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Abstract 

In understanding the complexity of a metabolic network structure, flux distribution is 

the key information to observe as it holds direct representation of cellular phenotype. 

To examine this, the study on genetically perturbed conditions (e.g. gene 

deletion/knockout) is one of the useful methods, which significantly contributes to 

metabolic engineering and biotechnology applications. Currently, metabolic flux 

analysis (MFA) is proven to be suitable mechanism for specific gene knockout studies, 

yet the method involves exhaustive computational effort since the calculation are 

derived by a stoichiometric model of major intracellular reactions and applying mass 

balances to the intracellular metabolites. 

 

Metabolic Flux Analysis (MFA) is widely used to investigate the metabolic fluxes of a 

variety of cells. MFA is based on the stoichiometric matrix of metabolic reactions and 

their thermodynamic constraints. The matrix is derived from a metabolic network map, 

where the rows and columns represent metabolites, chemical/transport reactions, 

respectively. MFA is very effective in understanding the mechanism of how metabolic 

networks generate a variety of cellular functions and in rationally planning a gene 

deletion/amplification strategy for strain improvements. 

 

Flux Balance Analysis (FBA) is used to predict the steady-state flux distribution of 

genetically modified cells under different culture conditions. Minimization of 

Metabolic Adjustment (MOMA) was developed to predict the flux distributions of 

gene deletion mutants. FBA and MOMA often lead to incorrect predictions in 

situations where the constraints associated with regulation of gene expression or 
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activity of the gene products are dominant, because they apply the Boolean logics or its 

related simple logics to gene regulations and enzyme activities. On the other hand, 

network-based pathway analyses, elementary modes (EMs) and extreme pathways 

emerge as alternative ways for constructing a mathematical model of metabolic 

networks with gene regulations. EM analysis was suggested to be convenient for 

integrating an enzyme activity profile into the flux distribution. Enzyme Control 

Fluxes (ECFs) uses the relative enzyme activity profile of a mutant to wild type to 

predict its flux distribution. 

 

In facilitating the analysis of metabolic flux distributions, the support of computational 

approaches is significantly essential. In addition, the availability of real sample data 

particularly for further observation, a large number of knockout mutant data provides 

assistance in enhancing the process.  

 

We had presented Genetic Modification Flux (GMF) that predicts the flux distribution 

of a broad range of genetically modified mutants. The feasibility of GMF to predict the 

flux distribution of genetic modification mutants is validated on various metabolic 

network models. The prediction using GMF shows higher prediction accuracy as 

compared to FBA and MOMA. To enhance the feasibility and usability of GMF, we 

developed two versions of simulator application with metabolic network database to 

predict flux distribution of genetically modified mutants. 112 data sets of Escherichia 

coli (E.coli), Corynebacterium glutamicum (C.glutamicum), Saccharomyces cerevisiae 

(S.cerevisiae), and Chinese Hamster Ovary (CHO) were registered as standard models. 
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1 CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 Systems Biology 

Systems Biology is a study to describe and understand the biological systems by 

integration of two major disciplines: quantitative sciences and experimental biology 

through systematic perturbation; monitoring the systems responses from multi-layered 

global information in deriving analytical models [1, 2]. In a common practice, to 

understand a whole system-level function, the subsystem and its component 

interactions are importantly to be identified. As such, the main focus of systems 

biology is to understand on the system structures and dynamics entirely; with the 

understanding on molecular level remained essential. There are four (4) main 

properties in understanding a biological system [3]: 

(i) System structures

The study on component that formed the intracellular and extracellular structure of

a biological network system; which included gene interactions and its associated

biochemical pathways

(ii) System dynamics

The study on system responses under different conditions through metabolic

analysis, sensitivity analysis or dynamic analysis; and identifying the mechanisms

to achieve particular responses.

(iii) The control method

The study on methods to control a cell state, reduce malfunctions and identify

prospective targets for diseases treatment.

(iv) The design method

The study on the approaches for desired properties of biological systems through



2 

 

design principles and simulations; as an alternative of exhaustive trial-and-error 

method.  

 

Interestingly, the major challenge in biology systems is the nature of its 

multi-layered structures: genome (DNA), transcriptome (nRNA, sRNA, miRNA), 

proteome and interactome (proteins) and metabolome and fluxome (metabolites 

and fluxes). To date, this informative yet tedious process is supported by the 

breakthrough of multidisciplinary in quantitative sciences: mathematical or 

computational, genomics, measurement technologies and the integration of these 

disciplines; with the support of comprehensive database from existing knowledge. 

 

1.2 Computational Systems Biology 

The challenge to understand biological systems as systems able to achieve by 

combining computational, system analysis, updated technologies that support 

quantitative measurements, and high-throughput quantitative experimental data [4]. 

Figure 1 summarizes a basic cycle of systems biology research. 
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Figure 1. The hypothesis-driven research cycle of systems biology 

 

In realizing the objective for systems-level analysis, a comprehensive set of 

quantitative data is one of the essential components. It is necessarily to support 

simulation-based research where in-depth simulation with thorough exploratory and 

sufficient coverage is conducted before a validated hypothesis can be derived. 

 

1.3 The Molecular Biology Database 

The progression in systems biology is strengthening by the development of various 

molecular biology databases. Many specialized databases are developed as the main 

goal is to be more accessible to biologists. The early development of biological 

databases was towards sequence-based data e.g. nucleic-acid and amino-acid 

sequences, further the interest focuses on other types of molecular data, while the 

recent development emphasized to genetic disease and drugs. These included (i) 
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nucleic acid sequence and structure, transcriptional regulation (GenBank, EMBL 

Nucleotide Sequence Database, DNA Bank of Japan); (ii) protein sequence and 

structure, motifs and domains, protein-protein interactions (GenProtEC, Protein 

Information Resource (PIR); (iii) metabolic and signaling pathways (Kyoto 

Encyclopedia of Genes and Genomes (KEGG), EcoCyc, ENZYME), metabolites, 

enzymes, protein modification ; (iv) viruses, bacteria, protozoa and fungi; (v) human 

genome, model organisms, comparative genomics (Human Gene Mutation Database 

(HMGD); (vi) genomic variation, diseases and drugs (EcoGene, GOBASE); (vii) plant 

databases and (viii) other molecular biology databases [2, 5-7]. Tables 1-5 list several 

examples of specialized molecular databases. 

 

Table 1. Example of Primary Nucleotide Sequence database [5] 

Database name Database URL Brief description 

GenBank http://www.ncbi.nlm.nih.gov/genbank/ All known nucleotide and protein sequences; 

International Nucleotide Sequence Database 

Collaboration 

EMBL Nucleotide Sequence 

Database 

http://www.ebi.ac.uk/ All known nucleotide and protein sequences; 

International Nucleotide Sequence Database 

Collaboration 

DNA Data Bank of Japan 

(DDBJ) 

http://www.ddbj.nig.ac.jp/ All known nucleotide and protein sequences; 

International Nucleotide Sequence Database 

Collaboration 

 

Table 2. The example of Gene Expression database [5] 

Database name Database URL Brief description 

Gene Expression Database 

(GXD) 

http://www.informatics.jax.org/ Mouse gene expression and genomics 

Kidney Development 

Database 

http://golgi.ana.ed.ac.uk/kidhome.html Kidney development and gene expression 

FlyBase http://flybase.org/ A Database of Drosophila Genes & Genomes 
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Table 3. The example of Metabolic Pathways and Cellular Regulation database [5] 

Database name Database URL Brief description 

Kyoto Encyclopedia of 

Genes and Genomes 

(KEGG) 

http://www.genome.jp/kegg/ Metabolic and regulatory pathways 

EcoCyc http://ecocyc.org/ Escherichia coli K-12 genome, gene products 

and metabolic pathways 

ENZYME http://enzyme.expasy.org/ Enzyme nomenclature 

 

Table 4. The example of new online databases in the 2016 NAR Database issue [7] 

Database name Database URL Brief description 

AgingChart http://www.agingchart.org/ Pathways of age-related processes 

BreCAN-DB http://brecandb.igib.res.in/ Breakpoint profiles of cancer genomes 

MutationAligner http://www.mutationaligner.org/ Mutation hotspots in protein domains in cancer 

 

Table 5. The example of most recently published elsewhere databases in [7] 

Database name Database URL Brief description 

BiGG Models http://bigg.ucsd.edu/ Biochemically, genetically and genomically 

structured metabolic network models 

DGIdb http://dgidb.genome.wustl.edu/ Drug-gene interaction database 

iPPI-DB http://www.ippidb.cdithem.fr/ Inhibitors of protein-protein interactions 

 

In representing the qualitative data, a network model is required. The purpose of 

building a network model is for network dynamic analysis as well; however it is 

importantly to consider a model-based for experimental or simulation purposes, with 

high accuracy prediction performance, where the resources can be ideally distributed. 

The detailed description on reconstructing a genome scale metabolic network model is 

presented in Section 1.9 in this chapter. 

 

Another critical component of systems biology research is computer software support, 
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which may varies by providing simulation software as a platform for modeling and 

analysis. The support should be open platform environment that commonly accepted in 

accordance to the emergence of online biological databases. Another concern of 

software support is to increase the development of common infrastructure that able to 

integrate the existing resources.  

 

1.4 Metabolic Engineering 

Metabolic engineering is the study to manipulate and modify metabolism with DNA 

recombination for the production of useful metabolites [8]. One of the novel aspects of 

metabolic engineering as compared to genetic engineering and other typical strain 

improvement technologies is the study on integrated metabolic pathways. In essence, 

this study includes the complete chains of biochemical reaction network, with 

associated issues of pathway synthesis and thermodynamics feasibility, and metabolic 

fluxes and their controls. 

 

In examining a metabolic network and its pathway, gene expression levels, proteins 

and metabolites concentration provide some information. However, the interaction of 

these cellular phenotypes is manifested through metabolic fluxes. As such, fluxes are 

considered as the critical parameter to represent the fundamental basis of cellular 

phenotype and its corresponding pathways. 

 

1.5 Systematically Perturbation of Biology Systems 

Perturbation in biological systems is an approach to comprehend the complexity of 

cellular systems. This is performed by modifying the function of a biological system 
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externally or internally; particularly done by genetic conditions (gene deletion, gene 

overexpression, undirected mutations) or environmental conditions (growth condition 

changes, temperature or hormone/drug stimuli) [2].  

 

The responses from the modification process are monitored; further this hypothesis is 

validated to the experimental data set. Once validated, this will contribute as a new 

knowledge to systems biology. The study on perturbation is one of significant 

strategies to extract the information from complex structure of cellular system, this 

approach as well beneficial to describe gene relationships, identify drug responses, and 

determine the gene function (e.g. gene deletion) [9]. In general purposes, these 

quantitative observations provide valuable support for metabolic engineering and 

biotechnology applications. 

 

The study on flux distribution under knockout condition becomes one of major interest, 

where the main purpose is to investigate the general and detailed responses of 

metabolic and regulatory network [10]. In the example of E.coli knockouts, the 

previous studies showed a significant contributions such as; discovering a novel hidden 

reaction in pentose phosphate pathway from double knockouts [11], monitoring the 

oxygen sensing and aerobic regulatory response by the combination of genetic and 

environmental perturbations [12-14], describing the regulations and dynamic of 

network pathway [15]. Table 6 summarized the reported publications of E.coli gene 

knockout studies. It is also recorded that the most studied knockouts were on the 

central carbon metabolism, global regulation and under substrate-rich conditions (e.g. 

batch) or substrate-limited conditions (e.g. continuous cultures) [10]. 
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Table 6. The overview on E.coli knockout strains using 13C metabolic flux analysis studies [10] 

E.coli  

knockout gene 
Reference for 

13
C metabolic flux analysis study 

Central carbon 

metabolism 

(micro-) aerobic anaerobic 
Other growth conditions 

Batch Continuous Batch Continuous 

ptsG/crr - [16] - - - 

galM - [17] - - - 

glk - [17] - - - 

pgi [18-23] - - - NH4
+ limitation [24]; growth on galactose [22] 

pgm - [17] - - - 

pfkA/pfkB [23] [17] - - - 

fbp - [17] - - - 

fbaA/fbaB - [17] - - - 

tpiA [19] - - - - 

gapAC - [17] - - - 

pgk - - - - - 

gpmA/gpmB - [17] - - - 

eno [21] - - - - 

pykA/pykF [18, 23, 25] [15, 17, 26, 27] - - NH4
+ limitation [27] 

aceE/aceF - - - - - 

lpd - [28] - - - 

pflB/tdcE - - - - - 

zwf [22, 23, 29] [17, 24, 30, 31] - - NH4
+ limit [24]; growth on pyr [30] and ac [31] 

pgl - [17] - - - 

gnd - [17, 30, 32] - - Growth on pyruvate [30] 

rpiA/rpiB - [17] - - - 

rpe - [17] - - - 

tktA/tktB - [17] - - - 

talA/talB [11] [17] - - - 

edd - - - - - 

eda - - - - - 

gltA - - - - - 

prpC - - - - - 

acnA/acnB - - - - - 

icd - - - - - 
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sucA/sucB - [33] - - - 

sucC/sucD - [33] - - - 

sdhABCD [22, 23] - - - Growth on galactose [23] 

frdABCD - - - - - 

fumABC [23] - - - - 

mdh [23] - - - - 

aceA - - - - - 

aceB - - - - - 

ppc [19, 25] - - - - 

pck [23] [34] - - - 

maeA/maeB [23] - - - - 

ppsA - [17] - - - 

pta [19, 25] - - - - 

ackA - - - - - 

mgsA - [16] - - - 

 

Regulatory genes 

arcA [22, 35] [13, 36-39] [35] - Nitrate as electron acceptor [35, 39] 

arcB [35] [13] - - - 

cra [35] - - - - 

crp [35] [16] - - - 

cya [35] - - - - 

fnr [35] [37] - - - 

mlc [35] [16] - - - 

iclR - [36, 38] - - - 

fur [22] - - - Growth on galactose [22] 

pdhR [22] - - - Growth on galactose [22] 

ihfA [22] - - - Growth on galactose [22] 

ihfB [22] - - - Growth on galactose [22] 
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1.5.1 GenoBase, the Single Knockout Mutant Database 

The most related project of gene knockout database is GenoBase 

(http://ecoli.naist.jp/) [40]. The main purpose of GenoBase is to support the E.coli 

K-12 genome project launched in Japan in the year of 1989. This database was 

developed (1) to facilitate sequence classification towards efficient sequencing 

project management using Kohara-ordered phage clone and (2) to facilitate 

genome annotation. The main focus of GenoBase is to comprehensively construct 

the experimental resources and high-throughput data of large E.coli functional 

genomics. The resources of this database are recently included: (1) the plasmid 

clone libraries (i.e. ASKA ORFeome libraries) and (2) The single-gene deletion 

collection (i.e. Keio collection). 

