sample color objects are shown in Fig. 4-10. 

4.1.2 Computation of the naturally occurring dopamine 

 Next step, the visual information (the color, shape, size, labeling and distance of the target 

object) defines as the input data in order to determine and form the naturally occurring dopamine 

waveform. When animals and human beings take various actions, the dopamine is secreted in the 

brain [50]. Dopamine is a neurotransmitter, one of those chemicals that is responsible for 

transmitting signals between the nerve cells (neurons) of the brain, and plays vital roles in a variety 

of different behaviors. The major behavior of dopamine affects a movement, cognition, pleasure 

and motivation. Therefore, in this section, the computation of naturally occurring dopamine is 

explained.  

 

 

 

 

Fig. 4-10 The sample color objects. (Blue, Green and Red)  
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4.1.2.1 A drug involves levels of the naturally occurring dopamine 

In order to generate the typical pattern of dopamine secretion for determining the robot’s 

motivation. The pattern of dopamine model is referred based on changing of amounts of drugs. For 

example, the p-chloroamphetamine is injected into the rat, the concentration is about 0.02 molar, 

and the dopamine releases in the rat’s brain as shown in Fig. 4-11. Therefore, the waveform in the 

dotted box will be considered for generating the typical pattern of dopamine waveform in the next 

section. 

4.1.2.2 Imitation dopamine waveform 

As mentioned above, the waveform of naturally occurring dopamine can be evaluated and 

divided into rise and fall portions as shown in Fig. 4-12.  
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Fig. 4-11 The sample of dopamine waveform in the rat’s brain  
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Fig. 4-12 Occurrence of dopamine model  
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-  The rising part of dopamine waveform 

In order to create the rising part of dopamine waveform, the 2nd order system is used for 

calculating by Equation (4-1), where the input variable ( )x t is an accelerator of dopamine, the 

output variable ( )y t is a naturally occurring dopamine,  is the damping factor and n is the 

natural frequency. 

2 2''( ) 2 '( ) ( ) ( )n n ny t y t y t x t                                (4-1) 

 

At initial step (t=0), and the input variable is a unit step as ( ) 1x t   and Equation (4-1) is 

able to be verified by depending on the values of damping factor as follows. 

Case 1 ( 1  )  

From Equation (4-1) that is modified as Equation (4-2). 

2 2

2
( ) 1 cos 1 sin 1

1

nt
n ny t e t t

 
   




 
     
  

             (4-2) 

Case 2 ( 1  ) 

From Equation (4-1) that is modified as Equation (4-3). 

 ( ) 1 1nt
ny t e t

 
                                               (4-3) 

Case 3 ( 1  ) 

From Equation (4-1) that is modified as Equation (4-4). 

2 2

2
( ) 1 cosh 1 sinh 1

1

nt
n ny t e t t

 
   




 
     
  

               (4-4) 

 

Moreover, the time of peak ( pT ) for 1  and 1  can be expressed as Equations (4-5) and (4-6) 

respectively. 
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-  The falling part of dopamine waveform 

For the falling part of dopamine’s waveform process, the peak value of the rising part 

( peaky ) defines as the initial input variable for determining by using the exponential equation as 

expressed in Equation (4-7), where ( )y t is the output of dopamine waveform, cT is the time 

constant.    

( ) c

t
T

peaky t e y


                                                    (4-7) 

 

4.1.2.3 Controlling the amount of dopamine waveform 

In this section, the stimulus variables are described for controlling the amount of dopamine’s 

waveform such as the natural angular frequency ( n ), the damping factor ( ) and the time 

constant ( cT ). 

The first stimulus variable is the natural angular frequency ( n ) that affects the speed of the 

rising part in the occurrence of dopamine model. The next stimulus variable is the damping factor 

( ), it has effect the peak value of the dopamine’s waveform, and the last one is the time constant 

( cT ) it influences the decay of the falling part of dopamine’s waveform. Therefore, in Fig. (4-13), 

Fig. (4-14) and Fig. (4-15) that show the waveforms of dopamine model when the stimulus 

variables ( n ,  and cT ) are changed respectively. 
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As described above, that is possible to set and generate the naturally occurring dopamine by 

controlling the stimulus variables according to the external situation. 
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Fig. 4-13 Dopamine’s waveform when n is changed 
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Fig. 4-14 Dopamine’s waveform when is changed 
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Fig. 4-15 Dopamine’s waveform when cT is changed 
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4.1.2.4 Derivation of the feeling distance 

The feeling distance (between the target object and the camera) is the important variable that 

is used for developing the robot’s motivation. Therefore, this section will explain how to calculate 

the feeling distance. Suppose, the green ball (a favorite object) is recognized by a web camera. And 

the object’s distance is changed from 0 cm to 50 cm. The result of the relationship between the 

number of pixels and the feeling distance is shown in Fig. 4-16. 

