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Abstract

In understanding the complexity of a metabolic network structure, flux distribution is
the key information to observe as it holds direct representation of cellular phenotype.
To examine this, the study on genetically perturbed conditions (e.g. gene
deletion/knockout) is one of the useful methods, which significantly contributes to
metabolic engineering and biotechnology applications. Currently, metabolic flux
analysis (MFA) is proven to be suitable mechanism for specific gene knockout studies,
yet the method involves exhaustive computational effort since the calculation are
derived by a stoichiometric model of major intracellular reactions and applying mass

balances to the intracellular metabolites.

Metabolic Flux Analysis (MFA) is widely used to investigate the metabolic fluxes of a
variety of cells. MFA is based on the stoichiometric matrix of metabolic reactions and
their thermodynamic constraints. The matrix is derived from a metabolic network map,
where the rows and columns represent metabolites, chemical/transport reactions,
respectively. MFA is very effective in understanding the mechanism of how metabolic
networks generate a variety of cellular functions and in rationally planning a gene

deletion/amplification strategy for strain improvements.

Flux Balance Analysis (FBA) is used to predict the steady-state flux distribution of
genetically modified cells under different culture conditions. Minimization of
Metabolic Adjustment (MOMA) was developed to predict the flux distributions of
gene deletion mutants. FBA and MOMA often lead to incorrect predictions in

situations where the constraints associated with regulation of gene expression or
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activity of the gene products are dominant, because they apply the Boolean logics or its
related simple logics to gene regulations and enzyme activities. On the other hand,
network-based pathway analyses, elementary modes (EMs) and extreme pathways
emerge as alternative ways for constructing a mathematical model of metabolic
networks with gene regulations. EM analysis was suggested to be convenient for
integrating an enzyme activity profile into the flux distribution. Enzyme Control
Fluxes (ECFs) uses the relative enzyme activity profile of a mutant to wild type to

predict its flux distribution.

In facilitating the analysis of metabolic flux distributions, the support of computational
approaches is significantly essential. In addition, the availability of real sample data
particularly for further observation, a large number of knockout mutant data provides

assistance in enhancing the process.

We had presented Genetic Modification Flux (GMF) that predicts the flux distribution
of a broad range of genetically modified mutants. The feasibility of GMF to predict the
flux distribution of genetic modification mutants is validated on various metabolic
network models. The prediction using GMF shows higher prediction accuracy as
compared to FBA and MOMA. To enhance the feasibility and usability of GMF, we
developed two versions of simulator application with metabolic network database to
predict flux distribution of genetically modified mutants. 112 data sets of Escherichia
coli (E.coli), Corynebacterium glutamicum (C.glutamicum), Saccharomyces cerevisiae

(S.cerevisiae), and Chinese Hamster Ovary (CHO) were registered as standard models.



Table of Contents

PIEIACE ...ttt ettt et e et e bt e e bt e e ab e e be e e s bt e eabeesaee ii
LiISE OF PUDICALION ...coneiiiiiiieeie ettt ettt ettt e et e et e s ebteeebaeesaeeas 1ii
AADSTFACT ...ttt et ettt e bt e s bt e e ettt et e s bt e e e bt e e e bt eeeabeeebeas v
CHAPTER 1: INTRODUCTION AND BACKGROUND......coiiiiiiicciieiciccccicce e 1
L1 SyStEMS BIOIOGY ..ottt e e e et e e e e e e e raraaaeaaeas 1
1.2 Computational Systems BiOlOgY ..........ceoiiiiiiiiiiieie e 2
1.3 The Molecular Biology Database...........ccooccuuriiieeie it 3
1.4 Metabolic ENQGINEEIING .....ooiiiiiiiieeeee et e e e tarraae e 6
1.5  Systematically Perturbation of Biology SYStems.........cccvvvieeeiiiiecciiiiieeeee e, 6
151 GenoBase, the Single Knockout Mutant Database .........c.ccceeeevveeeiecieeecccinennn, 10

1.6 Computational MOEL ..........c.vvviiiiiiiie e e s e e e earaee s 11
1.7 The Theory to Analyzing Metabolic NetWOrK.........c.ccoovevieiiiciiie e, 13
1.7.1 StoiChiomMetric MO .........oi it 13
1.7.2 Elementary mode analySiS ..........ceevcviieeiciiieeiirie e esiee e esree e erree e srerne e 14
1.7.3 Extreme pathway analysis ...........cceeeeieieciiiiiiieee e eereirteee e e eesseirrree e e e e e e s eeeennes 17
1.7.4 Application Programming Interface (API) for EM analysis...........cccccvvvveeen... 18

1.8 Application Programs for Estimating Metabolic Fluxes, Gene Knockout Study...... 19
1.9  Computational Metabolic Network Model ............ooccoiiiiiiiiiieceeee e, 20
110  The PUrPOSE OF STUAY ....cceiiiiiiiiiiiiee ettt e e e e e e e e e e e e enraaeeeeee s 24
1.10.1  The ariSing ProbIEMS .....ccciiiiiiieiee e ettt e e e e e et e e e e e e eseerrrreeeeeeeeennnnnnes 24
1.10.2  The reSearCh tArget.......cueeeeecciiieiee e e e ettt ee e e e e et e e e e e e e e seerrre e e e e e e e snseeneees 26

1.11  Genetic Modification of FIUX (GIMF) ......ccuuiiiiiiiei e aeeee e 27
1.11.1  modified Control Effective FIUX (MCEF) ......cccciiiiiiiiiiiieeeeeereee e 27
1.11.2  Control Effective FIUX (CEF) ......uuuiiiiiiiiieieee ettt 28
1.11.3  Enzyme Control FIUX (ECF) ...ttt e e e e e 30
1.11.4  Genetic Modification of FIUX (GIMF) ........uvviiiiiiiiiieeee et 31
1115  ODJECiVE TUNCHIONS .....ceiii ittt e e e e et e e e e e e e eaeeeaees 33

1.12  The ThesisS Organization ..........c.c.uvveiieeeeiiiciiieeee e e e eeecirreee e e e e e e serrrareeeeeeessneraaaeeaaeens 33
CHAPTER 2: MATERIALS AND METHODS ......ooiiiiiieiterieete ettt 35
2.1 SYSEEIMS OVEIVIEW ..ccciiiiiiiiiiieee e e e ettt e e e e e esttreeeeeeeeeseatsssaeeseaeeeaassssassaaaeeesassssnnns 35
2.2 The Gene KNOCKOUL DAtabase..........ceieeruiieeiiiiiieieiiie e eriiteeesiitee e siieee e eieee e e 36
221 Preparing the metabolic input files for GMF ...........cccvviiiiiiieeee e 36
2.2.2 The reconstructed metabolic network for E.cOli..........ccoocvviiiviiieeiiniiiieennne, 39
2.2.3 Preparing the metabolic Network files ..........ccooociiiiniiiiiiiceeeee e, 46

2.3 Thesimulation algorithms ..........cccuiiiiiiii i e e 52

vl



24 The impIeMENLAtION .........ovviiiiiiieeeee e e e e e et e e e e e e e eeraeeas 54

CHAPTER 3: RESULT AND DISCUSSION .....cooiiiiieiienieiiteniteeie ettt 55
3.1  The gene Knockout database .............eeeeeieiiiiiiiiiiiiiee e 55
3.2  The GMF application (web and standalone Version) ...........cccccceeeeeciiieeeeeeeeeeecnnnee, 58
3.3 Feasibility of application Programs............cccceuiiiiieeeieeiciiieeee e e e 61

CHAPTER 4: CONCLUSION ... ..ottt ettt sttt ettt ettt st e st snbeeaeesaees 72
4.1  The contribution and adVantages............eeeeeeeeeieiiiieieee e e e eeeecrrre e e e e e e e 74
4.2 The TULUFE WOTKS ....oiiiiiiii ettt ettt et e et e e s 75

RETEIENCES ...ttt ettt e s bt e ettt e s bt e e sbe e e eabeeeateesbaeeeabeeennee 78

Appendix A: The Instruction of application programs (User Manual) ............ccccceveeeiieeecnnnn. 85

LiSt OFf ADDIEVIATIONS .....ooiuiiiiiie et ettt et e ebe e e st e e e e e eeeas 96

[ ] I o[- S SURSRTPP 97

LIST OF FIQUIES .eeviee ettt ettt ettt ettt e ettt e e et e e e s st b e e e ssttaeesssssaeesassesaeesansssaesasssseeensnnes 99

ACKNOWIBAGEMENT ... ..eiiiiieiiieee ettt e et e e et e e e satre e e ssstseeesessssaeesssssaeesasssseeennnnns 100

vil



(i)

(i)

(i)

(iv)

1 CHAPTER 1: INTRODUCTION AND BACKGROUND
1.1 Systems Biology
Systems Biology is a study to describe and understand the biological systems by
integration of two major disciplines: quantitative sciences and experimental biology
through systematic perturbation; monitoring the systems responses from multi-layered
global information in deriving analytical models [1, 2]. In a common practice, to
understand a whole system-level function, the subsystem and its component
interactions are importantly to be identified. As such, the main focus of systems
biology is to understand on the system structures and dynamics entirely; with the
understanding on molecular level remained essential. There are four (4) main
properties in understanding a biological system [3]:

System structures

The study on component that formed the intracellular and extracellular structure of

a biological network system; which included gene interactions and its associated

biochemical pathways

System dynamics

The study on system responses under different conditions through metabolic

analysis, sensitivity analysis or dynamic analysis; and identifying the mechanisms

to achieve particular responses.