  

 

 
Figure 2. The main page of GenoBase, the E.coli single gene knockout database 
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1.6 Computational Model 

Enormous works have been done in implementing computational method to analyze 

metabolic flux under perturbed condition, which generally classified as network-based 

pathway and constraint-based flux analysis [1, 41, 42]. 

 

Constraint-based metabolic network analysis is also known as optimization-based 

analysis does not required detailed knowledge to predict feasible flux distributions. 

The main idea of this method is by imposing constraints (objective functions) and 

linear optimization techniques that likely represent cellular metabolism to desired 

growth condition.  

 

Flux Balance Analysis (FBA) is one of optimization-based approaches that have been 

extensively used to predict metabolic fluxes by maximizing the growth rates. This 

method is based on convex analysis; by using an objective function, with subject to 

several constraints for example maximize cellular growth rates, substrate uptake rates, 

and/or product secretion rates, thermodynamic constraints, metabolic regulation or 

others.  

 

FBA is able to perform estimation tasks with limited number of experimental data, yet 

the more fluxes is provided, the more accurate fluxes can be estimated. 

 

The accuracy of FBA approach and objective functions has been proven in predicting 

fluxes. However, this accuracy is influenced by the used of suitable objective functions 

and valid cofactor assumptions. In addition, the use evolution-based objective function 
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is questionable when genetically perturbed strains are unevolved. Furthermore, FBA is 

restricted to singular stoichiometric matrix model, which affected to estimate fluxes 

with recycled, bidirectional, and parallel types. It is notably that FBA determines only 

one optimal solution despite choices of optimal solution are available.  

 

Minimization of Metabolic Adjustment (MOMA) is another optimization-based 

approach in predicting flux distributions. The basis of this approach is Euclidean 

distance, where MOMA proposes that mutant types should be very close to wild types, 

with minimal metabolic changes. This approach is implemented using quadratic 

programming (QP) optimization method. However the concept can be inconsistent 

with regulatory adaptation cost and flow linearity principles. 

 

On the other hand, Regulatory On/Off Minimization (ROOM) is developed to 

overcome the inconsistency in MOMA by minimizing the total number of major flux 

changes from the wild type strains that satisfies FBA solution [43]. The assumptions 

underlying by ROOM is (i) the regulatory adaption cost is minimized by genetic 

regulatory changes that essential for flux changes are minimized by the cell, (ii) each 

regulatory changes is assigned by a fixed cost regardless its magnitude. Both MOMA 

and ROOM estimate the flux distribution that closed to wild type strains and not relied 

on to maximizing the growth rate. 

 

RELATCH (RELATive CHAnge) is an approach that based on the relative optimality 

of relative flux changes. This approach uses experimental flux and gene expression 

data to estimate the flux distribution; suggests the assumptions that the perturbed 
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strains will minimize the relative metabolic changes within a limited regulatory 

adaptation that further will increase the flux capacity of previously active pathways 

[44]. 

 

Another approach to predict the flux distribution is network-based pathway analysis. 

Metabolic Pathway Analysis has emerged as a main method in analyzing the structure 

and function of metabolic network. As compared to optimization-based flux analysis, 

metabolic pathway analysis is able to recognize a complete fluxes solution from a 

metabolic network without any cellular objective bias are provided. The associated 

techniques implies for metabolic pathway analysis are elementary mode analysis and 

extreme pathway analysis [1]. 

 

To quantitatively analyze the cellular phenotypes, Metabolic Flux Analysis (MFA) 

becomes an emerged alternative technology and one of central importance to metabolic 

engineering [8, 45]. The formation of MFA is based on mass balances of internal 

metabolites at the steady state assumption. MFA is derived by a stoichiometric matrix 

that describes the cellular metabolism, which is formed based on a metabolic network 

model [46, 47]. 

 

1.7 The Theory to Analyzing Metabolic Network 

 

1.7.1 Stoichiometric model 

A stoichiometric model column is based on the transportation reaction; represented by 

non-zero values that identify the metabolites involve in the reaction and the 

stoichiometric coefficients correspond to each metabolite. The rows contain with zero 
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represents the non-participation of corresponding metabolites. The matrix also denotes 

the directionality, where substrate and product metabolites are having negative (-) and 

positive (+) coefficients respectively. A standard stoichiometric matrix denotes as S 

and defined as: 

[

𝑆11 𝑆12 ⋯ 𝑆1𝑛

𝑆21 𝑆22 ⋯ 𝑆2𝑛

⋮ ⋮ ⋱ ⋮
𝑆𝑚1 𝑆𝑚2 ⋯ 𝑆𝑚𝑛

] 

 

A stoichiometric matrix of 𝑚 × 𝑛 represents a metabolic network with m internal 

metabolites and n reactions. To describe the mass conservation of metabolites in a 

system, the general equation is defined as: 

𝑑

𝑑𝑡
 𝐶1 =  ∑ 𝑆𝑙𝑖 𝑣𝑖 

𝑛
𝑖=1  for l = 1, …., m     (1) 

where 𝐶1 denotes the concentrations of the l-th metabolite a network. 

 

The element of l-th row and i-th column of S represents the amount of l-th metabolite 

consumed or produced by i-th reaction. The flux values of all n reactions is represented 

as flux vector denoted as 𝑣𝑛×1. A metabolic network may contain irreversible reaction 

(s), where the flux must be non-negative. With the consideration of thermodynamic, 

additional constraints need to be added as: 

𝑣𝑖 ≥ 0,         (2) 

where 𝑖 ∈ irrev are the indices of the irreversible reactions. 

 

1.7.2 Elementary mode analysis 

Elementary Mode (EM) analysis is one of mathematical-related approaches to 

represent fundamental ‘interaction’ routes in biochemical networks [46]. It is often 
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defined as a minimum set of sub-networks (associated enzymes) that enabled a 

metabolic system to operate at a steady state, through all irreversible reactions [48, 

49]. It is used to recognize a metabolic network structure by involving all possible 

pathways for a group of enzymes that cannot further decomposed. At the steady 

state, the mass balance equation is given as: 

 S ∙ v = 0,       (3) 

where v = (𝑣1 , 𝑣2, … , 𝑣𝑛)𝑡  is the vector of reaction flux rate and 𝑛  is the 

number of reactions. The set of vectors are determined from all possible solutions 

of the equation in (1). Some reactions are irreversible and additional constraints on 

positive flux values are required as in equation (2). From equation (1), EM needs 

to fulfill the constraints in (2) and non-decomposability constraints. 

 

To represent the EM matrix P, it is determined using the stoichiometric matrix and 

the flux vector as: 

v = P ∙  𝜆,        (4) 

 

where 𝜆 = (𝜆1 , 𝜆2, … , 𝜆𝑛𝑒)𝑡  is the vector of EM coefficient and 𝑛𝑒  is the 

number of EMs. 

 

An example to transform a simple network is summarized in Figure 3. 
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Figure 3. Example of transforming a simple metabolic network to EM. The pathway through X1 is 

considered as EM1, and the pathway from X1 to X2 is considered as EM2. The fluxes involved in EM1 

are represented as ‘1’ while ‘0’ for non-involvement. From this network, it will be then transform into the 

equation that is represented in stoichiometric matrix 

 

 

Most of metabolism models are classified as underdetermined [50], where the 

number of determined EM is more than the fluxes data. This situation occurs since 

only a few constraints are available. The solution to overcome this problem is by 

providing more constraints until an optimized coefficient is achieved. To add more 

constraints, implementing objective function is one of the solutions. The use of an 

objective function is as an optimizer element that maximizes the targeted cell 

growth, energy or metabolite synthesis [51]. 

 

EM analysis enables us to identify unique pathway from a complex metabolic network 

and to calculate all solutions from a flux space. Therefore, EM analysis is considered as 

powerful tool to recognize the structure a metabolic network. In addition this tool is 

also potentially effective for integrating transcriptome or proteome data into metabolic 
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network, which further provides the mechanism of how phenotypic or metabolic flux 

distributions change with respect to environmental and genetic perturbations [52]. 

 

1.7.3 Extreme pathway analysis 

Extreme pathway analysis is closely related concept to elementary modes, yet all 

reactions are controlled by the flux direction [1, 48, 49]. In extreme pathway 

analysis, the reversible reactions are separated into two irreversible reactions; i.e. 

forward and backward directions, as compared to elementary modes that allows 

for reversible reactions. The solution set derived by extreme pathway is a subset of 

elementary modes and it is systematically independent. Therefore, extreme 

pathway analysis is implies based on the additional conditions of (1) network 

reconfiguration, and (2) systematic independence. Figure 4 illustrates the 

difference between elementary modes and extreme pathway analysis. 
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Figure 4. The difference between elementary modes (EMs) and extreme pathway analysis. 

 

1.7.4 Application Programming Interface (API) for EM analysis 

Calculating EM requires highly effort and resources, especially when large 

metabolic network is involved. A number of APIs to calculate elementary mode 

are publicly available, with some earlier versions such as METATOOL [53], 

GEPASI/COPASI [54], and FluxAnalyzer [55]. The APIs is mainly developed 

using C language, yet FluxAnalyzer developed on MATLAB environment (The 

Mathworks, Inc., USA) with a user friendly interface and advances features to 

analyze metabolic network.   

 

Recent enhancements in APIs development had made the ability to calculating 
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larger metabolic networks with other advances analyses.  The upgraded version 

of METATOOL has incorporated the Null Space algorithm with an efficient rank 

test to check the mode elementarily, available in either C language or MATLAB. 

The newer version of FluxAnalyzer, CellNetAnalyzer (CNA) is further improved 

by implementing binary approach that able to decrease 96% of memory 

consumption. CNA also provides signal transduction pathways analysis. 

 

Table 7: A list of available EM analysis API 

API name Tool URL Reference 

CellNetAnalyzer 

(CNA) 

Matlab http://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html 

ScrumPy Python http://mudshark.brookes.ac.uk/ScrumPy 

Gepasi C/C++ Ms 

Windows 

Program 

http://www.gepasi.org/ 

efmtool Java 

(integrated 

into Matlab) 

http://www.csb.ethz.ch/tools/efmtool 

Metatool C http://pinguin.biologie.uni-jena.de/bioinformatik/networks/ 

 

 

1.8 Application Programs for Estimating Metabolic Fluxes, Gene Knockout 

Study 

User friendly computer applications in MFA are exist with different functions to 

improve the analysis tasks. OpenFLUX is a software application for small and large 

scale 
13

C metabolic flux analysis [56]. The application is developed based on the new 

Elementary Metabolite Unit (EMU) framework which comprises two main modules 
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(1) to automate metabolic models construction or to modify user-entered reaction data 

and (2) to calculate fluxes from experimental data, with statistical flux analysis option. 

OpenFLUX implemented gradient-based minimization search function (FMINCON) in 

MATLAB Optimization Toolbox to estimate flux parameter and execute the sensitivity 

analysis. 

 

Various works in estimating flux distributions in perturbed conditions were proposed. 

The works that applied different quantitative and mechanistic of mathematical and 

computational methods such as differential equation based models [57], cybernetic 

models [58], and combination of regulatory and metabolic models [59]. However, the 

works continuity towards well-developed software/computational applications tool to 

improve the analysis and quantitative understanding is not yet implemented [10]. 