In Fig. 4-16, the result of waveform seems as the exponential function, thus the relationship 

between the feeling distance and number of pixels can be expressed by Equations (4-8) and (4-9). 

 log
3983.0

; 0 1500
0.0682

Pixel

Dist if Pixel  


                      (4-8) 

 

 log
7796.0

; 1500 4800
0.1099

Pixel

Dist if Pixel  


                  (4-9) 

 

The feeling distance will be used as the input variable for calculating naturally occurring 

dopamine and determining the stimulus variables. 
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Fig. 4-16 Relationship between the number of pixels and feeling distance  
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4.1.2.5 Determination of the stimulus variables 

In this section, the stimulus variables are specified by the conditions of the liking object 

(green object) and disliking object (blue object) recognitions. 

-  Condition of the liking object (green object) 

Here, the setting parameters are assigned in the conditions of the favorite object when the robot 

is able to recognize the liking object. In this situation can divide into 4 conditions for generating the 

dopamine’s waveform as: 

 If the robot can recognize the green object at the first time. 

The movable range of the robot arm and the feeling distance are used to set the stimulus 

variables as expressed by Equations (4-10), (4-11) and (4-12), where Feeling dist is the feeling 

distance of the robot and Movement dist is the movable range of the robot arm. 

10.0n                                                      (4-10) 

 

0.1 ( 10) (5 )Feeling dist Movement dist                       (4-11) 

 

  60.0 60.0 50 /100cT Feeling dist Movement dist             (4-12) 

 

 If the distance between the green object and the robot’s hand has changed. 

In this case, when the distance is changed between previous time and current time, which 

interprets as the shrinking of the dopamine’s waveform or the expanded waveform. diff vallue is 

the variable that presents the different value of  the feeling distance as expressed by Equation (4-

13), where Feeling distback is the feeling distance at the previous time and Feeling dist is the 

feeling distance at the current time. 

 
50.0

Feeling distback Feeling dist

diff value e

 
 
                           (4-13) 
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Therefore, in this case, the setting parameters are calculated by Equations (4-14), (4-15) and (4-16). 

10.0n                                                    (4-14) 

 

30.0
diff value

                                                (4-15) 

 

cT diff value                                                    (4-16) 

 

 If the green object is unmoved. 

The stationary state is defined by the center of gravity point is not changed. In this state, the 

stimulus variables will be assigned as 20.0, 15.0n   and 0.05cT  . But if the green object 

is not the same position, cT will be increased in order to decrease the dopamine level dramatically 

correspond to the Equation (4-16). 

 If the green object is a ball 

In this situation, that is similarly the previous condition (if the green object is unmoved), it 

means the robot can recognize the green ball for a long time, the dopamine is continuously 

increasing. And the setting parameters is also 20.0, 15.0n   and 0.05cT  . 

-  Condition of the disliking object (blue object) 

The other condition is described when the robot recognizes the blue object (disliking object). In 

this case, it can divide as 2 conditions for generating the dopamine’s waveform: 

 If the robot can recognize the blue object. 

In this study, the robot should perform disliking behavior or negative emotion when it can 

recognize the blue object. And in this situation, the robot doesn’t need to consider the movable 

range of the robot. The dopamine’s waveform is represented as the negative value and the all setting 

parameters are also indicated by Equations (4-14), (4-15) and (4-16). 
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 If the feeling distance of green object and blue object are different 

In this case that describes about the recognition of the green and blue objects at the same time. 

Equations (4-8) and (4-9) are used again for calculating the feeling distance of blue object 

( Dist Blue ), in order to determine the ratio of the feeling distance between the green object and 

blue object ( Ratioof GtoB ) as illustrated in Equation (4-17). 

Dist Green
Ratioof GtoB

Dist Blue
                                    (4-17) 

 

If 1Ratioof GtoB   that means the blue object is near the camera, the negative dopamine is 

increasingly created. The setting parameters are set by 20.0, 15.0n   and 0.05cT  . On the 

other hand ( 1Ratioof GtoB  ), the time constant will be modified by multiplying with the ratio of 

the feeling distance as expressed in Equation (4-18). 

c cT T Ratioof GtoB                                           (4-18) 

 

4.1.3 Calculation the intrinsic robot’s motivation 

From the computation of the naturally occurring dopamine model as described above, the 

total sum of their positive (the green object) and negative (the blue object) values that is used as the 

input variable for calculating the robot’s motivation shown in Fig. 4-17 and the motivation waveform 

is estimated by the 2nd order system of linear differential equation as expressed by Equation (4-19). 
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
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



            (4-19) 
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Here, ( )Total of dopamine t is the total of the naturally occurring dopamine that is described in the 

above section, ' ( )Robot smotivation t is the output variable, n and are considered by the 

outside environment and the internal state. 

 

4.2 Cognitive process 

After recognition process, the robot’s motivation and the visual information are used to 

specify the input parameters of the Cognitive model which analyses by a Self-Organizing Map 

(SOM) learning in order to generate the behavior and emotion maps. In this process, the nine 

behaviors and six emotional expressions are set up for the Conbe-I robot as shown in Table 4.2. 