The control method

The study on methods to control a cell state, reduce malfunctions and identify

prospective targets for diseases treatment.

The design method

The study on the approaches for desired properties of biological systems through



design principles and simulations; as an alternative of exhaustive trial-and-error

method.

Interestingly, the major challenge in biology systems is the nature of its
multi-layered structures: genome (DNA), transcriptome (nRNA, sSRNA, miRNA),
proteome and interactome (proteins) and metabolome and fluxome (metabolites
and fluxes). To date, this informative yet tedious process is supported by the
breakthrough of multidisciplinary in quantitative sciences: mathematical or
computational, genomics, measurement technologies and the integration of these

disciplines; with the support of comprehensive database from existing knowledge.

1.2 Computational Systems Biology

The challenge to understand biological systems as systems able to achieve by
combining computational, system analysis, updated technologies that support
quantitative measurements, and high-throughput quantitative experimental data [4].

Figure 1 summarizes a basic cycle of systems biology research.



Genomics

Biological and
physiological
knowledge and
data

‘Wet’
experiments and
analysis

Experimental Data- and
design and device hypothesis- driven
development models

Computational
“dry’
experiments and
analysis

Predictions

System analysis
and theory
formation

Analysis

Figure 1. The hypothesis-driven research cycle of systems biology

In realizing the objective for systems-level analysis, a comprehensive set of
quantitative data is one of the essential components. It is necessarily to support
simulation-based research where in-depth simulation with thorough exploratory and

sufficient coverage is conducted before a validated hypothesis can be derived.

1.3 The Molecular Biology Database

The progression in systems biology is strengthening by the development of various
molecular biology databases. Many specialized databases are developed as the main
goal is to be more accessible to biologists. The early development of biological
databases was towards sequence-based data e.g. nucleic-acid and amino-acid
sequences, further the interest focuses on other types of molecular data, while the

recent development emphasized to genetic disease and drugs. These included (i)




nucleic acid sequence and structure, transcriptional regulation (GenBank, EMBL

Nucleotide Sequence Database, DNA Bank of Japan); (ii) protein sequence and

structure, motifs and domains, protein-protein interactions (GenProtEC, Protein

Information Resource (PIR);

(iii) metabolic and signaling pathways (Kyoto

Encyclopedia of Genes and Genomes (KEGG), EcoCyc, ENZYME), metabolites,

enzymes, protein modification ; (iv) viruses, bacteria, protozoa and fungi; (v) human

genome, model organisms, comparative genomics (Human Gene Mutation Database

(HMGD); (vi) genomic variation, diseases and drugs (EcoGene, GOBASE); (vii) plant

databases and (viii) other molecular biology databases [2, 5-7]. Tables 1-5 list several

examples of specialized molecular databases.

Table 1. Example of Primary Nucleotide Sequence database [5]

Database name

Database URL

Brief description

GenBank

http://www.ncbi.nlm.nih.gov/genbank/

All known nucleotide and protein sequences;
International Nucleotide Sequence Database

Collaboration

EMBL Nucleotide Sequence

Database

http://www.ebi.ac.uk/

All known nucleotide and protein sequences;
International Nucleotide Sequence Database

Collaboration

DNA Data Bank of Japan
(DDBJ)

http://www.ddbj.nig.ac.jp/

All known nucleotide and protein sequences;
International Nucleotide Sequence Database

Collaboration

Table 2. The example of Gene Expression database [5]

Database name

Database URL

Brief description

Gene Expression Database
(GXD)

http://mww.informatics.jax.org/

Mouse gene expression and genomics

Kidney Development | http://golgi.ana.ed.ac.uk/kidhome.html | Kidney development and gene expression
Database
FlyBase http://flybase.org/ A Database of Drosophila Genes & Genomes




Table 3. The example of Metabolic Pathways and Cellular Regulation database [5]

Database name

Database URL

Brief description

Kyoto  Encyclopedia  of

http://www.genome.jp/kegg/

Metabolic and regulatory pathways

Genes and Genomes

(KEGG)

EcoCyc http://ecocyc.org/ Escherichia coli K-12 genome, gene products
and metabolic pathways

ENZYME http://enzyme.expasy.org/ Enzyme nomenclature

Table 4. The example of new online databases in the 2016 NAR Database issue [7]

Database name

Database URL

Brief description

AgingChart

http://www.agingchart.org/

Pathways of age-related processes

BreCAN-DB

http://brecandb.igib.res.in/

Breakpoint profiles of cancer genomes

MutationAligner

http://www.mutationaligner.org/

Mutation hotspots in protein domains in cancer

Table 5. The example of most recently published elsewhere databases in [7]

Database name

Database URL

Brief description

BiGG Models http://bigg.ucsd.edu/ Biochemically, genetically and genomically
structured metabolic network models

DGldb http://dgidb.genome.wustl.edu/ Drug-gene interaction database

iPPI-DB http://www.ippidb.cdithem.fr/ Inhibitors of protein-protein interactions

In representing the qualitative data, a network model is required. The purpose of

building a network model is for network dynamic analysis as well; however it is

importantly to consider a model-based for experimental or simulation purposes, with

high accuracy prediction performance, where the resources can be ideally distributed.

The detailed description on reconstructing a genome scale metabolic network model is

presented in Section 1.9 in this chapter.

Another critical component of systems biology research is computer software support,




which may varies by providing simulation software as a platform for modeling and
analysis. The support should be open platform environment that commonly accepted in
accordance to the emergence of online biological databases. Another concern of
software support is to increase the development of common infrastructure that able to

integrate the existing resources.

1.4 Metabolic Engineering

Metabolic engineering is the study to manipulate and modify metabolism with DNA
recombination for the production of useful metabolites [8]. One of the novel aspects of
metabolic engineering as compared to genetic engineering and other typical strain
improvement technologies is the study on integrated metabolic pathways. In essence,
this study includes the complete chains of biochemical reaction network, with
associated issues of pathway synthesis and thermodynamics feasibility, and metabolic

fluxes and their controls.

In examining a metabolic network and its pathway, gene expression levels, proteins
and metabolites concentration provide some information. However, the interaction of
these cellular phenotypes is manifested through metabolic fluxes. As such, fluxes are
considered as the critical parameter to represent the fundamental basis of cellular

phenotype and its corresponding pathways.

1.5 Systematically Perturbation of Biology Systems
Perturbation in biological systems is an approach to comprehend the complexity of

cellular systems. This is performed by modifying the function of a biological system



externally or internally; particularly done by genetic conditions (gene deletion, gene
overexpression, undirected mutations) or environmental conditions (growth condition

changes, temperature or hormone/drug stimuli) [2].

The responses from the modification process are monitored; further this hypothesis is
validated to the experimental data set. Once validated, this will contribute as a new
knowledge to systems biology. The study on perturbation is one of significant
strategies to extract the information from complex structure of cellular system, this
approach as well beneficial to describe gene relationships, identify drug responses, and
determine the gene function (e.g. gene deletion) [9]. In general purposes, these
quantitative observations provide valuable support for metabolic engineering and

biotechnology applications.

The study on flux distribution under knockout condition becomes one of major interest,
where the main purpose is to investigate the general and detailed responses of
metabolic and regulatory network [10]. In the example of E.coli knockouts, the
previous studies showed a significant contributions such as; discovering a novel hidden
reaction in pentose phosphate pathway from double knockouts [11], monitoring the
oxygen sensing and aerobic regulatory response by the combination of genetic and
environmental perturbations [12-14], describing the regulations and dynamic of
network pathway [15]. Table 6 summarized the reported publications of E.coli gene
knockout studies. It is also recorded that the most studied knockouts were on the
central carbon metabolism, global regulation and under substrate-rich conditions (e.g.

batch) or substrate-limited conditions (e.g. continuous cultures) [10].