 

1.9 Computational Metabolic Network Model 

In understanding a network structure and for further analysis, a metabolic network 

model is required. The process of building a model should be started by considering 

the purpose of a model; either for the comprehensive understanding of system behavior 

or prediction of complex simulation purposes. This consideration is important as it will 

define the model scope and level of abstraction [4]. Each model intuitively develops 

for a purpose based on the requirement [1]: 

(a) Good data fitting 

The objective of this model is to describe each data point individually using a 

general mathematical function, which applies to dynamic modeling. A good data 

fitting model will have a well definition between the parameters and data curves. 
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(b) Good prediction 

If the main requirement of a model is to obtain good prediction accuracy, a model 

to build is supposed able to emphasis general relationships among major quantities. 

This is important for future interpretations when new data set are tested to the 

model. 

(c) Biological comprehensive 

The main objective of comprehensive or mechanistic model is should be able to 

describe the actuality. In biological practice, this kind of model will focus on 

certain part of cells only up to the traceable level, with supporting simplified 

assumptions 

(d) Key principles 

A key principles model should only highlight the fundamental properties that 

represent a biological process, thus it is needs to be very simple. This kind of 

model is appropriate for experimental model systems.   

 

The process of reconstructing a genome-scale metabolic model generally involves the 

steps of: (1) create a draft model; (2) reconstruct a detailed model; (3) convert into a 

mathematical format; (4) identify and filling the gaps; and (5) simulation and 

visualization [60]. The output of this process is known as genome-scale models 

(GEMs). GEMs are defined as a structured knowledge-based; which constructed on a 

combination of genome sequence and detailed biochemical information. This model is 

used to perform computational and quantitative queries to answer various questions on 

the capabilities of an organism. The process used for reconstructing the metabolic 

model is generally described in Figure 5. 
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Figure 5. The process of reconstructing a metabolic network 

 

 

The first draft of metabolic pathways is starts by identifying the coding sequence and 

functional annotation of particular genes. This process will only include the gene 

encoded for building the enzymes or membrane transporters that will be used in the 

model. The functional annotation of enzymes needs to be translated into biochemical 

reactions that will build a chain of complete metabolic network model. To accomplish 

this task, the information are available from the genome sequence annotation [61], 

biochemical pathway databases [62, 63] , related textbooks and publications.  

 

To identify enzyme-catalyzed reactions, EC numbers is beneficial to directly match 

between EC numbers and reactions in various databases. The identified genes and its 

given EC numbers is compared and matched to biochemical reaction databases, e.g. 
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KEGG, Biocyc, or to the registered metabolic network models e.g. BiGG database. 

The important information that needs to carefully check is: (1) metabolites and 

co-factors; (2) each metabolites chemical formula; (3) metabolites identifiers; (4) 

reaction stoichiometry and directionality (reversible or irreversible); (5) gene and 

reaction localization; (6) reaction identifier; and (7) metabolic subsystems. 

 

An essential yet challenging phase in reconstructing a GEM model is to add the 

reactions that are not concluded in the genome annotation, such as: (1) spontaneous 

reactions; (2) extracellular transport reactions; (3) intracellular transport reactions; and 

(4) exchange reactions. Adding some new reactions will minimize the dead-end 

metabolites and improve the network connectivity. 

 

The biomass reaction is another set of required reaction that needs to consider while 

building the model. Within an equation, this reaction described all biomass 

components, information on energy requirement (e.g. ATP molecules), maintenance 

(e.g. turgor pressure) and their contributions to the cell growth. This information 

normally derived from the literature studies or experimentally determined.  

 

In the third phase, the metabolic network model that comprises of reactions list is 

converted in a constraint-based mathematical format (e.g. stoichiometric model) to 

analyze its structural properties. Since the model is a representing living cell, 

constraints need to be applied for better approximation of flux solution space. To set 

the boundary of cellular functions, there are four types of constraints: physiochemical, 

topological, environmental conditions and regulatory constraints. For the scope of 
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GEM, the constraint normally used is physiochemical and/or environmental 

conditions: flux balance (S ∙ v = 0), energy balance (∆𝐸 = 0), enzyme or transporter 

capacity (𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥) and thermodynamics (0 ≤ 𝑣𝑚𝑖𝑛). 

 

From this stage, it will further need to be verified and evaluated. The first process of 

verification is by checking the model consistency, identify metabolic gaps and examine 

the catabolized process of different substrates into different metabolites. In this step, 

new reaction may need to be included to fill the metabolic gaps and the problem of 

dead-end metabolites. 

 

The remaining step is to test the model for prediction by comparing to experimental 

data, in which the prediction will be the basis if the model needs for further refining 

until a desired model is achieved. 

 

1.10 The Purpose of Study 

1.10.1 The arising problems 

Exploring knockout fluxes is potentially significant, however due to the lack of 

coverage in different experimental conditions and methodology has leads to the 

difficulties for further analysis and generalizing the results [10]. 

 

It is interestingly to note that, the cellular responses of both conditions are 

significantly different. From the observation on E.coli, the data set of zwf knockout 

strains grown under continuous conditions [30] is compared to batch condition 

[29]; it is recorded that the acetate flux grown under continuous conditions was 29 
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and citrate synthase flux was 87, while the acetate flux was 44, and citrate 

synthase flux was 51 in a batch conditions. 

 

In addition, varies flux distributions were reported for the same knockout strains 

and growth condition. As for the example, fumarate synthase flux was 71 [30] to 

109 [17] for gnd knockout of dilution rates 0.2h
-1

 under continuous conditions. 

There is also major difference on flux distribution of pgi, pyk and ppc genes of 

pykF knockout at dilution rates of 0.1h
-1

 and 0.2h
-1

 under continuous conditions 

[10]. 

 

By considering the potential and current situation, it would be valuable to provide 

analytical platform to help biologist to access, analyze and interpret the 

information. 

 

Based on our laboratory research progression, we designed Genetic Modification 

Flux (GMF) to predict flux distribution of a broad range of genetically modified 

mutants with under-expressed/over-expressed genes [42, 52, 64] in previous work.  

 

The feasibility of GMF to predict the flux distribution of genetic modification 

mutants is validated on various metabolic network models of E.coli, S.cerevisae, 

and C.glutamicum, Bacillus Subtilis (B.subtilis), and CHO [52, 64, 65]. The 

performance of GMF is compared to FBA and MOMA. The prediction using GMF 

shows higher prediction accuracy as compared to FBA and MOMA when tested on 

experimental data set of E.coli gene deletion mutants [64]. The applicability of 
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GMF in estimating the flux distribution is also proven on over- and 

under-expressed mutants; which is a promising strategy for enhanced production 

of genetically strains. The detail of GMF algorithms is described in Section 1.12 of 

this chapter. 

 

Despite the usefulness of ECF and GMF, there have been no user-friendly 

applications programs are developed as reported by [10]. Use of them had required 

handling computer programs, which often hampers the general and broad use. 

 

Furthermore, the analysis requires real experimental data; particularly for further 

observation a large number of knockout mutant data becomes necessary. The 

current experimental data are not presented in simulation-ready format. The 

large-scale metabolic network models are available in many public databases; 

however refinement processes are required to limit the boundary of a network. 

Reconstructing a metabolic network for computer simulation purposes normally 

contain blocked reaction problem, due to dead end metabolites and missing 

metabolites and/or reactions. 

 

1.10.2 The research target  

With consideration of the stated problems from the current situations in both 

progression: (1) the study on flux distribution under knockout condition in general, 

and (2) the progression research in our laboratory; we aim to develop Genetic 

Modification Flux (GMF), a user-friendly web application together with the 

database of metabolic networks that helps users accessing metabolic network data 
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[10]. In achieving the above, we initiate a metabolic network database by 

collecting a variety of experimental data of different microorganisms. 

 

 

 

Figure 6. The diagram representing the research direction 

 

 

1.11 Genetic Modification of Flux (GMF) 

GMF is an EM-based method, integrates enzyme activity profiles i.e. gene expression 

or enzyme activity data to predict the flux distributions. This algorithm is consists of 

two other algorithms: (1) modified Control Effective Flux (mCEF) and (2) Enzyme 

Control Flux (ECF).  

1.11.1 modified Control Effective Flux (mCEF) 

mCEF is an algorithm derived from the Control Effective Flux (CEF), which 

estimates the relative expression ratios of metabolic genes of a mutant to wild type 

from changes in target gene expression.  
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1.11.2 Control Effective Flux (CEF) 

The main function of CEF algorithm is to estimate the changes in transcriptional 

regulations when the substrates changes. This estimation is based on a metabolic 

network topology with specified biological reactions [48, 66]. For each cellular 

objective, 𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽 , the efficiency of the j-th EM is defined as the ratio of EM 

output (reaction that involving the objectives) to the necessary investment to form 

each EM (the total of absolute elements in EM): 

𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽  =  
𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽,𝑗

∑ |𝑃𝑖,𝑗|𝑖
       (5) 

where 𝑃𝑖,𝑗 is the normalized element of the i-th reaction in the j-th EM and 

𝐶𝐸𝐿𝐿𝑂𝐵𝐽  is the reaction number of specified biological function (biomass 

production and ATP generation). CEF of the i-th reaction, which is associated to 

the flux of i-th reaction, is indicated by the total weight of the i-th elements from 

all EMs based on the efficiency 𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽: 

𝑐𝑒𝑓𝑖 =  ∑
1

𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚𝑎𝑥𝐶𝐸𝐿𝐿𝑂𝐵𝐽  

∑ (𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽∙|𝑃𝑖,𝑗|)𝑗

∑ 𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽𝑗
     (6) 

where 𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚𝑎𝑥  is the maximum element in the row of biological functions. 

 

The transcript ratio principle for i-th reaction under different substrate conditions, 

𝑆1 and 𝑆2, is given by: 

Θ𝑖(𝑆1, 𝑆2) =  
𝑐𝑒𝑓𝑖(𝑆2)

𝑐𝑒𝑓𝑖(𝑆1)
       (7) 

 

For genetic mutants that over-, under-expressed, or lack of metabolic gene, the 

original CEF algorithm is modified [64] by the efficiency of the j-th EM for such a 
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genetic mutant is defined by: 

𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚  =  

𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽,𝑗∙ 𝐸𝐴𝑗

∑ (|𝑃𝑖,𝑗|∙ 𝜂𝑖)𝑖
      (8) 

𝜂𝑖 =  {
𝐸𝐴𝑃𝑖 (if reaction 𝑖 is modified)
1 (if reaction 𝑖 is not modified)

  

 

where 𝐸𝐴𝑃𝑖 is the enzyme activity parameter (i.e. relative gene expression or 

enzyme activity) responsible for the i-th reaction of a mutant to wild type. 𝐸𝐴𝑃𝑖 

is set as 0 if the gene of i-th reaction is deleted; it is set as more than 1 (𝐸𝐴𝑃𝑖  >

1) for over-expressed and less than 1 ( 𝐸𝐴𝑃𝑖  < 1)  if it is under-expressed 

condition. 𝜂𝑖  is the correcting factor to compute the investment for genetic 

mutants. 𝐸𝐴𝑗 is the correcting factor which includes the change in the modified 

reaction into each EM’s output, by: 

𝐸𝐴𝑗  =  ∏ 𝑔𝑒𝑖,𝑗
𝑛
𝑖=1        (9) 

𝑔𝑒𝑖,𝑗 =  {
𝐸𝐴𝑃𝑖  if 𝑃𝑖,𝑗 ≠ 0

1         if 𝑃𝑖,𝑗 = 0
  

 

where 𝑔𝑒𝑖,𝑗  is the parameter indicating the gene expression state of the i-th 

reaction in the j-th EM. The state is computed by the numerator in Equation (8), 

where it will increase or decrease, if a gene within an EM is over-expressed or 

under-expressed respectively. As 𝐸𝐴𝑃𝑖 = 0 , the containing EM is 

ignored(𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚 = 0), which is consistent with EM analysis of gene deletion 

mutants. For 𝐸𝐴𝑃𝑖 = 1, in which the gene expressions do not affected by any 

changes, the Equation (8) is consistent with Equation (5). Both equations are the 

efficiency of genetic mutants, yet Equation (8) is extended of Equation (5). 
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The mCEF for the mutant is defined by: 

𝑚𝐶𝐸𝐹𝑖(𝑚𝑢𝑡) =  ∑
1

𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚𝑎𝑥𝐶𝐸𝐿𝐿𝑂𝐵𝐽  

∑ (𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚 ∙|𝑃𝑖,𝑗|∙ 𝜂𝑖)𝑗

∑ 𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚

𝑗
    (10) 

 

where 𝜂𝑖 indicates the weight of associated elements for each EM. 