 

Table 4.2 The behavioral and emotional states of Conbe-I robot 

Liking behavior 

Look around (green object), Interest (green object), 

Approach (green object), Catch (green object) and 

Interest (flesh-color) 

Disliking behavior 
Look around (blue object), Be alert (blue object), 

Avoid (blue object) and Be alert (flesh-color) 

Emotion expressions 
Neutral, Hope and Happiness (Positive emotion) 

Sadness, Fear and Disgust (Negative emotion) 
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Fig. 4-17 Robot’s motivation model 
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In order to classify and select the most appropriate behavior and emotion correspond to the 

surrounding environment of the robot, the results of the SOM learning will be verified. 

4.2.1 Formation of behavior and emotion maps by SOM 

The theory of the SOM learning is explained in Chapter 2 that can summarize in this section. 

The Self-Organizing Map (SOM) is a neural network architecture. It is well known as an effective 

pattern classifier that uses the unsupervised learning method. The SOM is composed of map units 

called nodes or neurons, which connect to adjacent neurons by a neighborhood relation that provided 

topology-preserving mapping from high-dimensional input data onto a low-dimensional array of 

neurons (usually two dimensional), as illustrated in Fig. 4-18.  

Each neuron in the output map (the competitive layer) is associated with a vector representing 

the “weight vector”, which are updated toward a center of gravity of the input vectors weighted by 

neighborhood function. And the procedure of the basic SOM learning can explain by the following 

steps:  

Step 1.  Each node must be initialized with the weight value. Typically the weights will be set 

to small standardized random value. The value of (0)jw are initialized in [0, 1]. 

x1 xi xn

Input Layer

Unit j

Competitive Layer

Weight Vector Wj
 

 

Fig. 4-18 Structure of the SOM model 
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Step 2.  At each training step, the Euclidean distance at node j on the map between the weight 

vector and input vector is calculated as expressed by Equation (4-20), where ix is the value of 

parameter i in the input vector, ( )ijw t is the weight value between parameter i and node j on the 

SOM, and N is the number of parameters. 

 
1

2

0

( ) ( )
N

j i ij

i

d t x w t




                                           (4-20) 

 

Step 3.  The best-matching unit (BMU), whose weight vector is closest to the input vector 

(denoted here by c ), is determined, as shown in Equation (4-21).  

argmin{ }j
j

c d                                              (4-21) 

 

Step 4.  After finding the BMU, the weight vectors of the BMU, and its topological neighbors 

are moved closer to the input vector. The new weight vectors are updated by Equation (4-22), where 

t is the training step index, ( )t is the learning rate, and , ( )j ch t  defines as the neighborhood kernel 

function around the winner nodes; there are expressed by Equations (4-23) and (4-24), respectively. 

All variables that are described in Chapter 2. 

,( 1) ( ) ( ) ( ) ( )jj j j cw t w t t h t x w t     
                          (4-22) 

 

0( ) exp tt 


 
                                                  (4-23) 
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                             (4-24) 
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Step 5. The training steps increase to 1t  . Steps 2 to 4 are repeated with decreasing the 

width of the neighborhood function. 

To verify the experimental results in the SOM learning, the data normalization is necessary for 

preparing the input data. The neural network training could be made more efficient by performing 

certain preprocessing steps in the networks input and target. The normalization process for the raw 

inputs has great effect on preparing the data to be suitable for training. Without this normalization, 

training the neural networks would be very slow. There are many types of data normalization. It can 

be used to scale the data in the same range of values for each input feature. Data normalization can 

also speed up the training time by starting the training process for each feature within the same scale. 

It is particularly useful for modeling applications where the inputs are generally at widely different 

scales. Different techniques can use different rules such as Statistical normalization, Min-Max 

normalization, Median normalization, Sigmoid normalization, Mean, Standard Deviation 

normalization and so on. In this study, the Min-Max normalization is used, which can calculate by 

the following Equation (4-25), where ix is the original data values (the motivation value, pixels of 

green color, blue color and flesh color), minx  and maxx are the minimum and maximum of 

feature X . 

 min
, max, min, min,

max min

i
i new new new new

x x
x x x x

x x


   


                      (4-25) 

This function is used to scale into a new interval [0, 1], so define min,newx = 0 and max,newx = 1 in 

the above Equation (4-25). Now the simplified formula of normalization is shown in Equation (4-

26). Each feature will lie within the new range of values and remain the same. Min-Max 

normalization has the advantage of preserving exactly all relationships in the data. 

min
,0 1

max min

i
i to

x x
x

x x





                                                   (4-26) 
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For instance, the motivation values, the slope of motivation values, the pixels of colors are 

normalized using Equation (4-26), and they are defined as the details of input data for testing the 

SOM learning as illustrated in Table 4.3. And Table 4.4 shows the parameters of SOM learning. 

Table 4.3 The details of the input data for SOM learning  

 Value Description 

Moti_flag True or False 
The positive motivation value is True = 1, 

and the negative value is False = 0. 

Moti_value 0 to 1 The motivation value 

Moti_slope_flag True or False  
The positive slope of motivation value is 

True = 1, the negative slope is False = 0. 