Table 6. The overview on E.coli knockout strains using 13C metabolic flux analysis studies [10]

E.coli

knockout gene

Reference for **C metabolic flux analysis study

Central carbon (micro-) aerobic anaerobic N
metabolism Batch Continuous Batch Continuous Other growth conditions
ptsGlcrr - [16] - - -

galM - [17] - - -

glk - [17] - - -

poi [18-23] - - - NH," limitation [24]; growth on galactose [22]
pgm - [17] - - -

pfkA/pfkB [23] [17] - - -

fbp - [17] - - -

fbaA/fhaB - [17] - - -

tpiA [19] - - - -

gapAC - [17] - - -

pgk - - - - -

gpmA/gpmB - [17] - - -

eno [21] - - - -

pykA/pykF [18,23,25] | [15,17, 26, 27] - - NH," limitation [27]

aceE/aceF - - - - -

Ipd - [28] - - -

pflB/tdcE - - - - -

zwf [22,23,29] | [17, 24,30, 31] - - NH," limit [24]; growth on pyr [30] and ac [31]
pgl - [17] - - -

gnd - [17, 30, 32] - - Growth on pyruvate [30]
rpiA/rpiB - [17] - - -

rpe - [17] - - -

tktA/tktB - [17] - - -

talA/talB [11] [17] - - -

edd - - - - -

eda - - - - -

gltA - - - - -

prpC - - - - -

acnA/acnB - - - - -

icd - - - - -




sucA/sucB - [33] - - -
sucC/sucD - [33] - - -
sdhABCD [22, 23] - - - Growth on galactose [23]
frdABCD - - - - -
fumABC [23] - - - -
mdh [23] - - - -
aceA - - - - -
aceB - - - - -
ppc [19, 25] - - - -
pck [23] [34] - - -
maeA/maeB [23] - - - -
ppsA - [17] - - -
pta [19, 25] - - - -
ackA - - - - -
mgsA - [16] - - -
Regulatory genes
arcA [22, 35] [13, 36-39] [35] - Nitrate as electron acceptor [35, 39]
arcB [35] [13] - - -
cra [35] - - - -
crp [35] [16] - - -
cya [35] - - - -
fnr [35] [37] - - -
mic [35] [16] - - -
iclR - [36, 38] - - -
fur [22] - - - Growth on galactose [22]
pdhR [22] - - - Growth on galactose [22]
ihfA [22] - - - Growth on galactose [22]
ihfB [22] - - - Growth on galactose [22]




15.1 GenoBase, the Single Knockout Mutant Database

The most related project of gene knockout database is GenoBase
(http://ecoli.naist.jp/) [40]. The main purpose of GenoBase is to support the E.coli
K-12 genome project launched in Japan in the year of 1989. This database was
developed (1) to facilitate sequence classification towards efficient sequencing
project management using Kohara-ordered phage clone and (2) to facilitate
genome annotation. The main focus of GenoBase is to comprehensively construct
the experimental resources and high-throughput data of large E.coli functional
genomics. The resources of this database are recently included: (1) the plasmid
clone libraries (i.e. ASKA ORFeome libraries) and (2) The single-gene deletion

collection (i.e. Keio collection).

Gl Genobase x |+
naistjp 3 "B U 3 aS =
GenoBase /4 ErlrKepwor .5 WOOOY, 0OC2 acK002, 00
Escherichia coli K-12 Resource Database Search gene

1 Keyword search |

Enter keyword (e.g. w0001, 50002, eck0002, thrA)

Search gene

New G B. is rels d! 2015 J. Y

About
| . Hostsvains The GenoBase was originally created to support the E. coli K-12 genome project launched in 1989 in Japan
A —— The original data were E. coli K-12 sequence entries in GenBank and their mapping onto the chromosome in
: printed format. The database was designed to facilitate classification of sequenced o yet to be sequenced [
| e chromosomal regions for efficient sequencing project management by the conventional sequencing method
« TransBac using Kohara ordered phage clones (Kohara, Y., et al., 1987)

Since the completion of the genome project, the purposes of the database had been shifted to accelerate
functional analyses both for individual targeted gene and the global analyses of entire gene set. For this, we
started to construct comprehensive experimental resources and those resources, such as plasmid clone and

. deletion strain libraries have been freely distributed as open resources to the communities.
~Genomic clone Hbrary The GenoBase provides information related to resources which we constructed and are constructing including
« Kohara ciones SRy conol
« FAQ
Please cite the following reference for the GenoBase: Y. Otsuka, et al. (2015) "GenoBase: comprehensive
resource database of Escherichia coli K-12."Nucleic Acids Research, database issue.

Update history
UPDATE HISTORY
+ Resource data -
+ Genome data
+ Feeduackdota 2014112 Maior update of GenoBase. The qualityconlrol of plasmid clone and deletion libraries were added
The annotation of each of genes was ced with the latest information from the GenBank entry of MG 1655,
{S—T— 2014112 Database tables ofnew Gateway et he Barco were added

« Other E.coli sites 2014/11 The database iew of the GenoBase was newly designed for the quality control information of the ASKA libraries and Keio collection
» Keyword search 2009

2009/01 Minor improvement of descriptions

2008

2008/08 GenoBase version 7 created 1o display genome information for both £ coli K-12 MG1655 and £ coli K-12 W3110.

#GenoBase® |
i o g '_‘(k' o T T TTX i THe an T A PO >

Figure 2. The main page of GenoBase, the E.coli single gene knockout database
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1.6 Computational Model
Enormous works have been done in implementing computational method to analyze
metabolic flux under perturbed condition, which generally classified as network-based

pathway and constraint-based flux analysis [1, 41, 42].

Constraint-based metabolic network analysis is also known as optimization-based
analysis does not required detailed knowledge to predict feasible flux distributions.
The main idea of this method is by imposing constraints (objective functions) and
linear optimization techniques that likely represent cellular metabolism to desired

growth condition.

Flux Balance Analysis (FBA) is one of optimization-based approaches that have been
extensively used to predict metabolic fluxes by maximizing the growth rates. This
method is based on convex analysis; by using an objective function, with subject to
several constraints for example maximize cellular growth rates, substrate uptake rates,
and/or product secretion rates, thermodynamic constraints, metabolic regulation or

others.

FBA is able to perform estimation tasks with limited number of experimental data, yet

the more fluxes is provided, the more accurate fluxes can be estimated.

The accuracy of FBA approach and objective functions has been proven in predicting
fluxes. However, this accuracy is influenced by the used of suitable objective functions

and valid cofactor assumptions. In addition, the use evolution-based objective function

11



is questionable when genetically perturbed strains are unevolved. Furthermore, FBA is
restricted to singular stoichiometric matrix model, which affected to estimate fluxes
with recycled, bidirectional, and parallel types. It is notably that FBA determines only

one optimal solution despite choices of optimal solution are available.

Minimization of Metabolic Adjustment (MOMA) is another optimization-based
approach in predicting flux distributions. The basis of this approach is Euclidean
distance, where MOMA proposes that mutant types should be very close to wild types,
with minimal metabolic changes. This approach is implemented using quadratic
programming (QP) optimization method. However the concept can be inconsistent

with regulatory adaptation cost and flow linearity principles.

On the other hand, Regulatory On/Off Minimization (ROOM) is developed to
overcome the inconsistency in MOMA by minimizing the total number of major flux
changes from the wild type strains that satisfies FBA solution [43]. The assumptions
underlying by ROOM is (i) the regulatory adaption cost is minimized by genetic
regulatory changes that essential for flux changes are minimized by the cell, (ii) each
regulatory changes is assigned by a fixed cost regardless its magnitude. Both MOMA
and ROOM estimate the flux distribution that closed to wild type strains and not relied

on to maximizing the growth rate.

RELATCH (RELATive CHANge) is an approach that based on the relative optimality
of relative flux changes. This approach uses experimental flux and gene expression

data to estimate the flux distribution; suggests the assumptions that the perturbed

12



strains will minimize the relative metabolic changes within a limited regulatory
adaptation that further will increase the flux capacity of previously active pathways

[44].

Another approach to predict the flux distribution is network-based pathway analysis.
Metabolic Pathway Analysis has emerged as a main method in analyzing the structure
and function of metabolic network. As compared to optimization-based flux analysis,
metabolic pathway analysis is able to recognize a complete fluxes solution from a
metabolic network without any cellular objective bias are provided. The associated
techniques implies for metabolic pathway analysis are elementary mode analysis and

extreme pathway analysis [1].

To quantitatively analyze the cellular phenotypes, Metabolic Flux Analysis (MFA)
becomes an emerged alternative technology and one of central importance to metabolic
engineering [8, 45]. The formation of MFA is based on mass balances of internal
metabolites at the steady state assumption. MFA is derived by a stoichiometric matrix
that describes the cellular metabolism, which is formed based on a metabolic network

model [46, 47].

1.7 The Theory to Analyzing Metabolic Network

1.7.1 Stoichiometric model

A stoichiometric model column is based on the transportation reaction; represented by
non-zero values that identify the metabolites involve in the reaction and the

stoichiometric coefficients correspond to each metabolite. The rows contain with zero

13



represents the non-participation of corresponding metabolites. The matrix also denotes
the directionality, where substrate and product metabolites are having negative (-) and
positive (+) coefficients respectively. A standard stoichiometric matrix denotes as S

and defined as:

Sll SlZ Sln
SZI SZZ 521’1
Smi Smz  Smn

A stoichiometric matrix of m X n represents a metabolic network with m internal
metabolites and n reactions. To describe the mass conservation of metabolites in a

system, the general equation is defined as:
d
— G = Y Sy forl=1,....,m 1)

where C; denotes the concentrations of the I-th metabolite a network.

The element of I-th row and i-th column of S represents the amount of I-th metabolite
consumed or produced by i-th reaction. The flux values of all n reactions is represented
as flux vector denoted as v, ;. A metabolic network may contain irreversible reaction
(s), where the flux must be non-negative. With the consideration of thermodynamic,
additional constraints need to be added as:

v; =20, (2)

where i € irrev are the indices of the irreversible reactions.