 

The calculation of mCEF for wild type is resembles from the original CEF: 

𝑚𝐶𝐸𝐹𝑖(𝑤) =  ∑
1

𝑃𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚𝑎𝑥𝐶𝐸𝐿𝐿𝑂𝐵𝐽  

∑ (𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽
𝑚 ∙|𝑃𝑖,𝑗|)𝑗

∑ 𝜀𝑗,𝐶𝐸𝐿𝐿𝑂𝐵𝐽𝑗
   (11) 

 

Therefore the relative change in a gene expression profile of a mutant type to wild 

type is derived from the Equation (7), which is: 

Θ𝑖(𝑤, 𝑚𝑢𝑡) =  
𝑚𝐶𝐸𝐹𝑖(𝑚𝑢𝑡)

𝑚𝐶𝐸𝐹𝑖(𝑤)
       (12) 

 

1.11.3 Enzyme Control Flux (ECF) 

ECF is an EM-based algorithm, to estimate the correlation between enzyme 

activity profiles and its associated flux distribution based on the EMs [51]. ECF is 

very effective in the case that an enzyme activity profile is provided. The principle 

of ECF defines that the changes in enzyme activities for both wild type and mutant 

type are correlated to the changes in the EMCs. The principle is presented by the 

power-law formula. The feasibility of ECF in estimating flux distribution of 

mutants by integrating the enzyme activity profiles were validated in E.coli and B. 

subtilis model [51]. 

 

The estimation process is performed by calculating the EMCs of wild type 
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𝜆𝑤𝑡 = (𝜆1
𝑤𝑡 , 𝜆2

𝑤𝑡, … , 𝜆𝑚
𝑤𝑡)𝑡 using quadratic programming [67, 68] from the flux 

distribution of wild type by: 

min ∑ (𝜆𝑗
𝑤𝑡)

2

𝑗   

subject to P ∙ 𝜆𝑤𝑡 = 𝑣      (13) 

 𝜆𝑗
𝑤𝑡 ≥ 0 

 

Further, the EMCs of a mutant are defined by: 

𝜆𝑗
𝑚𝑢𝑡 = 𝛽 ∙ 𝜆𝑗

𝑤𝑡 ∏ 𝑎𝑖,𝑗
𝑛
𝑖=1        (14) 

𝑎𝑖,𝑗 = {
𝑎𝑖     if 𝑃𝑖,𝑗 ≠ 0

1      if 𝑃𝑖,𝑗 = 0
  

 

where 𝜆𝑚𝑢𝑡 = (𝜆1
𝑚𝑢𝑡, 𝜆2

𝑚𝑢𝑡 , … , 𝜆𝑚
𝑚𝑢𝑡)𝑡, 𝑎𝑖,𝑗  is the relative enzyme activity for the 

i-th reaction in the j-th EM of a mutant type to wild type, 𝑎𝑖,𝑗 is the enzyme 

activity ratio for the i-th reaction of the mutant type to wild type. 𝛽 is the factor 

used to normalize 𝜆𝑚𝑢𝑡, therefore the substrate uptake flux is the same as wild 

type. The flux distribution of the mutant type is given by: 

𝑣𝑚𝑢𝑡 = 𝑃 ∙ 𝜆𝑚𝑢𝑡         (15) 

 

1.11.4 Genetic Modification of Flux (GMF) 

GMF predicts the flux distribution of genetically modified mutants; gene knockout 

mutants, over-expressed or under-expressed genes using the topological structures 

of metabolic networks [64]. The flow algorithm of GMF is illustrated in Figure 7:  
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Figure 7. The flow of GMF algorithm 

 

 

By the assumption that there is linear correlation between a gene expression and 

its associated enzyme activity profiles, the EMCs of a mutant can be estimated 

based on the flux distribution of wild type using quadratic programming as in 

Equation (13). This is supported by the existence of quantitative correlation 

between mRNA expression and protein levels in some studies [2, 15]. Since the 

enzyme activity ratios is possible to be substituted using the CEF ratios, the EMCs 

for the mutant is derived by the Equation (14): 

𝜆𝑗
𝑚𝑢𝑡 = 𝛽 ∙ 𝜆𝑗

𝑤𝑡 ∏ 𝜃𝑖(𝑤𝑡, 𝑚𝑢𝑡)𝑛
𝑖=1      (16) 

 

Therefore, the predicted flux distribution is given as: 

𝑣𝑚𝑢𝑡 = 𝑃 ∙ 𝜆𝑚𝑢𝑡        (17) 
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1.11.5 Objective functions 

The EM coefficients (EMCs) must be estimated by using an objective function to 

calculate flux distributions. Estimation of the EMCs is an underdetermined 

problem [50, 69], because the number of EMs is much more than the experimental 

flux data. GMF is implemented with four types of objective functions; Linear 

Programming (LP), Quadratic Programming (QP) [67], Linear Programming 

based on alpha spectrum (MeanLP) [51], Maximum Entropy Principle (MEP) 

[52]. 

 

Table 8: The objective functions in GMF application 

Method Description 

LP To maximize biomass or specific metabolite formation. 

QP To optimize emc by defining minimal norm of emc 

MeanLP 
To optimize emc by calculating the mean (average) from maximizing and minimizing 

each emc 

MEP 
To optimize emc by derivation of Shannon’s theory and Lagrange Multipliers (LM). 

 

 

 

1.12 The Thesis Organization 

The thesis is organized in the following structure: 

Chapter 1 reviews a brief introduction and background of the study that covers: 

Systems Biology, Computational Systems Biology, The Molecular Biology Database, 

Metabolic Engineering, Systematically Perturbation of Biology System, Computational 

Model, the theory in analyzing a metabolic network, the process in reconstructing a 

metabolic network model and the direction of this research works. 

Chapter 2 describes the materials and methods used and implemented to achieve the 
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targeted objectives. The process on reconstructing metabolic network models, 

preparing the metabolic network input files and the GMF algorithm are described in 

this chapter. 

Chapter 4 discusses the results and outcomes obtained from the study, which presents 

the details on database collection and the GMF prediction performance. 

Chapter 5 concludes this study and discusses the advantages, contributions and the 

gap and potential for the future research. 
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2 CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Systems overview 

Figure 8 shows a workflow of the web application of GMF. Metabolic reaction 

network files written in the Microsoft Excel format are registered in the database 

attached to the GMF web application. These files can be freely downloaded. Users 

either select a registered or uploaded user’s own data file. The application reads the 

selected or uploaded file and generates its associated stoichiometric matrix with the 

format available for the efmtool [70]. Users can select one algorithm out of the three: 

GMF, mCEF or ECF to predict the flux distribution of genetic mutants. To perform 

GMF and ECF, they select one of the four objective functions and specify a ratio type 

of gene or enzyme. The calculated result is displayed and can be downloaded.  

 

In addition, we have developed the stand-alone version of GMF application that 

functions on the MATLAB (The MathWorks). The main workflow of the GMF 

stand-alone version is the relatively same as the web version. 
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Figure 8. The main workflow of GMF application. A metabolic network file written in the Microsoft 

Excel format is put in the application. To perform GMF and ECF, users need to select an objective 

function out of Maximum Entropy Principle (MEP), Linear Programming based on alpha spectrum 

(MeanLP), Linear Programming (LP), and Quadratic Programming (QP). 

 

 

2.2 The Gene Knockout Database 

2.2.1 Preparing the metabolic input files for GMF 

To prepare the input files which represented in a metabolic network model begin with 

the process to reconstruct a metabolic network. As presented in Chapter 1 

(Computational Metabolic Network Model), the metabolic network model employed in 

GMF is constructed based on the described phases. 
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Beforehand the reconstructing task begins; the main purpose of building the model is 

defined. Based on the priority to create a knockout gene experimental database, our 

focus is mainly on central carbon metabolic pathways, since these pathways are 

considered as the bottle neck of metabolic systems. In addition, with the consideration 

that the model will be used as computer-executed model and able to estimate various 

types of experimental conditions (e.g. batch or continuous conditions), we defined a 

small scale metabolic model, that purposely for prediction task; where experimental 

flux data are available [71] and its significant applications [10]. 

 

Building a computer-executed metabolic model that will be used as an input file for 

computer simulation application, the key value of a computer application should be 

considered is the system usability. From the time-consumption point of view, 

analyzing a metabolic network depends on the network size; the larger metabolic 

network will need a longer time for analysis, and produce higher number of feasible 

solutions. With the limitations of high-end machine and its memory capacity (i.e. super 

computers) to conduct the simulation task and time-consuming (i.e. user does not 

prefer to wait longer) [72], building a model that focused on central carbon metabolism 

would be most appropriate. 

 

The reconstructed model is designed based on a comprehensive literature from varies 

sources such as online pathway databases, biochemistry textbooks, functional 

annotation genome sequence and information extraction from published journals. A 

series of academic discussion was also conducted among the experts (i.e. Professors, 

postdoctoral personnel) in completing the reconstruction phase. 
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We defined the functional annotation of genes based on gene catalog from KEGG 

metabolic pathways databases (http://www.genome.jp/kegg/). The information is 

further organized in central carbon metabolic pathways: glycolysis, pentose phosphate, 

entner-doudoroff, pyruvate metabolism, and TCA cycle. The details for Open Reading 

Frame (ORFs) name, gene name, enzyme name, EC numbers and KEGG metabolic 

chart were used to reconstruct the metabolic network. 

 

To create a particular reaction list, the reaction stoichiometry was referred from several 

online databases, such as: KEGG, Biocyc (http://biocyc.org/) and BiGG database 

(http://bigg.ucsd.edu/). In many databases, the information such as cofactors utilization 

is not yet been completely clarified, as for example either a reaction only require to 

include NADH or NADPH as a cofactor; or might involve both cofactors. In such 

cases, two reactions were included in the reconstructed metabolic network. 

 

In relation to the gene and reaction localization, all reactions were localized in cytosol 

as most of central carbon metabolism takes place in this compartment. The information 

directionality of reactions (reversible or irreversible) was extracted from pathway 

databases or registered metabolic network sample models.  

 

The outcome of reconstruction process is a set of associated biochemical reactions that 

might be used in constructing the stoichiometric models metabolism using metabolite 

balancing [8, 73]. This model basically depends on mass balance principle on 

metabolic intermediates and allow for steady state behavior. Further, based on the 

information on reactions stoichiometry, localization, and reversibility, the biomass 
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composition needs to be defined. Table 9 shows the biomass composition of E.coli 

model [74].  

 

The E.coli reconstructed model comprises 48 reactions that are most frequently 

encountered pathways: glycolysis (11 reactions), pentose phosphate (7 reactions), 

Entner-Doudoroff (ED) (1 reaction), TCA Cycle (8 reactions), pyruvate metabolism (2 

reactions), anaplerotic reactions (5 reactions), energy/redox metabolism (5 reactions), 

transport reactions (3 reactions) and exchange reactions (5 reactions). 

 

Table 9. Biomass composition for E.coli metabolic model from [74] 

Metabolite 
mmole  

g DW 
Metabolite 

mmole 

g DW 

Fructose 6 phosphate 0.1 Nicotinamide adenine dinucleotide 

phosphate-reduced 

18.2 

3 Phosphoglycerate 1.5 Glyceraldehyde 3 phosphate 0.1 

Acetyl coenzyme A 3.7 Nicotinamide adenine dinucleotide 3.5 

Glucose 6 phosphate 0.2 Pyruvate 2.8 

Adenosine triphosphate 41.3 Phosphate 41.3 

Phosphoenolpyruvate 0.5 Coenzyme A 3.7 

alpha Ketoglutarate 1.1 Adenosine diphosphate 41.3 

Erythrose 4 phosphate 0.4 Nicotinamide adenine dinucleotide - 

reduced 

3.5 

Ribose 5 phosphate  0.9 Nicotinamide adenine dinucleotide 

phosphate 

18.2 

Oxaloacetate 1.8 Carbon dioxide 1.68 

 

2.2.2 The reconstructed metabolic network for E.coli 

Figure 9 shows the employed metabolic network model for E.coli experimental data 

and the associated enzymes and metabolites are described in Tables 10-11. The 
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characteristics and reaction distribution to its associate pathways of this model are 

summarized in Tables 12-13 respectively. 
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Figure 9: The employed Escherichia coli metabolic network map 
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Table 10: The employed Escherichia coli metabolic model reactions 

Pathway Enzyme 

catalyzing 

Gene Reaction 

Glycolysis 

PTS pts PEP + GLC --> G6P + PYR 

Pgi pgi G6P <--> F6P 

Pfk pfkA,B F6P + ATP --> ADP + FDP 

Fbp fbp FDP --> F6P + PI 

Fba fba FDP <--> T3P2 + T3P1 

Tpi tpi T3P2 <--> T3P1 

GAPDH gapA,C PI + T3P1 + NAD <--> P3G + NADH 

Eno Eno P3G <--> PEP 

Pyk pykF,A PEP + ADP --> ATP + PYR 

Pdh lpdA COA + NAD + PYR --> ACCOA + CO2 + 

NADH 

Pps ppsA ATP + PYR --> PI + PEP 

Pentose 

Phosphate 

G6PDH zwf G6P + NADP --> NADPH + D6PGC 

6PGDH pgl; gnd D6PGC + NADP --> RL5P + CO2 + NADPH 

Rpi rpiAB RL5P <--> R5P 

Rpe rpe RL5P <--> X5P 

Tkt1 tktA X5P + R5P <--> S7P + T3P1 

Tal tal S7P + T3P1 <--> F6P + E4P 

Tkt2 tktB X5P + E4P <--> F6P + T3P1 

Entner- 

Doudoroff 

KDPG edd;eda D6PGC --> T3P1 + PYR 

Pyruvate 

Metabolism 

Pta pta ACCOA + PI <--> ACTP + COA 

Ack ackA ACTP + ADP <--> ATP + AC 

TCA cycle 

CS gltA ACCOA + OA <--> COA + CIT 

Acn acn CIT <--> ICIT 

ICDH icd ICIT + NADP <--> AKG + CO2 + NADPH 

aKGDH sucAB AKG + COA + NAD --> CO2 + SUCCOA + 

NADH 

SCS sucCD PI + ADP + SUCCOA --> ATP + SUCC +  

COA 

SDH sdhABCD SUCC --> FUM 
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The metabolic reactions are based on Figure 9.  