Moti_slope_value 0 to 1 The slope of motivation value 

Green 0 to 1 Pixels of green color 

Blue 0 to 1 Pixels of blue color 

Flesh 0 to 1 Pixels of flesh color 

 

Table 4.4 The parameters of SOM learning 

 Value Description 

T 200 The number of learning 

0  0.08 The initial learning rate 

0  15 The initial neighborhood radius 

Map size 30 x 30 The rectangular SOM topology size 

 

For example, if the robot recognized a green object and the target object was near the robot’s 

hand, the testing input data were the motivation flag = 1 (positive level), the motivation value = 

0.45, the slope of motivation value = 0.003, the motivation waveform is a positive slope 

(Moti_slope_flag = 1), the green pixels = 0.6, the blue pixels = 0.02 and the flesh-color pixels = 0.2. 

During the learning of SOM process, we haven't only observed the changing position of the winner 

nodes of each output pattern in the behavior and emotion, but also considered the evolution of the 

form of both maps as shown from Figs. 4-19 to Figs. 4-26. For the input patterns (Behavior and 

emotion patterns) are shown in Appendix A.  
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Fig. 4-19 (a) During SOM learning in behavior map (t = 1) 
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Fig. 4-19 (b) During SOM learning in emotion map (t = 1) 
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Fig. 4-20 (a) During SOM learning in behavior map (t = 5) 
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Fig. 4-20 (b) During SOM learning in emotion map (t = 5) 
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Fig. 4-21 (a) During SOM learning in behavior map (t = 10) 
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Fig. 4-21 (b) During SOM learning in emotion map (t = 10) 
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Fig. 4-22 (a) During SOM learning in behavior map (t = 20) 
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Fig. 4-22 (b) During SOM learning in emotion map (t = 20) 
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Fig. 4-23 (a) During SOM learning in behavior map (t = 40) 
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Fig. 4-23 (b) During SOM learning in emotion map (t = 40) 
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Fig. 4-24 (a) During SOM learning in behavior map (t = 60) 
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Fig. 4-24 (b) During SOM learning in emotion map (t = 60) 
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Fig. 4-25 (a) During SOM learning in behavior map (t = 100) 
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Fig. 4-25 (b) During SOM learning in emotion map (t = 100) 
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After SOM learning (t = 200 times), the blue cells were shown in the behavior and emotion maps, 

which were the winner nodes of each behavior and emotion of the robot. The green cells that 

showed the response action according to the input data. In addition, to make it easy to understand, 
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Fig. 4-26 (a) During SOM learning in behavior map (t = 200) 
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the similarity of the mapped actions and emotions is presented which is determined by the weight 

values of each action and emotion group.  

In Fig.4-27 showed the winner node of “Approach” action and the response action, and 

expressed the similarity of approach action when the robot recognized the green object respectively. 

For the emotion map that presented the winner node of “Happiness” emotion and the response 

emotion, the similarity of “Happiness” emotion is shown in Fig. 4-28. 
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Fig. 4-27 Behavior map and the weight values of “Approach” action 
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Fig. 4-28 Emotion map and the weight values of “Happiness” emotion 
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Moreover, during SOM learning, the several of the SOM parameters, such as learning 

parameters, map size and map topology can influence the formation of the final map. Therefore, in 

order to guarantee the performance of the map, that has to be sure the mapping parameters have 

been chosen correctly. Several measures have been used to evaluate the quality of a SOM. A widely 

used measurement is the average quantization error, this error shows the quality of learning and 

fitting of the map. It can calculate by the average of all Euclidean distances between each input 

pattern and its BMU as expressed by Equation (2-20) in Chapter 2. 
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Fig. 4-29 Average quantization error of behavior and emotion maps (Map size 30x30) 
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Fig. 4-30 Average quantization error of the different map sizes 
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The results of the average quantization error of behavior and emotion maps in Fig. 4-27 and 

Fig. 4-28 can be verified and shown in Fig. 4-29. The optimum map is expected to yield the 

smallest average quantization error, which means that the data vectors are close to their prototypes. 

The average quantization error can be reduced by simply increasing the number of map neurons, 

because the data samples are then distributed more sparsely on the map. Fig. 4-30 shows the 

average quantization error of the different map sizes, and how the average quantization error of 

behavior and emotion maps decreases when the map’s size increases. 

4.2.2 Affective factors and Behavioral factors 

After SOM learning, the results from behavior and emotion maps are defined as the 

behavioral and affective factors, which provide for updating the state transition matrices in the next 

process. The behavioral and affective factors are determined by averaging the sum of the weights of 

each group in the behavior and emotional patterns as expressed by Equations (4-27) and (4-28), 

respectively, where, kb is the behavioral factor value of each k behavior class, je is the affective 

factor value of each j emotion, m and n are the number of the behavior and emotion weights the 

contained in each class.  

 

1

1
m

k
k i

i

b w
m 

                                                     (4-27) 

 

1

1 n
j

j i

i

e w
n 

                                                    (4-28) 

 

The resulting value of each affective and behavioral factor is in the range of [0, 1]. For example, 

 1 2, ,...,Happiness Happiness Happiness
Happiness ie w w w is the set of weights of affective factor that are 
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contained in “Happiness” emotion, 
Happiness
iw is the weight of the

thi affective factor contained in 

“Happiness”. From the emotion map in Fig. 4-28, the weight values in the emotion map are used to 

calculate the affective factor values as shown in Fig. 4-31. 