1.7.2 Elementary mode analysis

Elementary Mode (EM) analysis is one of mathematical-related approaches to

represent fundamental ‘interaction’ routes in biochemical networks [46]. It is often

14



defined as a minimum set of sub-networks (associated enzymes) that enabled a
metabolic system to operate at a steady state, through all irreversible reactions [48,
49]. It is used to recognize a metabolic network structure by involving all possible
pathways for a group of enzymes that cannot further decomposed. At the steady
state, the mass balance equation is given as:

S:v=0, 3)
where v = (v,,v,,...,v,)" is the vector of reaction flux rate and n is the
number of reactions. The set of vectors are determined from all possible solutions
of the equation in (1). Some reactions are irreversible and additional constraints on
positive flux values are required as in equation (2). From equation (1), EM needs

to fulfill the constraints in (2) and non-decomposability constraints.

To represent the EM matrix P, it is determined using the stoichiometric matrix and
the flux vector as:

v="P- 1 (4)

where A= (4;,4,,..,4,.)¢ is the vector of EM coefficient and ne is the

number of EMs.

An example to transform a simple network is summarized in Figure 3.
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a minimal enzyme set that able
to operate at steady state,
through all irreversible reactions

Identify the structure of
metabolic network

v=P-A

v = flux
P = EM matrix
A = EM coefficient (EMC)

v

vl 1 1
v21_(1 0 _
v3/7l0 At 1 A2 =
vd 0 1

Figure 3. Example of transforming a simple metabolic network to EM. The pathway through X1 is
considered as EM1, and the pathway from X1 to X2 is considered as EM2. The fluxes involved in EM1
are represented as ‘1’ while ‘0’ for non-involvement. From this network, it will be then transform into the

equation that is represented in stoichiometric matrix

Most of metabolism models are classified as underdetermined [50], where the
number of determined EM is more than the fluxes data. This situation occurs since
only a few constraints are available. The solution to overcome this problem is by
providing more constraints until an optimized coefficient is achieved. To add more
constraints, implementing objective function is one of the solutions. The use of an
objective function is as an optimizer element that maximizes the targeted cell

growth, energy or metabolite synthesis [51].

EM analysis enables us to identify unique pathway from a complex metabolic network
and to calculate all solutions from a flux space. Therefore, EM analysis is considered as
powerful tool to recognize the structure a metabolic network. In addition this tool is

also potentially effective for integrating transcriptome or proteome data into metabolic
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network, which further provides the mechanism of how phenotypic or metabolic flux

distributions change with respect to environmental and genetic perturbations [52].

1.7.3 Extreme pathway analysis

Extreme pathway analysis is closely related concept to elementary modes, yet all
reactions are controlled by the flux direction [1, 48, 49]. In extreme pathway
analysis, the reversible reactions are separated into two irreversible reactions; i.e.
forward and backward directions, as compared to elementary modes that allows
for reversible reactions. The solution set derived by extreme pathway is a subset of
elementary modes and it is systematically independent. Therefore, extreme
pathway analysis is implies based on the additional conditions of (1) network
reconfiguration, and (2) systematic independence. Figure 4 illustrates the

difference between elementary modes and extreme pathway analysis.
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Figure 4. The difference between elementary modes (EMs) and extreme pathway analysis.

1.7.4 Application Programming Interface (API) for EM analysis

Calculating EM requires highly effort and resources, especially when large
metabolic network is involved. A number of APIs to calculate elementary mode
are publicly available, with some earlier versions such as METATOOL [53],
GEPASI/COPASI [54], and FluxAnalyzer [55]. The APIs is mainly developed
using C language, yet FluxAnalyzer developed on MATLAB environment (The
Mathworks, Inc., USA) with a user friendly interface and advances features to

analyze metabolic network.

Recent enhancements in APIs development had made the ability to calculating
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larger metabolic networks with other advances analyses. The upgraded version

of METATOOL has incorporated the Null Space algorithm with an efficient rank

test to check the mode elementarily, available in either C language or MATLAB.

The newer version of FluxAnalyzer, CellNetAnalyzer (CNA) is further improved

by implementing binary approach that able to decrease 96% of memory

consumption. CNA also provides signal transduction pathways analysis.

Table 7: Alist of available EM analysis API

API name Tool URL Reference
CellNetAnalyzer | Matlab http://ww2.mpi-magdeburg.mpg.de/projects/cna/cna.html
(CNA)
ScrumPy Python http://mudshark.brookes.ac.uk/ScrumPy
Gepasi C/C++ Ms http://www.gepasi.org/
Windows
Program
efmtool Java http://www.csb.ethz.ch/tools/efmtool
(integrated
into Matlab)
Metatool C http://pinguin.biologie.uni-jena.de/bioinformatik/networks/

1.8 Application Programs for Estimating Metabolic Fluxes, Gene Knockout

Study

User friendly computer applications in MFA are exist with different functions to

improve the analysis tasks. OpenFLUX is a software application for small and large

scale *C metabolic flux analysis [56]. The application is developed based on the new

Elementary Metabolite Unit (EMU) framework which comprises two main modules
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(1) to automate metabolic models construction or to modify user-entered reaction data
and (2) to calculate fluxes from experimental data, with statistical flux analysis option.
OpenFLUX implemented gradient-based minimization search function (FMINCON) in
MATLAB Optimization Toolbox to estimate flux parameter and execute the sensitivity

analysis.

Various works in estimating flux distributions in perturbed conditions were proposed.
The works that applied different quantitative and mechanistic of mathematical and
computational methods such as differential equation based models [57], cybernetic
models [58], and combination of regulatory and metabolic models [59]. However, the
works continuity towards well-developed software/computational applications tool to

improve the analysis and quantitative understanding is not yet implemented [10].

1.9 Computational Metabolic Network Model
In understanding a network structure and for further analysis, a metabolic network
model is required. The process of building a model should be started by considering
the purpose of a model; either for the comprehensive understanding of system behavior
or prediction of complex simulation purposes. This consideration is important as it will
define the model scope and level of abstraction [4]. Each model intuitively develops
for a purpose based on the requirement [1]:
(a) Good data fitting
The objective of this model is to describe each data point individually using a
general mathematical function, which applies to dynamic modeling. A good data

fitting model will have a well definition between the parameters and data curves.
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(b) Good prediction
If the main requirement of a model is to obtain good prediction accuracy, a model
to build is supposed able to emphasis general relationships among major quantities.
This is important for future interpretations when new data set are tested to the
model.

(c) Biological comprehensive
The main objective of comprehensive or mechanistic model is should be able to
describe the actuality. In biological practice, this kind of model will focus on
certain part of cells only up to the traceable level, with supporting simplified
assumptions

(d) Key principles
A key principles model should only highlight the fundamental properties that
represent a biological process, thus it is needs to be very simple. This kind of

model is appropriate for experimental model systems.

The process of reconstructing a genome-scale metabolic model generally involves the
steps of: (1) create a draft model; (2) reconstruct a detailed model; (3) convert into a
mathematical format; (4) identify and filling the gaps; and (5) simulation and
visualization [60]. The output of this process is known as genome-scale models
(GEMs). GEMs are defined as a structured knowledge-based; which constructed on a
combination of genome sequence and detailed biochemical information. This model is
used to perform computational and quantitative queries to answer various questions on
the capabilities of an organism. The process used for reconstructing the metabolic

model is generally described in Figure 5.
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Figure 5. The process of reconstructing a metabolic network

The first draft of metabolic pathways is starts by identifying the coding sequence and
functional annotation of particular genes. This process will only include the gene
encoded for building the enzymes or membrane transporters that will be used in the
model. The functional annotation of enzymes needs to be translated into biochemical
reactions that will build a chain of complete metabolic network model. To accomplish
this task, the information are available from the genome sequence annotation [61],

biochemical pathway databases [62, 63] , related textbooks and publications.

To identify enzyme-catalyzed reactions, EC numbers is beneficial to directly match
between EC numbers and reactions in various databases. The identified genes and its

given EC numbers is compared and matched to biochemical reaction databases, e.g.
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KEGG, Biocyc, or to the registered metabolic network models e.g. BiGG database.
The important information that needs to carefully check is: (1) metabolites and
co-factors; (2) each metabolites chemical formula; (3) metabolites identifiers; (4)
reaction stoichiometry and directionality (reversible or irreversible); (5) gene and

reaction localization; (6) reaction identifier; and (7) metabolic subsystems.

An essential yet challenging phase in reconstructing a GEM model is to add the
reactions that are not concluded in the genome annotation, such as: (1) spontaneous
reactions; (2) extracellular transport reactions; (3) intracellular transport reactions; and
(4) exchange reactions. Adding some new reactions will minimize the dead-end

metabolites and improve the network connectivity.

The biomass reaction is another set of required reaction that needs to consider while
building the model. Within an equation, this reaction described all biomass
components, information on energy requirement (e.g. ATP molecules), maintenance
(e.g. turgor pressure) and their contributions to the cell growth. This information

normally derived from the literature studies or experimentally determined.