“-->” represents irreversible reaction; “<-->” represents reversible reaction. 

 

 

 

 

 

 

 

 

Fum fumABC FUM <--> MAL 

MDH mdh MAL + NAD <--> OA + NADH 

Anapleurotic 

Reactions 

Ppc ppc PEP + CO2 --> PI + OA 

Pck pckA ATP + OA --> PEP + CO2 + ADP 

Mez maeB MAL + NADP --> CO2 + NADPH + PYR 

Icl aceA ICIT --> SUCC + GLX 

MS aceB ACCOA + GLX --> MAL + COA 

Energy/Redox 

Metabolism 

ATP atp PI + 4 HE + ADP <--> ATP + 3 H 

ATPDr atpdrain ATP --> PI + ADP 

NUO nuo NADH + 3 H + O2 --> 4 HE + NAD 

PNTA pntA NADPH + NAD --> NADH + NADP 

PNTB pntB NADH + NADP --> NADPH + NAD 

Transport 

Reactions 

ACt act AC + H --> ACE + HE 

PIt pit PIE + HE <--> PI + H 

CO2t co2t CO2 --> CO2XT 

Exchange 

Reactions 

GLCUP glcup GLCXT --> GLC 

ACxt acxt ACE <--> ACXT 

Hxt hxt HE <--> HXT 

PIxt pixt PIXT <--> PIE 

O2xt o2xt O2XT <--> O2 

Biomass 

Reaction 
Growth growth 

0.1 F6P + 1.5 P3G + 3.7 ACCOA + 0.2 G6P + 

41.3 ATP + 0.5 PEP + 1.1 AKG + 0.4 E4P + 

18.2 NADPH + 1.8 OA + 0.9 R5P + 0.1 T3P1 

+ 3.5 NAD + 2.8 PYR --> 41.3 PI + 3.7 COA 

+ 41.3 ADP + 3.5 NADH + 18.2 NADP + 

1.677 CO2 + 1 BIOMASS 
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Table 11: The employed E.coli metabolites 

Abbreviations Full name Abbreviations Full name 

AC Acetate ICIT Isocitrate 

ACCOA Acetyl coenzyme A KetoPGluc 
2 Keto 3 desoxy 6 phospho 

gluconate 

ACE Medium Acetate MAL Malate 

ACTP Acetyl phosphate NAD 
Nicotinamide adenine 

dinucleotide 

ACXT External Acetate NADH 
Nicotinamide adenine 

dinucleotide - reduced 

ADP Adenosine diphosphate NADP 
Nicotinamide adenine 

dinucleotide phosphate 

AKG Alpha Ketoglutarate NADPH 

Nicotinamide adenine 

dinucleotide 

phosphate-reduced 

ATP Adenosine triphosphate O2 Oxygen 

BIOMASS Biomass O2XT External Oxygen 

CIT Citrate OA Oxaloacetate 

CO2 Carbon dioxide P3G 3 Phosphoglycerate 

CO2XT External Carbon Dioxide PEP Phosphoenolpyruvate 

COA Coenzyme A PI Phosphate 

D6PGC 6 Phospho D gluconate PIE Medium Phosphate 

E4P Erythrose 4 phosphate PIXT External Phosphate 

F6P Fructose 6 phosphate PYR Pyurvate 

FDP 2 6 bisphosphate R5P Ribose 5 phosphate 

FUM Fumarate RL5P Ribulose 5 phosphate 

G6P Glucose 6 phosphate S7P Sedoheptulose 7 phosphate 

GLC Glucose SUCC Succinate 

GLCXT External glucose SUCCOA Succinyl coenzyme A 

GLX Glyoxylate T3P1 Glyceraldehyde 3 phosphate 

H Proton T3P2 Dihydroxyacetate phosphate 

HE Medium Proton X5P Xylulose 5 phosphate 

HXT External Proton   

The metabolites are based on Figure 9 
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Table 12. Network characteristic of reconstructed metabolic network of E.coli 

Metabolites (total)  49 

   Cytosolic metabolites 39  

   Transportation metabolites 3  

   Extracellular metabolites 7  

Reactions (total)  48 

   Cytosolic reactions 39  

   Exchange fluxes 5  

   Transportation reactions 3  

   Growth reactions 1  

 

Table 13. Distribution of reactions for E.coli reconstructed metabolic network 

Reactions (total)  48 

Glycolysis pathway reactions 11  

Pentose Phosphate reactions 7  

Entner-Doudoroff reactions 1  

Pyruvate metabolism reactions 2  

TCA cycle reactions 8  

Anapleurotic Reactions 5  

   Energy/Redox Metabolism 5  

   Transport Reactions 3  

   Exchange Reactions 5  
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The mass balance equations are based on the metabolic network in Figure 9: 

 

GLC: 𝑣𝐺𝐿𝐶𝑢𝑝 − 𝑣𝑃𝑇𝑆 = 0       (18) 

G6P: 𝑣𝑃𝑇𝑆 − 𝑣𝑃𝑔𝑖 − 𝑣𝑍𝑤𝑓 − 0.2 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0    (19) 

F6P:  𝑣𝑃𝑔𝑖 + 𝑣𝑇𝑘𝑡𝐵 + 𝑣𝑇𝑎𝑙 −  𝑣𝑃𝑓𝑘 − 0.1 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (20) 

FDP: 𝑣𝑃𝑓𝑘 − 𝑣𝐹𝑏𝑎 = 0       (21) 

T3P1: 𝑣𝐹𝑏𝑎 + 𝑣𝑇𝑘𝑡𝐵 + 𝑣𝑇𝑘𝑡𝐴 − 𝑣𝐺𝑎𝑝 − 0.1 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (22) 

T3P2: 𝑣𝐹𝑏𝑎 − 𝑣𝑇𝑝𝑖 = 0       (23) 

P3G: 𝑣𝐺𝑎𝑝 + 𝑣𝐸𝑛𝑜 − 1.5 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0     (24) 

PEP: 𝑣𝐸𝑛𝑜 + 𝑣𝑃𝑐𝑘 + 𝑣𝑃𝑝𝑠 − 𝑣𝑃𝑦𝑘 − 𝑣𝑃𝑝𝑐 − 0.5 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (25) 

PYR: 𝑣𝑃𝑦𝑘 + 𝑣𝑚𝑎𝑒𝐵 + 𝑣𝐸𝑑𝑎 − 𝑣𝐿𝑝𝑑𝐴 − 𝑣𝑃𝑝𝑠 − 2.8 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (26) 

ACCOA: 𝑣𝐿𝑝𝑑𝐴 − 𝑣𝐺𝑙𝑡 − 𝑣𝑃𝑡𝑎 − 3.7 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0    (27) 

CIT: 𝑣𝐺𝑙𝑡 + 𝑣𝑃𝑡𝑎 − 𝑣𝐴𝑐𝑛 = 0      (28) 

ICIT: 𝑣𝐴𝑐𝑛 − 𝑣𝐼𝑐𝑑 − 𝑣𝐴𝑐𝑒𝐴 = 0      (29) 

AKG: 𝑣𝐼𝑐𝑑 − 𝑣𝑆𝑢𝑐𝐴𝐵 − 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0      (30) 

SUCCOA: 𝑣𝑆𝑢𝑐𝐴𝐵 − 𝑣𝑆𝑢𝑐𝐶𝐷 = 0      (31) 

SUCC: 𝑣𝑆𝑢𝑐𝐶𝐷 − 𝑣𝐴𝑐𝑒𝐴 − 𝑣𝑆𝑑ℎ = 0      (32) 

FUM: 𝑣𝑆𝑑ℎ − 𝑣𝐹𝑢𝑚 = 0       (33) 

MAL: 𝑣𝐹𝑢𝑚 + 𝑣𝐴𝑐𝑒𝐵 −  𝑣𝑀𝑑ℎ − 𝑣𝑀𝑎𝑒𝐵 = 0     (34) 

OA: 𝑣𝑀𝑑ℎ + 𝑣𝑃𝑝𝑐 + 𝑣𝑃𝑐𝑘 − 𝑣𝑃𝑦𝑘 − 𝑣𝐺𝑙𝑡 − 1.8 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (35) 

ACTP: 𝑣𝑃𝑡𝑎 − 𝑣𝐴𝑐𝑘 = 0       (36) 

AC: 𝑣𝐴𝑐𝑘 − 𝑣𝐴𝑐𝑡 = 0       (37) 

ACE: 𝑣𝐴𝑐𝑡 − 𝑣𝐴𝑐𝑋𝑇 = 0       (38) 

D6PGC: 𝑣𝑍𝑤𝑓 − 𝑣𝐺𝑛𝑑 − 𝑉𝐸𝑑𝑑 = 0      (39) 

RL5P: 𝑣𝐺𝑛𝑑 − 𝑣𝑅𝑝𝑒 − 𝑣𝑅𝑝𝑖 = 0      (40) 

X5P: 𝑣𝑅𝑝𝑒 + 𝑣𝑇𝑎𝑙 − 𝑣𝑇𝑘𝑡𝐴 − 𝑣𝑇𝑘𝑡𝐵 − 𝑣𝑇𝑎𝑙 − 0.9𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0   (41) 

R5P: 𝑣𝑅𝑝𝑖 − 𝑣𝑇𝑘𝑡𝐴 − 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0      (42) 

S7P: 𝑣𝑇𝑘𝑡𝐴 − 𝑣𝑇𝑎𝑙 = 0       (43) 

E4P: 𝑣𝑇𝑎𝑙 − 𝑣𝑇𝑘𝑡𝐵 − 0.4 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0     (44) 

CO2: 𝑣𝐶𝑂2𝑇 − 𝑣𝐿𝑝𝑑𝐴 − 𝑣𝐼𝑐𝑑 − 𝑣𝑆𝑢𝑐𝐴𝐵 − 𝑣𝐺𝑛𝑑 − 𝑣𝑀𝑎𝑒𝐵 − 𝑣𝑃𝑐𝑘 − 1.68 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (45) 

O2: 𝑣𝑂2𝑇 − 𝑣𝑁𝑢𝑜 = 0       (46) 

NADPH: 𝑣𝑃𝑛𝑡𝐴 −  𝑣𝑃𝑛𝑡𝐵 − 𝑣𝐴𝑐𝑛 − 𝑣𝐼𝑐𝑑 − 𝑣𝑍𝑤𝑓 − 𝑣𝐺𝑛𝑑 − 18.2 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (47) 

NADH: 𝑣𝑃𝑛𝑡𝐵 − 𝑣𝐺𝑎𝑝 − 𝑣𝐿𝑝𝑑𝐴 − 𝑣𝑆𝑢𝑐𝐴𝐵 − 𝑣𝑀𝑑ℎ − 𝑣𝑀𝑎𝑒𝐵 − 3.5 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (48) 

NAD: 𝑣𝐺𝑎𝑝 + 𝑣𝐿𝑝𝑑𝐴 + 𝑣𝑆𝑢𝑐𝐴𝐵 + 𝑣𝑀𝑑ℎ + 𝑣𝑃𝑛𝑡𝐴 − 𝑣𝑁𝑢𝑜 − 𝑣𝑃𝑛𝑡𝐵 − 3.5 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (49) 

NADP: 𝑣𝑍𝑤𝑓 + 𝑣𝐺𝑛𝑑 + 𝑣𝐼𝑐𝑑 + 𝑣𝑀𝑎𝑒𝐵 + 𝑣𝑃𝑛𝑡𝐵 − 𝑣𝑃𝑛𝑡𝐴 − 18.2 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (50) 

COA: 𝑣𝐿𝑝𝑑𝐴 + 𝑣𝑆𝑢𝑐𝐴𝐵 − 𝑣𝑃𝑡𝑎 − 𝑣𝐺𝑙𝑡 − 𝑣𝑆𝑢𝑐𝐶𝐷 − 𝑣𝐴𝑐𝑒𝐵 − 3.7 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0  (51) 
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ATP: 𝑣𝑃𝑓𝑘 +  𝑣𝐴𝑇𝑃𝐷𝑟𝑎𝑖𝑛 + 𝑣𝑃𝑐𝑘 − 𝑣𝐴𝑇𝑃 − 𝑣𝑃𝑦𝑘 − 𝑣𝑆𝑢𝑐𝐶𝐷 − 𝑣𝐴𝑐𝑘 − 41.3 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (52) 