 

4.3 Behavioral-Emotional expression process 

In recent years, there has been increasing interest in the field of intelligent robots in the study 

of emotion-generation schemes in order to give the robots more human-like behavior. Several 

different types of emotion models are available for application level model, task level model, 

Circumplex model [51], Markovian property [52], [53], PAD model [54], FLAME [55] and so on.   

In this study, the Markov model is proposed, because the computational model of emotion 

based on the Markov theory that adapts emotions in a dynamic and uncertain environment. 

Therefore the overview of the Behavioral-Emotional expression process can express by Fig. 4-32. It 

has the emotional state transition module and behavior selection module based on emotional 

variations, the details of both modules and some the experimental results will be described and 

verified. 
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Fig. 4-31 Affective factor values after SOM learning 
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4.3.1 Emotional state transition 

 From the theory of the Markov theory is explained in Chapter 2 that can summarize the in 

this section. A Markov model is a state-space representation of a stochastic process, which can be 

used to model a random system and changes the states according to a transition rule that depends 

only on the current state. An application of the modeling theory of this proposed system is 

described by the Emotional Markovian model as shown in Fig. 4-33. 
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Fig. 4-32 Overview system of Behavioral-Emotional expression process 
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Fig. 4-33 Topology of the Emotional Markovian model 
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The topology of the Emotional Markovian model consists of the nodes representing the six basic 

emotional states. The arcs in the model represent the probabilities of getting out of the states. The 

emotional states transition at time k is given by Equation (4-29), where kEmotion is the current 

emotional state vector, and A is the emotional state transition matrix as expressed in Equation (4-

30).   

1k kEmotion A Emotion                                     (4-29) 

 

/ / / / / /

/ / / / / /
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                   (4-30) 

Here, A Ba is the probability of a transition from state B  to state A , and the arc values are set to 

initial values as 1 2 3 36, , ,...,q q q q , which give the initial state transition matrix of Markov model. 

The values can be changed later by the influence of the affective factors: 

Neutrale , Hopee , Happinesse , Sadnesse , Feare and Disguste . For example, the probability of the emotional 

state transition from Neutral to other states can be expressed by Equation (4-31). And all elements 

in transition matrix are update by using similar equations.  

 

 
 

 

 

 

2 2

3 3

4 4

5 5

6 6

1

H N Hope Neutral

HA N Happiness Neutral

S N Sadness Neutral

F N Fear Neutral

D N Disgust Neutral

N N H N HA N S N F N D N

a q e e q

a q e e q

a q e e q

a q e e q

a q e e q

a a a a a a

  

  

   


   


   


      


                   (4-31) 
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4.3.2 Behavior selection based on emotional variations 

The second stochastic forms a behavior selection module based on its emotional expression. 

The behavior selection probability vector 1kBehavior  is determined by Equation (4-32), where, 

1kEmotion  is the predicted emotion, C is the behavioral state transition matrix and the elements 

of Behavior vector are the selection probability of each behavior of the robot. 

 

1 1k kBehavior C Emotion                                      (4-32) 

 

The elements of the behavioral state transition mean a probability of transition from emotional state 

to behavioral state as represented by behavior emotionc and shown in Equation (4-33).  
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   (4-33) 

 

All element values in the behavioral state transition matrix can be modified later on with 

behavioral factors and affective factors, for example, if the element values of the behavioral state 

transition matrix will be updated corresponding to the emotional state transition, the probability of 

the emotional state from “Neutral” to other behavioral states can be expressed by Equation (4-34). 
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Where, the initial values of the behavioral state transition matric are defined as
' ' ' '
1 2 3 54, , ,...,q q q q , 

and these values can be changed later by the influence of the affective factors and behavioral 

factors. 

 

4.4 Experimental results 

 The complete system for an intelligent behavioral-emotional capability of the robot was 

tested and evaluated. Tests confirmed its effectiveness in the realistic environment. The Conbe-I 

robot was performed the autonomous behavior and expressed the basic emotions with the robotic 

arm and the eye movement simulator. In this thesis, the experimental results of the behavioral-

emotional selection system were divided into two parts as described below. 

4.4.1 Experiment I 

The purpose of this experiment, the robotic system was observed the emotions of the robot, 

which changed depending on the emotional state transition model with affective factors. The 

situation for testing that defined the green object was near the robot’s hand as shown in Fig. 4-34, 
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the emotion map was generated by the SOM learning. The weight values in the emotion map were 

used to determine the affective factor values as illustrated in Fig. 4-31.  

In this situation, suppose, the Conbe-I robot expressed the current emotional state was 

“Hope” emotion. Then after computing the emotional state transition model using Markov theory, 

the robot was able to predict the next emotional state as “Happiness” emotion, corresponding to the 

intensity of emotion as shown in Fig. 4-35.  