In the third phase, the metabolic network model that comprises of reactions list is
converted in a constraint-based mathematical format (e.g. stoichiometric model) to
analyze its structural properties. Since the model is a representing living cell,
constraints need to be applied for better approximation of flux solution space. To set
the boundary of cellular functions, there are four types of constraints: physiochemical,

topological, environmental conditions and regulatory constraints. For the scope of
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GEM, the constraint normally used is physiochemical and/or environmental
conditions: flux balance (S - v = 0), energy balance (AE = 0), enzyme or transporter

capacity (v; < Vpq,) @and thermodynamics (0 < v,,,)-

From this stage, it will further need to be verified and evaluated. The first process of
verification is by checking the model consistency, identify metabolic gaps and examine
the catabolized process of different substrates into different metabolites. In this step,
new reaction may need to be included to fill the metabolic gaps and the problem of

dead-end metabolites.

The remaining step is to test the model for prediction by comparing to experimental
data, in which the prediction will be the basis if the model needs for further refining

until a desired model is achieved.

1.10  The Purpose of Study
1.10.1  The arising problems
Exploring knockout fluxes is potentially significant, however due to the lack of
coverage in different experimental conditions and methodology has leads to the

difficulties for further analysis and generalizing the results [10].

It is interestingly to note that, the cellular responses of both conditions are
significantly different. From the observation on E.coli, the data set of zwf knockout
strains grown under continuous conditions [30] is compared to batch condition

[29]; it is recorded that the acetate flux grown under continuous conditions was 29
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and citrate synthase flux was 87, while the acetate flux was 44, and citrate

synthase flux was 51 in a batch conditions.

In addition, varies flux distributions were reported for the same knockout strains
and growth condition. As for the example, fumarate synthase flux was 71 [30] to
109 [17] for gnd knockout of dilution rates 0.2h™ under continuous conditions.
There is also major difference on flux distribution of pgi, pyk and ppc genes of
pykF knockout at dilution rates of 0.1h™ and 0.2h™ under continuous conditions

[10].

By considering the potential and current situation, it would be valuable to provide
analytical platform to help biologist to access, analyze and interpret the

information.

Based on our laboratory research progression, we designed Genetic Modification
Flux (GMF) to predict flux distribution of a broad range of genetically modified

mutants with under-expressed/over-expressed genes [42, 52, 64] in previous work.

The feasibility of GMF to predict the flux distribution of genetic modification
mutants is validated on various metabolic network models of E.coli, S.cerevisae,
and C.glutamicum, Bacillus Subtilis (B.subtilis), and CHO [52, 64, 65]. The
performance of GMF is compared to FBA and MOMA. The prediction using GMF
shows higher prediction accuracy as compared to FBA and MOMA when tested on

experimental data set of E.coli gene deletion mutants [64]. The applicability of
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GMF in estimating the flux distribution is also proven on over- and
under-expressed mutants; which is a promising strategy for enhanced production
of genetically strains. The detail of GMF algorithms is described in Section 1.12 of

this chapter.

Despite the usefulness of ECF and GMF, there have been no user-friendly
applications programs are developed as reported by [10]. Use of them had required

handling computer programs, which often hampers the general and broad use.

Furthermore, the analysis requires real experimental data; particularly for further
observation a large number of knockout mutant data becomes necessary. The
current experimental data are not presented in simulation-ready format. The
large-scale metabolic network models are available in many public databases;
however refinement processes are required to limit the boundary of a network.
Reconstructing a metabolic network for computer simulation purposes normally
contain blocked reaction problem, due to dead end metabolites and missing

metabolites and/or reactions.

1.10.2  The research target

With consideration of the stated problems from the current situations in both
progression: (1) the study on flux distribution under knockout condition in general,
and (2) the progression research in our laboratory; we aim to develop Genetic
Modification Flux (GMF), a user-friendly web application together with the

database of metabolic networks that helps users accessing metabolic network data
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[10]. In achieving the above, we initiate a metabolic network database by

collecting a variety of experimental data of different microorganisms.
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Figure 6. The diagram representing the research direction

1.11 Genetic Modification of Flux (GMF)
GMF is an EM-based method, integrates enzyme activity profiles i.e. gene expression
or enzyme activity data to predict the flux distributions. This algorithm is consists of
two other algorithms: (1) modified Control Effective Flux (mCEF) and (2) Enzyme
Control Flux (ECF).
1.11.1  modified Control Effective Flux (MCEF)
mCEF is an algorithm derived from the Control Effective Flux (CEF), which
estimates the relative expression ratios of metabolic genes of a mutant to wild type

from changes in target gene expression.
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1.11.2  Control Effective Flux (CEF)

The main function of CEF algorithm is to estimate the changes in transcriptional
regulations when the substrates changes. This estimation is based on a metabolic
network topology with specified biological reactions [48, 66]. For each cellular
objective, €;crL0p;  the efficiency of the j-th EM is defined as the ratio of EM
output (reaction that involving the objectives) to the necessary investment to form

each EM (the total of absolute elements in EM):

PCELLOBJ,j
'j,CELLOB] 1P| (5)

where P;; is the normalized element of the i-th reaction in the j-th EM and
CELLOBJ is the reaction number of specified biological function (biomass
production and ATP generation). CEF of the i-th reaction, which is associated to

the flux of i-th reaction, is indicated by the total weight of the i-th elements from

all EMs based on the efficiency & cgrop):

1 Yj(ejceLLosy|Pijl)
cef; = XceLLoB) pmax S (6)
CELLOB] j €j,CELLOB]J

where Plriiop; is the maximum element in the row of biological functions.

The transcript ratio principle for i-th reaction under different substrate conditions,
S, and S,, is given by:
0:(5,,5,) = <L (7)

cefi(S1)

For genetic mutants that over-, under-expressed, or lack of metabolic gene, the

original CEF algorithm is modified [64] by the efficiency of the j-th EM for such a
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genetic mutant is defined by:

PceLLoBj,j  EAj
em = =4 _J 8
j,CELLOBJ silPijl ) ( )

{EAPl- (if reaction i is modified)
i = 11 (if reaction i is not modified)

where EAP; is the enzyme activity parameter (i.e. relative gene expression or
enzyme activity) responsible for the i-th reaction of a mutant to wild type. EAP;
is set as O if the gene of i-th reaction is deleted,; it is set as more than 1 (EAP; >
1) for over-expressed and less than 1 (EAP; < 1) if it is under-expressed
condition. n; is the correcting factor to compute the investment for genetic
mutants. EA; is the correcting factor which includes the change in the modified
reaction into each EM’s output, by:

EA; = [IiL, g6 9)

_ (EAP, ifP,; # 0
geij = {1 ifP; =0

where ge; ; is the parameter indicating the gene expression state of the i-th
reaction in the j-th EM. The state is computed by the numerator in Equation (8),
where it will increase or decrease, if a gene within an EM is over-expressed or
under-expressed respectively. As EAP; =0 , the containing EM is
ignored(ej’,’éELLOB] = 0), which is consistent with EM analysis of gene deletion
mutants. For EAP; = 1, in which the gene expressions do not affected by any
changes, the Equation (8) is consistent with Equation (5). Both equations are the

efficiency of genetic mutants, yet Equation (8) is extended of Equation (5).
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The mCEF for the mutant is defined by:

1 Zj(‘ST{lCELLOBJ'|Pi,1'|' ”i)
mCEF;(mut) = ZCELLOB] pmax ]Z o (10)
CELLOBJ j €j,CELLOBJ

where 7; indicates the weight of associated elements for each EM.

The calculation of mCEF for wild type is resembles from the original CEF:

_ 1 Zi(EZlCELLOB]'|Pi,j|)
mCEF;(w) = ZCELLOB] pmax S £ (11)
CELLOBJ j €j,CELLOB]

Therefore the relative change in a gene expression profile of a mutant type to wild

type is derived from the Equation (7), which is:

mCEF;(mut)

0;(w, mut) = T CER L)

(12)

1.11.3  Enzyme Control Flux (ECF)

ECF is an EM-based algorithm, to estimate the correlation between enzyme
activity profiles and its associated flux distribution based on the EMs [51]. ECF is
very effective in the case that an enzyme activity profile is provided. The principle
of ECF defines that the changes in enzyme activities for both wild type and mutant
type are correlated to the changes in the EMCs. The principle is presented by the
power-law formula. The feasibility of ECF in estimating flux distribution of
mutants by integrating the enzyme activity profiles were validated in E.coli and B.

subtilis model [51].