ADP: 𝑣𝑃𝑦𝑘 + 𝑣𝐴𝑇𝑃 + 𝑣𝑠𝑢𝑐𝐶𝐷 + 𝑣𝐴𝑐𝑘 − 𝑣𝑃𝑓𝑘 − 𝑣𝑃𝑐𝑘 − 𝑣𝐴𝑇𝑃𝐷𝑟𝑎𝑖𝑛 − 41.3 × 𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0 (53) 

PI: 𝑣𝐺𝑎𝑝 + 𝑣𝑃𝑡𝑎 + 𝑣𝑠𝑢𝑐𝐶𝐷 + 𝑣𝐴𝑇𝑃 − 𝑣𝐹𝑏𝑝 − 𝑣𝑃𝑝𝑐 − 𝑣𝑃𝑝𝑠 − 𝑣𝑃𝑖𝑇 − 𝑣𝐴𝑇𝑃𝐷𝑟𝑎𝑖𝑛 − 41.3 ×

𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 0         (54) 

PIE: 𝑣𝑃𝑖𝑇 − 𝑣𝑃𝑖𝑋𝑇 = 0       (55) 

H: 𝑣𝐴𝑐𝑡 + 𝑣𝑁𝑢𝑜 − 𝑣𝑃𝑖𝑇 − 𝑣𝐴𝑇𝑃 = 0      (56) 

HE: 𝑣𝐻𝐸𝑋𝑇 + 𝑣𝑃𝑖𝑇 + 𝑣𝐴𝑇𝑃 − 𝑣𝐴𝑐𝑡 − 𝑣𝑁𝑢𝑜 = 0     (57) 

 

 

2.2.3 Preparing the metabolic network files 

 

The GMF application is equipped with a database as the input file. All data files are 

written in Microsoft Excel format, with three sheets; (1) experimental condition, (2) 

reactions, and (3) metabolites as shown in Figures 10-12 respectively. Sheet 1 

(experimental condition), which contains the experiment information, including the 

author and title of original publication from where the data were extracted. Sheet 2 

(reactions) provides the metabolic reactions and their associated flux distributions, 

gene expressions, and enzyme activities with their experimental values for the 

reference (e.g., wild type) and target (e.g., mutant type) cells. Enzyme activity or gene 

expression distributions are used for the ECF algorithm. The Sheet 3 (metabolites) lists 

the corresponding metabolites with their experimental concentration values for both 

the reference and target cells. The internal or external index is added. Details on the 

input file setting are described in Tables 14-16. 

 

The reconstructed metabolic network model (as described in Section 2.2.2) will be put 

in ‘reactions’ sheet, in column A – D, which represents its corresponding model, i.e. 
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enzyme name (column A), gene name (column B), reaction formula list (column C), 

and directionality information (column D) respectively. 

 

 

 

Figure 10. The example of a metabolic network file. All data files is organized into three sheets (1); 

Sheet 1: experimental condition, Sheet 2: reactions and Sheet 3: metabolites. 
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Table 14. The descriptions on the setting of input file in ‘experimental condition’ sheet 

Column Column name Description 

A1-A3 Samples The strain sample 

A5-A6 Culture The experimental culture condition 

A8-A11 Publication The details of original publication: 

A9: The author (s) 

A10: The publication title 

A11: The publication journal 

A13-A17 Notice The notice for user to use the data 

A19-A52 Measurements The corresponding measurements of the experimental 

(a) Cell concentration 

(b) Glucose concentration 

(c) Acetic and lactic acid concentration 

(d) Oxygen and carbon dioxide concentration 

(e) Intracellular metabolites 

(f) Gene expression 

(g) Enzyme activity 

(h) Flux 

A53 Remarks Experimental additional information (if related) 
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Figure 11. The ‘reactions’ sheet template: The input file is designed by (1) enzyme, gene, reaction list, 

and reversibility type to represent the metabolic network, (2) experimental data retrieved from 

publications. 

 

 

 

Table 15. The descriptions on the setting of input file in ‘reactions’ sheet 

Column Column name Description 

A Enzyme Enzyme name corresponding to a metabolic reaction 

B Gene Gene name corresponding to a metabolic reaction 

C Reaction Reaction formula  

D Reversibility Reversibility of a reaction; 1 (reversible), 0 (irreversible). 

E Substrate uptake The reaction corresponding to substrate uptake is indicated 

by -1; the others are set to 0. 

F Objective reaction1 The objective reaction for mCEF is indicated by -1; the 

others are set to 0. 

G Objective reaction2 The objective reaction for LP (in ECF) is indicated by -1; the 

others are set to 0. 
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H Experimental flux 

for reference cells 

Experimental flux value for reference cells.  

I Experimental flux 

for target cells 

Experimental flux value for target cells  

J Experimental or 

designed relative 

gene expression  

(target/reference) 

The relative gene expression ratio of the target cells to the 

reference ones. It is given by an experimental value or a 

designed value. 

K Experimental or 

designed relative 

enzyme activity 

(target/reference) 

The relative enzyme activity ratio of the target cells to the 

reference ones. It is given by an experimental value or a 

designed value. 

L Experimental gene 

expression for 

reference cells 

The experimental gene expression values of reference  cells 

M Experimental gene 

expression for 

target cells 

The experimental gene expression values of target cells 

N Experimental 

enzyme activity for 

reference cells 

Experimental enzyme activity values of reference cells. 

O Experimental 

enzyme activity for 

target cells 

Experimental enzyme activity values of target cells 

P Predicted relative 

gene expression 

The predicted relative ratio of target gene expression to the 

reference expression 

Q Predicted flux for 

reference cells 

The predicted flux value for reference cells 

R Predicted flux for 

target cells 

The predicted flux value for target cells 

S Predicted EMC for 

reference cells 

The predicted elementary mode coefficient for reference 

cells 

T Predicted EMC for 

target cells 

The predicted elementary mode coefficient for target cells 
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Figure 12. The ‘metabolites’ sheet template: Metabolite sheet keeps the experimental metabolites 

concentration value of reference cell (wild type) and target cell (mutant type). 

 

Table 16. The descriptions on the setting of input file in ‘metabolites’ sheet  

Column Column name Description 

A Metabolite name The metabolite name corresponding to the metabolic reaction 

B Abbreviated name The metabolite abbreviated name  

C Description Description of metabolites 

D External The metabolites status; 1 (internal), 0 (external). 

E Experimental 

concentration for 

reference cells 

The experimental metabolite concentration for reference cells 

F Experimental 

concentration for 

target cells 

The experimental metabolite concentration for target cells 
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2.3 The simulation algorithms 

Figure 13 represents the basic system flow of GMF. As mentioned before, the input for 

GMF is the metabolic network file. In general, GMF consists of five (5) main modules: 

(1) data preprocessing, (2) EM calculation, (3) GMF, (4) mCEF, and (5) ECF. 

 

 

 

Figure 13. The main system flow of GMF, which consists of five main modules: (1) Data 

preprocessing, (2) EM calculation, (3) GMF calculation, (4) mCEF calculation, and (5) ECF calculation 

 

In data preprocessing module, the system will extract the particular data required for 

the calculation from input file to the memory. The data needed are extracted from 

reaction and metabolite sheets. The system program will convert the format of reaction 

formula listed in the input file in the format that accepted by efmtool.  

 

Once converted, the system will calculate the EM (EM calculation module). We 
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implemented the calculation of EM by invoking the function CalculateFluxModes 

(reactionFormula) as provided by efmtool. efmtool will analyze the metabolic 

network from the reaction formulas as listed in the input file. From the called function, 

we extract the information of EM that will be used for calculation. 

 

GMF integrated Elementary Flux Mode Tool (efmtool) to produce stoichiometric 

matrix and calculate EM. efmtool is developed in Java programming language, and 

integrated into MATLAB. The implementation of bit pattern tress algorithm resulted 

efmtool is currently the most efficient method for computing EM in large networks 

[75]. 

 

After these processes completed, the system program will proceed to the estimation 

process based on the algorithm selected by the user. As mentioned previously, if user 

selects GMF or ECF algorithm, the EM calculated by efmtool will be optimized by the 

given objective functions. The GMF application implemented four types of objective 

functions; Linear Programming (LP), Quadratic Programming (QP) [67], Linear 

Programming based on alpha spectrum (MeanLP) [51], Maximum Entropy Principle 

(MEP) [52]. 

 

The implementation is performed in Matlab. The nonlinear optimization (MEP) is 

using the function fmincon, while for the other objective functions (QP, LP, MeanLP) 

the present programs are improved to feed bigger metabolic networks. 

 

GMF is consists of two algorithms: modified Control Effective Flux (mCEF) and 
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Enzyme Control Flux (ECF). GMF predicts the flux distribution of genetically 

modified mutants [64]. The mCEF algorithm, which is derived from the Control 

Effective Flux (CEF), estimates the relative expression ratios of metabolic genes of a 

mutant to wild type from changes in target gene expression. ECF estimates the flux 

distributions of genetically modified mutants by integrating their enzyme activity 

profiles into EMs. ECF is very effective in the case that an enzyme activity profile is 

provided. 

 

2.4 The implementation 

The Hypertext Preprocessor (PHP) is used as the GUI of GMF web application. All the 

programs for simulation and visualization are written in MATLAB R2014a and run on 

a Linux server. The efmtool program, an open source application computer interface, is 

employed to calculate EMs. The GMF web application is available at: 

http://kurata22.bio.kyutech.ac.jp/gmf/pub/top.php. The recommended web browser to 

use the application is Mozilla Firefox or Google Chrome. The user manuals and 

application programs of stand-alone version is shown in Appendix A. 
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3 CHAPTER 3: RESULT AND DISCUSSION 

 

3.1 The gene knockout database 

We have collected 112 metabolic network models that contain key metabolism 

processes and able to be calculated by the application [17, 18, 24, 26-30, 32-34, 76-81]. 

Details are described in Tables 17-21. 

 

Table 17: The number of files according to microorganism in the database 

Microorganism Number of files 

Escherichia coli 104 

Corynebacterium glutamicum 4 

Saccharomyces cerevisiae 3 

Chinese Hamster Ovary 1 

Total 112 

 

 

Table 18: List of E.coli wild type data file 

Dilution rate 
Total 

0.10h
-1

 0.40h
-1

 0.50h
-1

 0.70h
-1

 

1 1 1 1 4 

Total 4 
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Table 19: List of E.coli genetic deletion mutant files 

Pathway 
Gene 

deletion 

Dilution rate 

Total 
0.10h

-1
 

0.20h
-1 

June 

0.20h
-1 

July 

0.20h
-1 

Sept 

0.20h
-1

 

Oct 
0.20h

-1
 0.22h

-1
 0.40h

-1
 0.60h

-1
 0.66h

-1
 

0.50h-
1
 

(5H) 

0.50h-
1 

(6H) 

0.50h-
1 

(7H) 

Glycolysis 

1. fbaB  1* 1* 1* 1*         4 

2. fbp  1* 1* 1* 1*         4 

3. gapC  1* 1* 1* 1*         4 

4. gpmA  1* 1* 1* 1*         4 

5. gpmB  1* 1* 1* 1*         4 

6. pfkA  1* 1* 1* 1*         4 

7. pfkB  1* 1* 1* 1*         4 

8. pgi 1* 1* 1* 1* 1*         5 

9. pykA  1* 1* 1* 1*         4 

10. pykF 1* 1* 1* 1* 1*   1**   1** 1** 1** 9 

11. ppsA  1* 1* 1* 1*         4 

12. lpdA       1*       1 

Pentose 

Phosphate 

13. gnd  1* 1* 1* 1* 2*        6 

14. pgl  1* 1* 1* 1*         4 

15. rpe  1* 1* 1* 1*         4 

16. rpiA  1* 1* 1* 1*         4 

17. rpiB  1* 1* 1* 1*         4 

18. tktA  1* 1* 1* 1*         4 

19. tktB  1* 1* 1* 1*         4 
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20. talA  1* 1* 1* 1*         4 

21. talB  1* 1* 1* 1*         4 

22. sucA      1*        1 

23. zwf 1* 1* 1* 1* 1* 1*   1* 1*    8 

Anapleurotic 

Reactions 

24. ppc      1*        1 

25. pck 1*             1 

Total 100 

“*” represents continuous culture; “**” represents batch culture 

 

Table 20: List of C.glutamicum genetic deletion mutant files 

Pathway 
Gene 

deletion 
Total 

Glycolysis 

1. fbp 1 

2. gnd 1 

3. zwf 2 

Total 4 

 

 

Table 21: List of S.cerevisiae wild type files 

Dilution rate 
Total 

0.15h
-1

 0.30h
-1

 0.40h
-1

 

1 1 1 3 

Total 3 
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3.2 The GMF application (web and standalone version) 

Figure 14 shows the main page of the GMF web application. Users can (1) upload their 

own file or (2) select a file out of the registered files. (3) Users select an algorithm to 

estimate a flux distribution and an objective function out of the four functions (MEP, QP, 

LP, or MeanLP). When ECF is used, they can select a ratio type of gene expression and 

enzyme activity profiles. (4) Once an input file is selected, details in the metabolic 

network are displayed. 112 metabolic network files were registered with their associated 

experimental data. 