 

 

Fig. 4-34 Situation for testing in Experiment I  
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Fig. 4-35 Emotional state with step 
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4.4.2 Experiment II 

The robotic system was observed the behavioral selection based on the emotional variations 

throughout the task period, which can divided into 2 conditions as liking and disliking behavior.  

-  Condition 1 (Liking behavior) 

The Conbe-I robot was verified its behavior and emotional expression when it recognized the 

favorite object (the green object) in the realistic environment. The individual input data for testing 

that consist of robot’s motivation values and the visual information as illustrated in Fig. 4-36. And 

all the input parameters were normalized into a new interval [0, 1].  
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Fig. 4-36 Input data for testing in condition 1 
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Throughout the task period of condition 1 (T1-T4), the Conbe-I was able to perform the appropriate 

behaviors and emotional expressions continuously as shown in Fig. 4-37. 

After the robot was started, it searched around its environment, the robot selected the action 

as “Look around” and “Interest (Flesh)” when it recognized the flesh-color that means the robot is 

possible to communicate with humans. At T1, the robot recognized a favorite object (green object). 

The robot’s motivation value increased and the robot performed the action between “Look around” 

and “Interest (Green)”; the robot expressed the emotion as “Neutral” (shown in Fig. 4-38).  
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Fig. 4-37 Emotional states and behavioral states (Condition 1) 
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From T2-T3, the robot expressed “Hope” with “Happiness” emotions and performed the 

behavior as “Interest (Green)” and “Approach” continuously, because the robot tried to get close to 

the target object until it was able to catch the green ball as represented in Fig. 4-39. Then the time 

period between T3-T4, the robot was able to possess the favorite object, and it expressed 

“Happiness” emotion as shown in Fig. 4-40. 

 

Fig. 4-38 Behavioral and Emotional selections at period time T1-T2 

 

 

Fig. 4-39 Behavioral and Emotional selections at period time T2-T3 
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-  Condition 2 (Disliking behavior) 

In this condition, a disliking (blue) object was presented in order to decrease the robot’s 

motivation. And the input data for testing in condition 2 represented in Fig. 4-41. 
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Fig. 4-41 Input data for testing in condition 2 

 

 

Fig. 4-40 Behavioral and Emotional selections at period time T3-T4 
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The task period in condition 2 (T5-T8), the Conbe-I was able performed and adapted its behaviors 

and emotions correspond to the several situations as shown in Figs. 4-42 and 4-43. 

At T5, the motivation of the robot achieved a negative value, from T5-T6 (Fig. 4-43), the 

robot recognized the blue object and performed the actions between “Look around (Blue)” and 

“Alertness”. At the same time, the robot felt unhappiness when it confronted the disliking object, 

therefore it expressed emotions as “Sadness” and “Fear”. During the period time T6-T7, the blue 

object was moved closer to the robot’s hand. The Conbe-I robot felt dislike at this situation, and so 

performed “Alertness” and “Avoidance” behaviors and expressed “Disgust” emotion. Moreover at 

period time T6-T8, the robot was able to express “Hope” emotion, when it did not capture the 

disliking object or the robot’s motivation had increased to the positive motivation level.  
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Fig. 4-42 Emotional states and behavioral states (Condition 2) 
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The other research that has the similar results, namely the PIL head robot system [56]. For the PIL 

robot’s emotion model is based on the linear dynamic system, which is difficult to adapt the 

emotional state immediately. Therefore, the proposed system is possible to improve and fulfill in 

the dynamics of emotional expression as illustrated by the weight variation of emotional expression 

in Fig. 4-44 (example in condition 1). 

 

Fig. 4-43 Behavioral and Emotional selection at period time T5-T8 
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Fig. 4-44 Weight variation of emotional expression (Condition 1) 
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4.5 Verification 

4.5.1 Verification I 

There is the question, why emotions need to be twice calculated (they are computed by the 

Self-Organizing Map and by the Markov theory again). For the answer, the emotions are considered 

by the Self-Organizing Map to calculate the affective factors. Basically, the value of affective 

factors can be used to express the emotion, but the Markov model is used for determining in the 

second time, because an important property is the memoryless property whereby the probability of 

the next emotional states can be changed by the influence of the affective factors based on the 

transition rules and the previous emotional states, and one of the reasons is to improve the robot’s 

ability to “think over” for the self-conscious emotional expression.  Fig. 4-45 shows the results of 

emotional states (Condition 2), which is the comparison of differences between before and after 

using the Markovian model. 
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Fig. 4-45 Emotional states in condition 2 (before and after using Markov model) 
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In Fig. 4-45, that can be considered with 3 points as described below: 

At point 1, the emotional expression (without Markov model) in this period that changed 

emotion states between “Neutral”, “Hope” and “Happiness” suddenly, but for including Markov 

model with SOM learning, the robot was able to remain “Neutral” emotion and the robot expressed 

the emotional sequence correspond to the weight variation of “Neutral” emotion as illustrated in 

Figs. 4-46(a) and 4-46(b). The robot can express emotions evolutionary. At period i, the robot felt a 
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Fig. 4-46 The weight variation of “Neutral” emotion at point 1 
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bit sadness because the weight variation decreased and the robot became to have a little bit hope 

when weight variation of emotion increased as illustrated during period ii. The last period, the robot 

felt quite a sadness due to the weight variation decreased again. 