The estimation process is performed by calculating the EMCs of wild type
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AWE = (AWEAYE, ., A5 using quadratic programming [67, 68] from the flux

distribution of wild type by:
min Zj(/l}-’"t)z
subjectto P- AVt = v (13)

At =0

Further, the EMCs of a mutant are defined by:
At =g AT i (14)

_ a; lfPL‘] 0
Wf—{1 ifP,; =0

where A6 = (A7 AT, L, AR, ay ;s the relative enzyme activity for the
i-th reaction in the j-th EM of a mutant type to wild type, a;;is the enzyme
activity ratio for the i-th reaction of the mutant type to wild type. S is the factor
used to normalize A™“¢, therefore the substrate uptake flux is the same as wild
type. The flux distribution of the mutant type is given by:

Umut — P . /lmut (15)

1.11.4  Genetic Modification of Flux (GMF)
GMF predicts the flux distribution of genetically modified mutants; gene knockout
mutants, over-expressed or under-expressed genes using the topological structures

of metabolic networks [64]. The flow algorithm of GMF is illustrated in Figure 7:
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Figure 7. The flow of GMF algorithm

By the assumption that there is linear correlation between a gene expression and
its associated enzyme activity profiles, the EMCs of a mutant can be estimated
based on the flux distribution of wild type using quadratic programming as in
Equation (13). This is supported by the existence of quantitative correlation
between mRNA expression and protein levels in some studies [2, 15]. Since the
enzyme activity ratios is possible to be substituted using the CEF ratios, the EMCs
for the mutant is derived by the Equation (14):

A= B AT, 6;(wt, mut) (16)

Therefore, the predicted flux distribution is given as:

vmut — P . /lmut (17)
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1.11.5  Objective functions

The EM coefficients (EMCs) must be estimated by using an objective function to
calculate flux distributions. Estimation of the EMCs is an underdetermined
problem [50, 69], because the number of EMs is much more than the experimental
flux data. GMF is implemented with four types of objective functions; Linear
Programming (LP), Quadratic Programming (QP) [67], Linear Programming
based on alpha spectrum (MeanLP) [51], Maximum Entropy Principle (MEP)

[52].

Table 8: The objective functions in GMF application

Method Description
LP To maximize biomass or specific metabolite formation.
QP To optimize emc by defining minimal norm of emc
MeanLp To optimize emc by calculating the mean (average) from maximizing and minimizing
each emc
MEP To optimize emc by derivation of Shannon’s theory and Lagrange Multipliers (LM).

1.12 The Thesis Organization

The thesis is organized in the following structure:

Chapter 1 reviews a brief introduction and background of the study that covers:
Systems Biology, Computational Systems Biology, The Molecular Biology Database,
Metabolic Engineering, Systematically Perturbation of Biology System, Computational
Model, the theory in analyzing a metabolic network, the process in reconstructing a
metabolic network model and the direction of this research works.

Chapter 2 describes the materials and methods used and implemented to achieve the
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targeted objectives. The process on reconstructing metabolic network models,
preparing the metabolic network input files and the GMF algorithm are described in
this chapter.

Chapter 4 discusses the results and outcomes obtained from the study, which presents
the details on database collection and the GMF prediction performance.

Chapter 5 concludes this study and discusses the advantages, contributions and the

gap and potential for the future research.
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2 CHAPTER 2: MATERIALS AND METHODS

2.1 Systems overview

Figure 8 shows a workflow of the web application of GMF. Metabolic reaction
network files written in the Microsoft Excel format are registered in the database
attached to the GMF web application. These files can be freely downloaded. Users
either select a registered or uploaded user’s own data file. The application reads the
selected or uploaded file and generates its associated stoichiometric matrix with the
format available for the efmtool [70]. Users can select one algorithm out of the three:
GMF, mCEF or ECF to predict the flux distribution of genetic mutants. To perform
GMF and ECF, they select one of the four objective functions and specify a ratio type

of gene or enzyme. The calculated result is displayed and can be downloaded.

In addition, we have developed the stand-alone version of GMF application that

functions on the MATLAB (The MathWorks). The main workflow of the GMF

stand-alone version is the relatively same as the web version.
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Figure 8. The main workflow of GMF application. A metabolic network file written in the Microsoft
Excel format is put in the application. To perform GMF and ECF, users need to select an objective
function out of Maximum Entropy Principle (MEP), Linear Programming based on alpha spectrum

(MeanLP), Linear Programming (LP), and Quadratic Programming (QP).

2.2 The Gene Knockout Database

2.2.1 Preparing the metabolic input files for GMF
To prepare the input files which represented in a metabolic network model begin with
the process to reconstruct a metabolic network. As presented in Chapter 1
(Computational Metabolic Network Model), the metabolic network model employed in

GMF is constructed based on the described phases.
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Beforehand the reconstructing task begins; the main purpose of building the model is
defined. Based on the priority to create a knockout gene experimental database, our
focus is mainly on central carbon metabolic pathways, since these pathways are
considered as the bottle neck of metabolic systems. In addition, with the consideration
that the model will be used as computer-executed model and able to estimate various
types of experimental conditions (e.g. batch or continuous conditions), we defined a
small scale metabolic model, that purposely for prediction task; where experimental

flux data are available [71] and its significant applications [10].

Building a computer-executed metabolic model that will be used as an input file for
computer simulation application, the key value of a computer application should be
considered is the system usability. From the time-consumption point of view,
analyzing a metabolic network depends on the network size; the larger metabolic
network will need a longer time for analysis, and produce higher number of feasible
solutions. With the limitations of high-end machine and its memory capacity (i.e. super
computers) to conduct the simulation task and time-consuming (i.e. user does not
prefer to wait longer) [72], building a model that focused on central carbon metabolism

would be most appropriate.

The reconstructed model is designed based on a comprehensive literature from varies
sources such as online pathway databases, biochemistry textbooks, functional
annotation genome sequence and information extraction from published journals. A
series of academic discussion was also conducted among the experts (i.e. Professors,

postdoctoral personnel) in completing the reconstruction phase.
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We defined the functional annotation of genes based on gene catalog from KEGG
metabolic pathways databases (http://www.genome.jp/kegg/). The information is
further organized in central carbon metabolic pathways: glycolysis, pentose phosphate,
entner-doudoroff, pyruvate metabolism, and TCA cycle. The details for Open Reading
Frame (ORFs) name, gene name, enzyme name, EC numbers and KEGG metabolic

chart were used to reconstruct the metabolic network.

To create a particular reaction list, the reaction stoichiometry was referred from several
online databases, such as: KEGG, Biocyc (http://biocyc.org/) and BiGG database
(http://bigg.ucsd.edu/). In many databases, the information such as cofactors utilization
is not yet been completely clarified, as for example either a reaction only require to
include NADH or NADPH as a cofactor; or might involve both cofactors. In such

cases, two reactions were included in the reconstructed metabolic network.

In relation to the gene and reaction localization, all reactions were localized in cytosol
as most of central carbon metabolism takes place in this compartment. The information
directionality of reactions (reversible or irreversible) was extracted from pathway

databases or registered metabolic network sample models.

The outcome of reconstruction process is a set of associated biochemical reactions that
might be used in constructing the stoichiometric models metabolism using metabolite
balancing [8, 73]. This model basically depends on mass balance principle on
metabolic intermediates and allow for steady state behavior. Further, based on the

information on reactions stoichiometry, localization, and reversibility, the biomass
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composition needs to be defined. Table 9 shows the biomass composition of E.coli

model [74].

The E.coli reconstructed model comprises 48 reactions that are most frequently

encountered pathways: glycolysis (11 reactions), pentose phosphate (7 reactions),

Entner-Doudoroff (ED) (1 reaction), TCA Cycle (8 reactions), pyruvate metabolism (2

reactions), anaplerotic reactions (5 reactions), energy/redox metabolism (5 reactions),

transport reactions (3 reactions) and exchange reactions (5 reactions).

Table 9. Biomass composition for E.coli metabolic model from [74]

Metabolite mmole Metabolite mmole
g Dw g DW
Fructose 6 phosphate 0.1 Nicotinamide adenine dinucleotide 18.2
phosphate-reduced
3 Phosphoglycerate 1.5 Glyceraldehyde 3 phosphate 0.1
Acetyl coenzyme A 3.7 Nicotinamide adenine dinucleotide 35
Glucose 6 phosphate 0.2 Pyruvate 2.8
Adenosine triphosphate 41.3 Phosphate 41.3
Phosphoenolpyruvate 0.5 Coenzyme A 3.7
alpha Ketoglutarate 1.1 Adenosine diphosphate 41.3
Erythrose 4 phosphate 0.4 Nicotinamide adenine dinucleotide - 3.5
reduced
Ribose 5 phosphate 0.9 Nicotinamide adenine dinucleotide 18.2
phosphate
Oxaloacetate 1.8 Carbon dioxide 1.68

222 The reconstructed metabolic network for E.coli

Figure 9 shows the employed metabolic network model for E.coli experimental data

and the associated enzymes and metabolites are described in Tables 10-11. The
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characteristics and reaction distribution to its associate pathways of this model are

summarized in Tables 12-13 respectively.
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Figure 9: The employed Escherichia coli metabolic network map
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Table 10: The employed Escherichia coli metabolic model reactions