 

 

 

Figure 14. The main page of GMF web application. Users can (1) upload their own file or (2) select a 

file out of the registered files. (3) Users select an algorithm to estimate a flux distribution or gene 

expression profile, a ratio type of gene expression or enzyme activity profiles, and an objective function. 

(4) Once an input file is selected, details in the metabolic network are displayed. 
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Figure 15. The sample of GMF calculation result page in the web version. Users can click (1) on a 

particular tab to get the desired output or (2) download all output files, by clicking on ‘Download all 

output files’. 
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Figure 16. The main graphical user interface (GUI) of GMF stand-alone application. The data files 

are available in (1). Once a particular file is clicked, the details are shown as in (2). User need to select an 

algorithm as marked in (3) to start the calculation. 
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Figure 17. The sample of GMF calculation result page using stand-alone version. The information 

related to estimation result is displayed in the center table of the page. Users can refer the information of 

selected file name, algorithm to perform the estimation in the right hand side of the page. 

 

 

 

3.3 Feasibility of application programs 

To validate the feasibility of the application programs, we tested them with registered 

models. The prediction accuracy by GMF or ECF was evaluated by: 

Prediction error (PE) = √
1

𝑛
∑ (𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

− 𝑣𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑖
)

2𝑛
𝑖=1        (58) 

where 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖
 is the 𝑖th flux predicted, 𝑣𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑖

 is the 𝑖th experimental 

flux, and n the number of reactions.  

 

We picked up E.coli gene deletion mutants: gapC, talB [17], pck [34], pykF [18], and 
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zwf [30], and E.coli over-expression mutants: zwf [29], and estimated the flux 

distributions by GMF and ECF with MEP, QP, LP, or MeanLP objective functions. 

Table 22 shows the effect of an objective function on the prediction error of the genetic 

mutants by GMF and ECF. The MEP predicted their flux distributions more accurately 

than other objective functions. 

 

Table 22. Effect of objective functions on the prediction errors using GMF and ECF. 

E.coli 

mutant 
Sample Growth rate 

Prediction error by GMF Prediction error by ECF 

MEP QP LP Mean

LP 

MEP QP LP Mean

LP 

Gene 

deletion 

gapC 0.20h-1 (Oct) 11.52 13.63 46.58 13.03 10.08 11.83 41.93 11.47 

talB 0.20h-1 (Sept) 5.27 6.61 44.49 5.55 5.13 6.53 45.02 5.51 

pck 0.10h-1 9.48 19.33 46.57 25.36 8.86 16.94 44.51 20.39 

pykF 0.50h-1 (7hrs) 4.52 7.89 39.71 6.45 5.98 6.75 38.05 5.41 

zwf 0.20h-1 7.00 8.11 17.81 7.08 4.32 6.69 26.19 5.15 

Over 

expression 
zwf 0.66h-1 4.72 7.58 43.43 9.28 5.13 8.53 45.31 10.25 

 

Thus, we used MEP to compare the GMF- and ECF- predicted flux distributions of the 

genetic mutants with the experimental flux distributions, as shown in Figures 18 and 19. 

The predicted flux distributions were consistent with the experimental data. The 

estimated flux distributions using GMF are shown in Tables 24-29. To statistically 

validate the prediction errors, we performed linear regression analysis between the 

GMF- or ECF- predicted flux distributions and experimental data, as shown in Table 23. 

The coefficients of determination (R
2
) ranged between 0.940 and 0.993 for GMF and 

0.940 to 0.997 for ECF, respectively. The Pearson correlations (r) for GMF and ECF 

were from 0.935 to 0.994 and 0.950 to 0.997, respectively. Both methods provided 

significant correlation between the predicted gene expression and experimental data. 
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Table 23. The coefficients of determination (R2) and Pearson correlation (r) of prediction accuracy by 

GMF and ECF. MEP is used 

E.coli 

Mutant condition 
Sample Growth rate 

GMF ECF 

R
2
 r R

2
 r 

gene deletion 

gapC 0.20h-1 (Oct) 0.942 0.983 0.955 0.986 

talB 0.20h-1 (Sept) 0.989 0.935 0.990 0.950 

pck 0.10h-1 0.940 0.971 0.940 0.971 

pykF 0.50h-1 (7hrs) 0.977 0.989 0.981 0.991 

zwf 0.20h-1 0.985 0.994 0.997 0.997 

Over expression zwf 0.66h-1 0.993 0.985 0.992 0.984 
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Figure 18. Comparison between the predicted and experimental flux distributions for the E.coli mutants 

of (A) gapC gene deletion, (B) talB gene deletion, (C) pck gene deletion, (D) pykF gene deletion, (E) zwf 

gene deletion, and (F) zwf overexpression. GMF is tested with the MEP objective function. 
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Figure 19. Comparison between the predicted and experimental flux distributions for the E.coli mutants 

of (A) gapC gene deletion, (B) talB gene deletion, (C) pck gene deletion, (D) pykF gene deletion, (E) zwf 

gene deletion, and (F) zwf overexpression. ECF is tested with the MEP objective function. 
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Table 24. Prediction result of E.coli gapC 0.20h-1 (Oct) gene deletion using GMF. Experimental fluxes 

(exp fluxes) are from [17] 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      73.15 55.45 49.19 -1.30 51.187 

pfk      83.38 77.28 78.96 95.40 79.66 

fba      83.38 77.07 69.90 -1.89 70.96 

tpi      83.38 77.07 69.90 -1.89 70.96 

gap      169.48 162.87 155.92 88.83 157.13 

eno      158.68 150.34 143.59 80.65 144.92 

pyk      44.94 47.64 45.58 7.24 44.28 

lpd      122.84 124.77 132.35 196.66 130.76 

ppc      9.85 0.42 5.85 75.61 7.35 

zwf      25.25 42.88 49.17 100.21 47.19 

gnd      25.25 42.88 41.34 5.94 39.82 

rpi      14.22 20.42 19.81 5.98 19.24 

rpe      11.03 22.46 21.53 -0.04 20.58 

tktA     7.12 12.90 12.41 1.07 11.92 

talB     7.12 12.90 12.41 1.07 11.92 

tktB     3.92 9.56 9.12 -1.11 8.66 

pta      0 0.01 0 51.36 4.50 

glt      80.08 67.63 70.02 69.52 67.24 

acn      80.08 67.63 70.02 69.52 67.24 

icd      66.93 41.42 38.10 13.93 38.33 

sucAB    58.23 32.23 29.06 7.93 29.38 

sdh 71.38 58.44 60.97 63.51 58.30 

fum      71.38 58.44 60.97 63.51 58.30 

mdh      84.54 84.14 90.92 108.66 85.31 

maeB     0.00 0.51 1.97 10.44 1.90 

aceA     13.16 26.21 31.91 55.58 28.91 

aceB     13.16 26.21 31.91 55.58 28.91 
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Table 25. Prediction result of E.coli talB 0.20h-1 (Sept) gene deletion using GMF. Experimental 

fluxes (exp fluxes) are from [17]. 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      85.80 90.97 84.90 16.81 91.35 

pfk      88.10 89.81 87.79 95.65 90.28 

fba      88.10 89.69 87.42 15.34 89.80 

tpi      88.10 89.69 87.42 15.34 89.80 

gap      175.10 176.84 174.14 105.96 177.00 

eno      165.00 165.50 162.43 97.68 165.71 

pyk      41.48 50.92 48.27 8.68 51.34 

lpd      120.68 130.00 127.74 183.69 131.21 

ppc      19.82 11.94 12.68 69.98 13.28 

zwf      12.70 7.52 13.54 82.09 7.15 

gnd      12.70 7.52 13.54 4.69 7.09 

rpi      9.70 8.05 10.24 5.61 7.89 

rpe      3.00 -0.53 3.30 -0.92 -0.79 

tkta     3.00 1.25 3.21 0.64 1.11 

talb     3.00 1.25 3.21 0.64 1.11 

tktb     0.00 -1.78 0.09 -1.56 -1.90 

pta      0.00 0.00 0.00 61.68 0.23 

glt      90.90 90.69 85.12 58.78 91.00 

acn      90.90 90.69 85.12 58.78 91.00 

icd      89.03 79.34 71.40 15.97 78.89 

sucab    80.83 71.03 62.81 9.90 70.60 

sdh 82.70 82.38 76.53 52.71 82.72 

fum      82.70 82.38 76.53 52.71 82.72 

mdh      84.58 93.49 88.92 82.47 93.95 

maeB     0.00 0.24 1.33 13.06 0.89 

aceA     1.88 11.35 13.72 42.81 12.12 

aceB     1.88 11.35 13.72 42.81 12.12 
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Table 26. Prediction result of E.coli pck 0.10h-1 gene deletion using GMF. Experimental fluxes (exp 

fluxes) are from [34]. 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      69.00 65.31 42.51 8.53 28.64 

fba      84.00 80.89 51.85 7.09 38.54 

gap      172.00 167.63 140.86 95.86 127.73 

eno      161.00 155.93 131.16 85.95 118.19 

pyk      137.00 126.16 105.74 55.48 88.73 

lpd      113.00 107.55 125.15 143.12 126.20 

ppc      16.00 26.77 22.72 27.45 26.29 

pck  0.90 0.55 0.28 0.01 

gnd 30.00 33.13 22.11 6.09 22.80 

tktA 10.00 9.74 6.29 0.93 6.54 

talB 10.00 9.74 6.29 0.93 6.54 

tktB     6.00 6.62 3.70 -1.71 4.00 

glt      74.00 78.68 74.09 33.85 51.20 

icd      57.00 78.68 74.09 19.78 51.05 

sucab    46.00 70.10 66.98 12.52 44.06 

sdh 63.00 70.10 66.98 26.58 44.20 

fum      63.00 70.10 66.98 26.58 44.20 

mdh      74.00 66.86 63.56 18.57 36.36 

maeB     5.00 3.24 3.42 22.08 7.98 
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Table 27. Prediction result of E.coli pykF 0.50h-1 (7H) gene deletion using GMF. Experimental fluxes 

(exp fluxes) are from [18]. 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      51.00 58.04 60.10 9.39 53.41 

pfk      77.00 79.94 81.70 94.68 79.12 

fba      77.00 79.37 79.91 8.53 77.62 

tpi      77.00 79.37 79.91 8.53 77.62 

gap      165.00 167.68 167.96 100.09 165.78 

eno      156.00 157.36 157.42 92.64 155.33 

pyk      0.00 0.00 0.00 0.00 0.00 

lpd      113.00 117.15 122.53 181.51 118.51 

ppc      52.00 56.28 60.79 84.65 56.97 

zwf      47.00 40.58 38.49 89.62 45.20 

gnd      47.00 40.58 38.49 4.92 45.02 

rpi      21.00 18.57 17.98 5.28 20.11 

rpe      26.00 22.01 20.51 -0.36 24.91 

tktA     15.00 12.38 11.66 0.81 13.85 

talB     15.00 12.38 11.66 0.81 13.85 

tktB     12.00 9.63 8.85 -1.17 11.06 

ack      28.00 35.38 37.50 83.05 37.50 

glt      59.00 53.91 50.35 45.14 49.07 

icd      59.00 51.49 41.67 10.19 42.89 

sucAB    51.00 43.92 33.94 4.73 35.23 

sdh 51.00 46.34 42.62 39.67 41.41 

fum      51.00 46.34 42.62 39.67 41.41 

mdh      19.00 12.36 9.09 63.92 9.76 

maeB     32.00 36.40 42.21 10.71 37.83 
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Table 28. Prediction result of E.coli zwf 0.20h-1 gene deletion using GMF. Experimental fluxes (exp 

fluxes) are from [30]. 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      98.90 98.33 98.27 87.56 98.44 

fba      94.20 92.70 91.85 82.40 91.93 

gap      184.00 180.85 178.57 171.35 178.65 

eno      172.00 170.39 166.85 161.59 166.93 

pyk      150.00 145.64 139.48 125.17 139.51 

lpd      137.00 127.17 118.47 161.74 118.55 

ppc      19.40 21.26 23.46 52.68 23.53 

pck      0.00 0.00 0.00 19.51 0.02 

zwf      0.00 0.27 0.17 11.14 0.00 

gnd      0.00 0.27 0.13 0.39 0.00 

rpi      4.10 5.20 5.77 4.90 5.73 

rpe      -4.10 -4.93 -5.64 -4.51 -5.73 

tkta     -0.94 -1.07 -1.26 -0.95 -1.30 

talb     -0.94 -1.07 -1.26 -0.95 -1.30 

tktb     -3.20 -3.86 -4.38 -3.55 -4.43 

eda      0.00 0.00 0.04 10.75 0.00 

ack      29.00 19.72 5.89 46.82 0.06 

glt      87.00 81.65 83.68 61.14 89.53 

acn      87.00 81.65 83.68 61.14 89.53 

icd      87.00 81.65 83.67 31.43 89.47 

sucab    80.80 73.98 75.08 24.28 80.88 

succd    80.80 73.98 75.08 24.28 80.88 

sdh 80.80 73.98 75.08 53.99 80.94 

fum      80.80 73.98 75.08 53.99 80.94 

mdh      77.80 72.93 74.27 39.68 80.08 

maeb     3.00 1.05 0.82 44.03 0.92 
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Table 29. Prediction result of E.coli zwf 0.66h-1 gene deletion (overexpression) using GMF. Experimental 

fluxes (exp fluxes) are from [29] 