At point 2, the emotional expression (without Markov model) expressed emotions between 

“Hope” and “Happiness”, the robot should not express these emotions while the blue object was 

near the robot’s hand and the motivation value was continuously decreased. But the system with 

Markov model was able to suppress “Happiness” emotion in this situation and express the emotions 

between “Sadness” and “Hope”, because it should not be feeling so hopeless although it confronted 

with a bad situation. 

At point 3, the robot’s motivation was reduced. During this situation, the emotional 

expression without a Markov model that express only “Sadness” and “Hope” emotions, but the 

system with the Markov model can perform and express “Disgust” emotion. 

4.5.2 Verification II 

 In this verification that is the requirement to verify the behavior selection systems (before and 

after using Markov model). For instance, the behavior selection system is considered in the 

condition 2 as described above. Fig. 4-47 shows the results (Condition 2) as the comparison of 

differences between before and after using the Markov model in the behavioral states. 

 During the task period at T5-T6, the behavior selection system without Markov model 

selected the actions between “Approach” and “Catch”, the robot should not perform these behaviors 

in this situation, because the robot should be able to just deny the disliking object (Blue object). On 

the other hand, the behavioral selection system with the Markov model that was able to perform the 

actions “Alertness” and “Avoidance” without “Approach” and “Catch” behavior based on the 

emotional state transition between “Sadness” and “Neutral” emotions.  
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4.6 Summary 

 In this chapter, the overview of the proposed system is thoroughly described that consist of 

three major processes: the recognition process, cognitive process and behavioral-emotional 

expression process. The proposed system is executed by the Conbe-I robot in a realistic 

environment. All experimental results confirmed the effectiveness of the proposed system by 

dividing as the experiment I (Change emotions based on the emotional state transition model with 

affective factors), the experiment II (Behavioral selection based on the emotional variations) and the 

verification I and II showed the comparison of differences of behavioral selection and emotional 

expression systems between before and after using the Markov model. 
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Fig. 4-47 Behavioral states in condition 2 (before and after using Markov model) 
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Chapter 5 

Conclusions 

5.1 Conclusions 

The implementation of the proposed system (Behavioral-Emotional selection system based 

on Self-organizing map and Markovian model) is developed from the conventional model 

(Consciousness-Based Architecture model) and the other researches, which takes its inspiration 

from the attempt to give the Conbe-I robot need to have the recognition, consciousness and 

motivation corresponding to the introspective knowledge and some philosophy, in order to select 

the suitable behavior and emotional expression that look like humans and animals. The main 

concept and contribution of our proposed method involves in creating behavioral and emotional 

expressions for the robots based on three neurotransmitters such as dopamine, noradrenaline and 

serotonin combined with an artificial neural network. However, in this work that used only 

dopamine to generate a robot’s intrinsic motivation. The proposed method has three significant 

processes. The first process is recognition process that composes of the simple image processing, 

the calculation of the naturally occurring dopamine and determination of the robot’s motivation. In 

second process, that presents an evolutionary computation of the artificial neuron network method 

as the unsupervised learning (Self-Organizing Map learning) for clustering the input stimuli (the 

internal motivation and external situation). The last process is the behavioral-emotional expression 

process, which develops the model of basic emotions based on Robert Plutchik’s research, which 

consists of six basic emotions: neutral, hope, happiness, sadness, fear and disgust. Moreover, the 

robot can choose and perform the appropriate behavior based on variations of the emotional state. 
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From the research purpose that is explained in Chapter 1, That has the attempt to reach all 

objectives of this research such as trying to classify all behavior and emotions of the robot and 

generate the behavior and emotion maps based on a Self-Organizing Map (SOM) learning, to create 

an emotional expression model, which can autonomously express emotional state based on updating 

the elements of emotional transition state and the affective factors. And the last objective is attempt 

to define and design the relationship between behavior selection system and emotional expression 

model. All objectives are achieved by the proposed system and they are verified the effectiveness of 

system in Chapter 4. 

  In this thesis, the behavioral-emotional selection system is modeled into the conscious 

behavior robot (Conbe-I) based on a Self-Organizing Map (SOM) learning and Markovian model. 

The proposed system can be summarized by dividing to five chapters as described below: 

Chapter 1 explains with the background history of the human and robot interaction, the 

problem statement. The objective of research is to develop a Consciousness-Based Architecture 

model, which can select the behavior based on changing the emotional state and robot’s motivation. 

Thus, the neuron network learning is presented for improving the conventional model and to solve 

the problem statements of the research. At the end of chapter 1, the specific objectives of the thesis 

are illuminated. 