Pathway Enzyme Gene Reaction
catalyzing
PTS pts PEP + GLC --> G6P + PYR
Pgi pgi G6P <--> F6P
Ptk pfkA,B F6P + ATP --> ADP + FDP
Fbp fbp FDP --> F6P + PI
Fba fba FDP <-->T3P2 + T3P1
. Tpi tpi T3P2 <-->T3P1
Glycolysis
GAPDH gapA,C Pl + T3P1 + NAD <--> P3G + NADH
Eno Eno P3G <--> PEP
Pyk pykFA PEP + ADP --> ATP + PYR
Pdh IpdA COA + NAD + PYR --> ACCOA + CO2 +
NADH
Pps ppsA ATP + PYR --> Pl + PEP
G6PDH zwf G6P + NADP --> NADPH + D6PGC
6PGDH pgl; gnd D6PGC + NADP --> RL5P + CO2 + NADPH
Rpi rpiAB RL5P <--> R5P
Pentose
Phosphate Rpe rpe RL5P <--> X5P
Tktl tktA X5P + R5P <--> S7P + T3P1
Tal tal S7P + T3P1 <--> F6P + E4P
Tkt2 tktB X5P + E4P <--> F6P + T3P1
Entner- KDPG edd;eda D6PGC -->T3P1 + PYR
Doudoroff
Pyruvate Pta pta ACCOA + Pl <-->ACTP + COA
Metabolism Ack ackA ACTP + ADP <--> ATP + AC
CS gltA ACCOA + OA<-->COA+CIT
Acn acn CIT <> ICIT
ICDH icd ICIT + NADP <--> AKG + CO2 + NADPH
TCAcycle aKGDH SucAB AKG + COA + NAD --> CO2 + SUCCOA +
NADH
SCS sucCD Pl + ADP + SUCCOA --> ATP + SUCC +
COA
SDH sdhABCD | SUCC --> FUM
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Fum fumABC FUM <--> MAL
MDH mdh MAL + NAD <--> OA + NADH
Ppc ppc PEP + CO2 --> Pl + OA
] Pck pckA ATP + OA --> PEP + CO2 + ADP
Anapleurotic
. Mez maeB MAL + NADP --> CO2 + NADPH + PYR
Reactions
Icl aceA ICIT --> SUCC + GLX
MS aceB ACCOA + GLX --> MAL + COA
ATP atp Pl +4 HE + ADP <-->ATP+3H
ATPDr atpdrain ATP --> Pl + ADP
Energy/Redox
) NUO nuo NADH + 3 H + 02 --> 4 HE + NAD
Metabolism
PNTA pntA NADPH + NAD --> NADH + NADP
PNTB pntB NADH + NADP --> NADPH + NAD
ACt act AC + H-->ACE + HE
Transport -
) Plt pit PIE + HE <--> Pl + H
Reactions
CO2t co2t C0O2 --> CO2XT
GLCUP glcup GLCXT --> GLC
ACxt acxt ACE <--> ACXT
Exchange
. Hxt hxt HE <--> HXT
Reactions -
Pixt pixt PIXT <--> PIE
O2xt 02xt O2XT <-->02
0.1 F6P+1.5P3G + 3.7 ACCOA + 0.2 G6P +
41.3 ATP + 0.5 PEP + 1.1 AKG + 0.4 E4P +
Biomass 18.2 NADPH + 1.8 OA + 0.9 R5P + 0.1 T3P1
. Growth growth
Reaction + 3.5 NAD + 2.8 PYR --> 41.3 Pl + 3.7 COA

+ 41.3 ADP + 3.5 NADH + 18.2 NADP +
1.677 CO2 + 1 BIOMASS

The metabolic reactions are based on Figure 9.

“-->” represents irreversible reaction; “<-->" represents reversible reaction.
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Table 11: The employed E.coli metabolites

Abbreviations

Full name

Abbreviations

Full name

AC

Acetate

ICIT

Isocitrate

2 Keto 3 desoxy 6 phospho

ACCOA Acetyl coenzyme A KetoPGluc
gluconate

ACE Medium Acetate MAL Malate

ACTP Acetyl phosphate NAD N-lcotlnan.ﬂde adenine
dinucleotide

ACXT External Acetate NADH N-icotinan.1ide adenine
dinucleotide - reduced

ADP Adenosine diphosphate NADP I\I-lcotlnar1-1|de adenine
dinucleotide phosphate
Nicotinamide adenine

AKG Alpha Ketoglutarate NADPH dinucleotide
phosphate-reduced

ATP Adenosine triphosphate 02 Oxygen

BIOMASS Biomass 02XT External Oxygen

CIT Citrate OA Oxaloacetate

Cco2 Carbon dioxide P3G 3 Phosphoglycerate

CO2XT External Carbon Dioxide | PEP Phosphoenolpyruvate

COA Coenzyme A Pl Phosphate

D6PGC 6 Phospho D gluconate PIE Medium Phosphate

E4P Erythrose 4 phosphate PIXT External Phosphate

F6P Fructose 6 phosphate PYR Pyurvate

FDP 2 6 bisphosphate R5P Ribose 5 phosphate

FUM Fumarate RL5P Ribulose 5 phosphate

G6P Glucose 6 phosphate S7P Sedoheptulose 7 phosphate

GLC Glucose SUCC Succinate

GLCXT External glucose SUCCOA Succinyl coenzyme A

GLX Glyoxylate T3P1 Glyceraldehyde 3 phosphate

H Proton T3P2 Dihydroxyacetate phosphate

HE Medium Proton X5P Xylulose 5 phosphate

HXT External Proton

The metabolites are based on Figure 9
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Table 12. Network characteristic of reconstructed metabolic network of E.coli

Metabolites (total) 49
Cytosolic metabolites 39
Transportation metabolites 3
Extracellular metabolites 7

Reactions (total) 48
Cytosolic reactions 39
Exchange fluxes 5
Transportation reactions 3
Growth reactions 1

Table 13. Distribution of reactions for E.coli reconstructed metabolic network

Reactions (total) 48

Glycolysis pathway reactions | 11

Pentose Phosphate reactions 7

Entner-Doudoroff reactions 1

Pyruvate metabolism reactions | 2

TCA cycle reactions 8

Anapleurotic Reactions 5

Energy/Redox Metabolism 5

Transport Reactions 3

Exchange Reactions 5




The mass balance equations are based on the metabolic network in Figure 9:

GLC: vgreup — Vprs =0 (18)
G6P: Vprs — Vpgi — Vzwr — 0.2 X Vpjomass = 0 (19)
F6P: Vpgi + Vries + Vrar — Ve — 0.1 X Upiomass = 0 (20)
FDP: vpsy — Vppg =0 (21)
T3P1: Vi + Vi + Vrkea = Voap — 0.1 X Vpiomass = 0 (22)
T3P2: vppg — Vrp; =0 (23)
P3G: Vgap + Veno — 1.5 X Vpiomass = 0 (24)
PEP: vgno + Vpek + Vpps — Vpyk — Vppe — 0.5 X Upipmass = 0 (25)
PYR® vpyk + Vimaes + VEda — Vipas — Vpps — 2.8 X Upiomass = 0 (26)
ACCOA: Vg4 — Vit — Vpta — 3.7 X Vpiomass = 0 27
CIT: vg + vprg —Vaen =0 (28)
ICIT: vpen — Vica — Vacea = 0 (29)
AKG' Vicq — Vsucap — Vsiomass = 0 (30)
SUCCOA: vgycug — Vsycer = 0 (31)
SUCC: vgyeep — Vacea — Vsan = 0 (32)
FUM: vsqp — Vpym = 0 (33)
MAL: Vpym + Vaces — Yman — Vumaes =0 (34)
OA* vyan + Vppe + Vpek — Vpyk — Veir — 1.8 X Upiomass = 0 (35)
ACTP: vprg — Vaer =0 (36)
AC: vy — V4 =0 (37)
ACE: vy — Vgexr = 0 (38)
D6PGC: vzyr — Vgna — Veaa = 0 (39)
RL5P: vgrg — Vrpe — Vrpi = 0 (40)
X5P: Vppe + Vrar — Vrkea — Vrkes — Vrar — 0-9VBiomass = 0 (41)
R5P: Vppi — Vrkea — VBiomass = 0 (42)
STP: Vipen =V =0 (43)
E4P: vrg — Vrgeg — 0.4 X Vgiomass = 0 (44)
CO2: veoor — Vipda — Vicd — VsucaB — Vend — VMaeB — Vpck — 1.68 X Vpiomass = 0 (45)
02" voar — Vyuo =0 (46)
NADPH: vpnta — Vpnts — Vacn = Viea — Vzws — Vena — 18:2 X Vpiomass = 0 (47)
NADH: Vpnig — Vgap — Vipaa = Vsucap — Yman — Vmaes — 3-5 X Vpiomass = 0 (48)

NAD: VGap + VLpda + VUsucap + Vman + Vpnta — VNuo — VpPntB — 3.5 x UBiomass = 0 (49)
NADP: Vzws * Vend + Vica + VmaeB + Vpntp — Vpnta — 18.2 X Vgjomass = 0 (50)

COA: VLpda + Vsucap — Vpta — Vit — Vsuccd — VAceB — 3.7 X VBiomass = 0 (51)



ATP: vpry + Varpprain + Veck — Vare — Vpyk — Vsucep — Vack — 41.3 X Vpiomass = 0 (52)
ADP: Upyk + Varp + Vsuccp + Vack — Upfk — Vpck — VaTPDrain — 41.3 X VUBiomass = 0 (53)

PL: VGap + Vpta T Vsuccp + Varp — Vrbp — Vppc — Vpps — Vpir — VaTPDrain — 41.3 X

VBiomass = 0 (54)
PIE: vpir — Vpixr = 0 (55)
H: vace + Ynuo — Vpir — Varp = 0 (56)
HE: vypxr + Vpir + Varp — Vact = Vnuo =0 (57)

2.2.3 Preparing the metabolic network files

The GMF application is equipped with a database as the input file. All data files are
written in Microsoft Excel format, with three sheets; (1) experimental condition, (2)
reactions, and (3) metabolites as shown in Figures 10-12 respectively. Sheet 1
(experimental condition), which contains the experiment information, including the
author and title of original publication from where the data were extracted. Sheet 2
(reactions) provides the metabolic reactions and their associated flux distributions,
gene expressions, and enzyme activities with their experimental values for the
reference (e.g., wild type) and target (e.g., mutant type) cells. Enzyme activity or gene
expression distributions are used for the ECF algorithm. The Sheet 3 (metabolites) lists
the corresponding metabolites with their experimental concentration values for both
the reference and target cells. The internal or external index is added. Details on the

input file setting are described in Tables 14-16.