Gene 
Exp 

fluxes 

Predicted fluxes 

MEP QP LP MeanLP 

glcup   100.00 100.00 100.00 100.00 100.00 

pts      100.00 100.00 100.00 100.00 100.00 

pgi      75.90 71.53 58.48 -1.02 56.15 

pfk      78.50 77.51 69.85 26.08 67.12 

gap      163.50 161.03 152.07 85.31 147.73 

eno      149.90 146.51 138.46 74.25 133.93 

pyk      117.40 113.49 106.01 50.07 100.80 

lpd      99.40 91.97 97.34 142.07 98.05 

ppc      26.00 28.18 27.92 38.24 28.63 

zwf      22.20 26.53 39.71 99.54 42.01 

gnd      14.60 21.04 24.88 7.52 22.32 

tkta     3.20 5.40 6.78 1.28 5.91 

talb     3.20 5.40 6.78 1.28 5.91 

tktb     0.00 1.53 3.15 -1.67 2.23 

ack      44.00 35.49 39.16 51.44 38.96 

glt      28.60 20.65 24.28 41.82 23.59 

mdh      18.80 9.90 12.70 34.60 11.62 

maeb     0.00 0.10 1.91 20.62 3.31 
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4 CHAPTER 4: CONCLUSION 

Molecular biology encompasses uncovered coherent biological facts, which 

significantly essential in upholding life. The progression of systems biology approach is 

rapidly emerges, from the definition of single components i.e. cells, tissues, organs, and 

organisms towards its specific interactions. Thousands of genome sequences from 

humans, plants, animals and disease tissues are now made available; the recent systems 

biology application is now giving extra focuses on the needs to produce quantitative 

interpretation that demonstrate the potential contribution for disease and drug discovery. 

In accomplishing as such, understanding system-level becomes the primary goal of 

systems biology. 

 

The specific interactions of systems biology components are manifested through 

metabolic network. In understanding as such, the integration of heterogeneous 

biological data becomes a major concern. This concern is promisingly solved by the 

combination of experimental and computational approaches, i.e. computational biology. 

 

In examining a metabolic network and its pathway, the study on genetic perturbed 

condition such as genetic knockout is one of significant strategies to comprehend the 

complexity of cellular systems. Due to its significant contribution to support the 

metabolic engineering and biotechnology applications, various methods have been 

proposed, which implements either optimization-based or pathway-based analysis. FBA, 

MOMA, ROOM are some of the methods that include constraints and/or linear 

optimization techniques to analyze metabolic fluxes. Alternatively, MFA, EM, Extreme 

Pathway, CEF, mCEF, ECF, GMF are the example of pathway-based method that able 
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to recognize a complete fluxes solution from a metabolic network without any cellular 

objective bias are provided. 

 

Over the multi omics level of cellular systems, fluxomics provides essential information. 

To facilitate in-depth analysis and generalization, a comprehensive, systematic and 

standardize flux knockout data set with different experimental conditions and 

methodology would be useful. The variety is important since for the knockout study, 

different culturing conditions has affected on flux results. 

 

In this work, we developed the web application of GMF to estimate the flux distribution 

of genetic mutants with overexpressed or deleted genes. The originality of GMF is 

derived based on EM, and the former study showed that the performance of GMF is 

outperformed as compared to FBA and MOMA. This application implements the GMF 

and ECF with four types of objective functions: MEP, QP, LP, and MeanLP. As an 

alternative, GMF is also developed in stand-alone version.  

 

To assist the analysis process, a database was attached that registers metabolic network 

files with a variety of experimental data. To the date, we have collected 112 data set; 

which included E.coli (104), C.glutamicum (4), S.cerevisiae (3) and CHO (1). In 

representing the data, the experimental data of fluxes, enzyme activity profiles and 

metabolite concentration are collected in re-arranged in a consistent and standardized 

data files. The information on experimental condition and method was recorded as well.  

 

The metabolic network models presented in GMF were reconstructed and designed 



74 

 

based on central carbon metabolism. We focus on this metabolism system since it 

contains ‘busy’ pathways with high-traffic of energy, cofactors and precursors that 

would be high priority for understanding in metabolic engineering purposes. To 

demonstrate the feasibility of the application programs, we tested the registered models. 

Based on the measured prediction accuracy, the predicted flux distributions were 

consistent to the experimental data. The MEP predicted their flux distributions more 

accurately than other objective functions. 

 

4.1 The contribution and advantages 

GMF provides the real-time or simultaneous analysis platform with original 

experimental data of flux, enzyme profiles, and metabolite concentration. This simulator 

application can be readily extended by adding latest simulation tools and be a 

user-friendly application that contributes to advances in metabolic flux analysis.  

 

A part of the simulator, the database provides a variation of experimental data files, 

represented in a metabolic network model and simulation-ready format. The availability 

of real sample data contributes a valuable reference platform in facilitating the analysis 

for systems biology tasks; particularly for further observation where a large number of 

knockout mutant data becomes necessary. 

 

Furthermore, the proposed metabolic network used in representing the data set can be 

the basis as predictive model in analysis tasks. 

 

To date, the use of GMF and ECF algorithms had required an expensive MATLAB 
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license and its associated command line operation, but the new web application solved 

such problems. Users can use the GMF and ECF through the web without any license 

and command line operation.  

 

Metabolic network data are often written in the SBML format [82], where each reaction 

is decomposed into multiple classified components. This format has an advantage in the 

exact definition of each component, while it requires lots of memory due to redundancy 

of XML tags and sometimes hampers human readability. On the other hand, the GMF 

web application presents one metabolic reaction in one cell in an ordinary Microsoft 

Excel format, enhancing the human readability and usability. 

 

4.2 The future works 

The works that have been done in building GMF to publicly accessible is still having 

room of improvements. With the consideration based on the current works, further 

improvement should be planned in future: 

(1) Towards automatic reconstructing the metabolic network 

The reconstruction of metabolic network in GMF now is done manually. This 

reconstructing process should be improved towards computerized process by 

extracting relevant information from available online genome and pathway 

databases. As mentioned previously, the processes in reconstructing a computer 

executable model will having challenges (blocked reaction problem, missing gap), 

however by implementing suitable algorithm these problems will solve. 

(2) Towards a large, standardized flux data set 

We have produced a standardized knockouts data set of central carbon metabolism 
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for E.coli, C.glutamicum, S.cerevisae and CHO. These data set are arranged in a 

consistent metabolic network (according to particular organism model), each files 

comprises the experimental data on: fluxes, enzyme activity profiles (gene 

expression and enzyme activity), mRNA, and metabolite concentrations. The 

condition and method conducted during the experimental process were also recorded 

in the files.  

 

The current data set will become more valuable by increasing the current number of 

data files, as more variety files will facilitates comprehensive analysis. Another 

valuable data set should include the data set of multiple perturbation experiment i.e. 

double, triple or more knockouts [10]. 

 

The next practical value of data set should include the regulators of central 

metabolism. By including such information, more comprehensive models are 

needed to reconstruct in future. The regulatory network layer is essential to 

substitute the modeling principle that applied stand-in concept (e.g. objective 

function) or other heuristics, to fundamental mechanistic models. It is also important 

to have a data collection of gene set that related to the aerobic/anaerobic responses, 

stress response and carbon sources catabolism from other sources than glucose, i.e. 

xylose, glycerol, and acetate. 

 

(3) Towards improved quantitative analysis 

The current development of GMF is only able to perform estimation process within 

a singular input files. It would be more favorable if two or more files (e.g. the same 
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gene knockout type of different growth rates) are estimated concurrently. This 

would assist for efficient analysis tasks. 

 

In addition, to improve the interpretation of metabolism, it could be ideal to apply many 

existing and proven theoretical frameworks, for example graph theory of metabolic 

robustness, flux coupling, transcriptional versus metabolic limited fluxes classifications, 

modularized network analysis or other relevant principles. 
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Appendix A: The Instruction of application programs (User Manual) 

 

Genetic Modification Flux (GMF) web application 

1. Selecting a file 

(a) GMF for a registered file 

 

 

Fig. B1: The GMF main page to calculate a registered network in the database 

 

1. Click on the ‘Registered’ radio button. 

2. Click on a file name from the list.  

3. Once a file is selected, the file name will be displayed in 3. 

4. Click on the desired algorithm and ratio type. 

5. Click the ‘Calculate’ button. 
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(b) GMF for user’s own file 

 

Fig. B2: The GMF main page to calculate user’s own file (before a file is selected) 

1. Click on the ‘Custom’ radio button. Click on the ‘Browse’ button and make a file 

selection from the user’s local drive. Click on the ‘Upload’ button. 

 

 

Fig. B3: The GMF main page to calculate user’s file (after a file is uploaded) 

2. Click on the desired algorithm and ratio type. 

3. Click on the ‘Calculate’ button. The calculation completion time depends on the 

metabolic network size, algorithms, and objective functions. The calculation 

completion time is shown as follows. 
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File name: Ecoli_Ishii_pfkA_0.2_Sept, Reaction number: 48 

Calculation completion time (sec) 

GMF ECF 
mCEF 

MEP QP LP MeanLP MEP QP LP MeanLP 

42 37 42 157 42 37 41 157 37 

 

 

2. Retrieving the Calculated Results 

 

 

Fig. B4: The GMF calculation result page 

 

1. Click on a particular tab to get the desired output. 

2. To download all output files, click on ‘Download all output files’. 
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Matlab Stand-Alone Version 

 

1. Main graphical user interface (GUI) 

 

Fig. B5: The main graphical user interface (GUI) of GMF stand-alone program. 

 

1. The data collection 

(i) Select a file by clicking on a file name from the list.  

2. The details of selected file, i.e. Author (s), Sample and Culture are displayed 

3. Calculation algorithms selection. Click on the desired algorithm to perform 

the calculation 

4. Additional functions: A: Search a file by using keyword; B: Add a new file to 

the database  
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2. Selection of the GMF algorithm 

 

 

Fig. B6: The GMF selection menu if GMF algorithm button is selected in Fig. S5 

 

1. Select the relative activity type 

2. Select the desired objective function 

3. Click on the ‘Calculate’ button 

 

 

Fig. B7: The sample of GMF calculation output page 
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3. Selection of the ECF algorithm 

 

 

Fig. B8: The ECF selection menu if ECF algorithm button is selected in Fig. S5 

 

1. Select the relative activity type 

2. Select the desired objective function 

3. Click on the ‘Calculate’ button 

 

 

Fig. B9: The sample of ECF calculation output page 
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4. Selection of the mCEF algorithm 

 

 

Fig. B10: The ECF selection menu if ECF algorithm button is selected in Fig. S5 

 

1. Select the relative activity type 

2. Click on the ‘Calculate’ button 

 

 

Fig. B11:The sample of mCEF calculation output page 
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5. Additional functions 

(a) To search a file by using keyword 

 

 

Fig. B12:The main GUI 

 

1. Put a keyword and press the ‘Enter’ key 

2. The files that match to the keyword are listed in 2 

3. To perform the calculation, click on the desired file and algorithm 
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(b) Adding new file to the database 

 

 

 

Fig. B13: The sample of file filtering by using keyword in main GUI 

 

1. Click on ‘Add new file to database’ button 

2. Click on a new file from the computer drive 

3. Click on Open button 
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6. Retrieving the Calculated Results 

(a) MATLAB  

1. Refer to \results\<Excel_file_name> folder 

 

 

Fig. B14: The sample of calculated result in ‘results’ folder 
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(b) MS Excel file 

1. Refer to column P – Q in corresponding input file 

 

 

Fig. B15: The sample of calculated result in MS Excel file 
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List of Abbreviations 

 

API  : Application Programming Interface 

B.subtilis : Bacillus Subtilis 

C.glutamicum : Corynebacterium glutamicum 

CHO  : Chinese Hamster Ovary 

CNA  : CellNetAnalyzer 

DNA  : Deoxyribonucleic acid 

E.coli  : Escherichia coli 

ECF  : Enzyme control flux 

ECFLP  : Enzyme control flux linear programming 

EM  : Elementary Mode 

EMC  : Elementary mode coefficient 

FBA  : Flux Balance Analysis 

GEM  : genome-scale model 

GMF  : Genetic modification of flux 

KEGG  : Kyoto Encyclopedia of Genes and Genomes 

LP  : Linear programming 

MEP  : Maximum entropy principle 

MFA  : Metabolic Flux Analysis 

MILP  : Mixed-integer linear programming 

MOMA  : Minimization of Metabolic Adjustment 

MeanLP  : Linear Programming based on alpha spectrum 

QP  : Quadratic programming 

ROOM  : Regulatory On/Off Minimization 

S.cerevisiae : Saccharomyces cerevisiae 

efmtool  : Elementary flux mode tool 

mCEF  : Modified control effective flux 
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