Chapter 2 describes briefly in the fundamental theories such as the SOM learning, Markov 

theory and the kinematics model, which are used to model the behavioral-emotional selection 

system for the robot. For the background of SOM learning, that is the evolution of relevant 

biological models such as from two fundamental models (Hebbian learning and Von Malsburg & 

Willshaw’s Self-Organization models) to Kohonen’s Self-Organizing Map. A SOM learning is a 

conceptual mathematic model of topographic mapping from the visual information to the cerebral 

cortex for modeling and analyzing a high dimensional signal onto a lower dimensional network that 

implements a characteristic based on a nonlinear projection. In addition, the mathematical model is 
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also presented as a type of stochastic model, which is called “Markov model”. This model has an 

important property is “memoryless” property. It means the next state of the system depends only on 

its current state. In this work, the discrete-state homogenous Markov model is presented and 

described, because this model is very appropriate for the formation of the human emotions. At the 

last of chapter 2, the motion control system is described that is called “the kinematics model”. There 

are two types of kinematic models namely forward kinematics and inverse kinematics models. 

Chapter 3 shows the system structure of Conbe-I robot that explains the system configuration 

and overview of software. The system configuration is explained such as a CCD camera and a web 

camera are installed for obtaining the images (target object and the external situation). Dynamixel 

servo motors are used at each joint in the arm part and head part. For the overview of software, 

Main GUI control is the main program, which can operate the sub-programs such as the image 

processing module, motivation module, SOM and Markov models and for controlling each servo 

motor in the robot. Finally, the computation of robotic arm posture is explained in order to perform 

the sequential movement that can continuously operate the movement, and toward to the target 

object without the inverse kinematic solution. 

Chapter 4 the overview system is described, which consists of three processes (namely, the 

recognition process, the cognitive process and the behavioral-emotional expression process). At the 

end of chapter 4 shows the experimental results, all behaviors and emotions were classified on 

behavior and emotion maps based on SOM learning. The robot’s emotional expression was 

evaluated by the affective factors, which were used to update the probabilities of emotional state 

transition based on Markov modeling theory. All experimental results confirmed the effectiveness 

of the proposed model by dividing as the experiment I (Change emotions based on the emotional 

state transition model with affective factors), the experiment II (Behavioral selection based on the 

emotional variations) and the verification I and II showed the comparison of differences of 
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behavioral selection and emotional expression systems between before and after using the Markov 

model. 

In this chapter is the conclusion that summarizes an autonomous behavioral-emotional 

system. The robot can perform both select autonomous actions in response to a motivation module 

and to express intelligent emotions. Most importantly, the advantages of the proposed method, not 

only Conbe-I robot can use this method, but also the other robot systems can perform by the 

proposed method with improving or adding the new recognition objects in the SOM learning. In 

addition, the proposed method is able to predict the next emotion based on the previous emotion. To 

achieve this proposed method, the emotional transition of Conbe-I robot can be changed easily by 

modifying the emotional state transition matrix, thus the behavioral-emotional selection system is 

very flexible and can apply to multiple applications of the robotics system. 
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5.2 Recommendations for future research 

The present approach is able to be further extended to improve the overall performance of the 

proposed system, some recommendations for future research are suggested as follows: 

1.  To increase the ability of the robotic system by applying artificial intelligence for 

memorizing the situation and developing a robot capable to think, learn and take on tasks it hasn’t 

tried before. 

2.  To study and investigate other neurotransmitters, such as noradrenaline and serotonin, to 

combine with the dopamine system for generating a dynamic emotional expression model that is 

similar to Lӧvheim cube of emotional model as shown in Fig. 5-1.  
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Fig. 5-1 Lӧvheim cube of emotional model 
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Appendix 

A.  The input patterns (Behavior and Emotion patterns) 

Table A.1 Behavior pattern for SOM learning (behavior map) 

 Moti_flag Moti_value Moti_slope_flag Moti_slope_value Green Blue Flesh 

Look around 

(green object) 
1 0.01 1 0.001 0.05 0.001 0.01 

Interest 

(green object) 
1 0.2 1 0.01 0.1 0.001 0.01 

Approach 

(green object) 
1 0.4 1 0.02 0.4 0.001 0.01 

Catch 

(green object) 
1 0.6 1 0.001 0.8 0.001 0.01 

Look around 

(blue object) 
0 0.01 1 0.001 0.001 0.05 0.01 

Be alert 

(blue object) 
0 0.4 0 0.01 0.001 0.4 0.01 

Avoidance 

(blue object) 
0 0.6 0 0.001 0.001 0.8 0.01 

Interest 

(flesh-color) 
1 0.15 1 0.001 0.001 0.001 0.2 

Be alert 

(flesh-color) 
0 0.15 0 0.001 0.001 0.001 0.2 

 

 

Table A.2 Emotion pattern for SOM learning (emotion map) 

 Moti_flag Moti_value Moti_slope_flag Moti_slope_value Green Blue Flesh 

Neutral 1 0.01 1 0.001 0.05 0.001 0.01 

Hope 1 0.4 1 0.002 0.3 0.001 0.01 

Happiness 1 0.6 1 0.005 0.8 0.001 0.01 

Sadness 0 0.1 0 0.01 0.001 0.1 0.01 

Fear 0 0.25 0 0.02 0.001 0.3 0.01 

Disgust 0 0.5 0 0.001 0.001 0.6 0.01 
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