The reconstructed metabolic network model (as described in Section 2.2.2) will be put

in ‘reactions’ sheet, in column A — D, which represents its corresponding model, i.e.
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enzyme name (column A), gene name (column B), reaction formula list (column C),

and directionality information (column D) respectively.

A B [+]

1
2 |wil 2 herichi i K-1 in 11
3 Single disruptant samples: fbaB

4
5
6 | Glucose-limited chemostat at dilution rate 0.20h™ (July)
7
8

9 | Ishii N*, Nakahigashi K*, Baba T*, Robert M*, Soga T*, Kanai A*, Hirasawa T*, Naba M, Hirai K, Hoque A Ho PY, Kakazu Y, Sugawara K, Igaras
10 Multiple high-throughput analyses monitor the response of E coli to perturbations

11 | Science, 316(5824).593-597.

12  PMID: 17379776

16 Users of the data should carefully read the original manuscript and supplementary methods and text for additional information

17 aboutthe measurement values, samples and data series, and the normalization methods used and be aware of the limitations

18 before pursuing any analysis using this data.

19 Failure to do so might resultin erroneous interpretations and conclusions for which the authors of this study cannot be held responsible.

23 =<Cell concentration>
24 | No information provided
25 | Unit -

28 | =<Glucose concentration>

29 Unit giL
30 Method: enzymatic assay kit (F-kit, Roche Diagnostics)

32 | <Acetic acid and lactic acid concentration>
23  Unit giL
34  Method: enzymatic assay kit (F-kit, Roche Diagnostics)

36 <Oxygen and carbon dioxide concentration>
37  Unit mmolL
38  Method: monitored using Offgas Jar Jr. DEX-2562 (Able)

40  <Intracellular metabolites>
41 Unit mM
42 | Method: capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)

44 <Gene expression>

45 Unit mg-protein/g-dry cell weight
46 Method: DNA microarray analysis and two-dimensional differential gel electrophoresis (2D-DIGE)

AN el
H4rn IeernmenmI condition . reactions metzbnkes! '

Ready |

Figure 10. The example of a metabolic network file. All data files is organized into three sheets (1);

Sheet 1: experimental condition, Sheet 2: reactions and Sheet 3: metabolites.
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Table 14. The descriptions on the setting of input file in ‘experimental condition’ sheet

Column

Column name

Description

Al-A3

Samples

The strain sample

A5-A6

Culture

The experimental culture condition

A8-All

Publication

The details of original publication:
A9: The author (s)
A10: The publication title
Al1: The publication journal

Al3-Al7

Notice

The notice for user to use the data

Al19-A52

Measurements

The corresponding measurements of the experimental
(@) Cell concentration
(b) Glucose concentration
(c) Acetic and lactic acid concentration
(d) Oxygen and carbon dioxide concentration
(e) Intracellular metabolites
(f) Gene expression
() Enzyme activity
(h) Flux

A53

Remarks

Experimental additional information (if related)
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=)

A 8 D \1J E F G\Z,/ H 1 J K
et e[
. . [fubstrate al flux for  ftal flx |7 725" |agigned
lenzyme lcene reaction relative "
Iptake  [reaction! for target relative
cells cells gene enzyme
exression >
1 activity
2 | somment T’“;l mCEF LP of ECf lunit unit. (tarcet / (tarcet /
irrev=0 reference) |reference)
3 gloup |1 GLCXT=1GLC - 100 100
4 pts 1PEP+1GLC=1G6P +1FPYR 100 100|
5 i 1G6P = 1 F6P 8479 847
6 k 1F6P +1 ATP = 1 ADP + 1 FDP. 872 87.1
7 fbp 1FDP = 1F6P + 1Pl 00 00
8 fba 1FDP = 1 T8P2 + 1 T3P1 872 87.1
9 tpi 17T3P2=1T3P1 872 87.1
10 e 1PI+1T3P1+1NAD = 1 P3G + 1 NADH 1732 173
n eno 1P3G=1PEP 1624 162
2822] 5707

BREBEa I

BBLBRLBB2BIBRNBRE

40
4

1PEP +1ADP =1ATP + 1 PYR

lpd 1COA+1NAD+1PYR=1ACCOA +1 CO2+ 1 NADH

137.47 14209
1228 094

GLCUP 0 1 0| 1 1
PTS ojFl 0 0| 1 1
PGL 1 0 0| 1 1
PFK oﬂ 0 [ 1 1
FBP. 0 0 0| 1 1
FBA 1 0 0] 1 1
TPI 1 0 of 1 1
GAP 1 0 0| 1 1
ENO 1 0 0| 1 1
PVK 0 0 of 1 1
LPD. 0 0 0| 1 1
PPC poc 1PEP+1C02=1P[+10A 0 0 0| 1 1
PCK 1ATP +10A=1PEP +1C02+ 1 ADP 0 0 of 1 1
PPS pos 1ATP +1PYR=1PL+1PEP 0 0 [ 1 1
ZWE zwt 1.G6P + 1 NADP = 1 NADPH + 1 D6PGC 0 0 0 1361 137 1 1
GND end 1 DBPGC + 1 NADP = 1 RLSP + 1 GO2 + 1 NADPH 0 0) 0 | 3 1361 137 1 1
RFI rpi 1RLSP = 1 RSP 1 0 0 H 104 105 1 1
RPE rpe 1RLSP = 1 X5P 1 0 0 32 32 1 1
TKTA theta 1X5P + 1RSP = 1 S7P + 1 T3P1 1 0) 0 [ 3 3.2 32 1 1
TALB talb 1S7P +173P1 = 1F6P + 1E4P 1 0 0 H 32) 32 1 1
TKTB thtb 1X5P + 1E4P = 1F6P + 1 T3P1 1 ] [4] L] 0 1 1
EDA eds 1D6PGC =1 T3P1 + 1 PYR ofl 0 0] H 1 1
PTA pta 1 ACCOA + 1 P1=1ACTP + 1 COA 1 0 of 0 of 1 1
ACK [ack 1ACTP +1ADP =1 ATP + 1 AC 1 0 0| 'ﬁ 1 1
GLT gt 1ACCOA+10A=1C0OA+1CIT 0 0 0 E 817 1 1
ACN acn 1CIT =11 1 0 0 a3 817 1 1
0 icd 1ICIT + 1 NADP = 1 AKG + 1 CO2 + 1 NADPH 1 0 0 5852] 5151 1 1
SUCAB sucab 1AKG + 1 COA + 1 NAD = 1 CO2 + 1 SUCCOA + 1 NADH 0 0 0 4972 4261 1 1
SUCCD succd |1 PI+ 1 ADP + 1 SUCCOA = 1 ATP + 1 SUCC + 1 COA ofl 0 0 1 1
SDH sdn 1SUCC = 1 FUM 0 0 0 H 742 728 1 1
FUM fum 1 FUM = 1 MAL 1 0 0| 742 728 1 1
MDH mdh 1MAL + 1 NAD = 1 0A + 1 NADH 1 0 of b| 8512] 0537 1 1
MAEB maeb |1 WAL + 1 NADP = 1CO2 + 1 NADPH + 1 PYR 0 0 of b| 1356 762 1 1
ACEATsees [TET=TSUCOTT O ol oo }[zass[ 501y ;i ;
ACEB aceb 1ACCOA + 1 GLX = 1MAL + 1 COA off 0| [ b 2448]  30.19] 1 1
PIT pit 1TPE+THE=1PI+1H 1 0 0 1 1
PIXT pixt 1PKT=1PE 1 (] 0 1 1
02XT oZxt 102XT =102 1 0 0 1 1
CO2XT o2t |1CO2 = 1 CORXT 1 0 0 1 1
v n n

H_«'» W[ experimental condttion [ Teactions Jmetaboltes 73

Figure 11. The ‘reactions’ sheet template: The input file is designed by (1) enzyme, gene, reaction list,

and reversibility type to represent the metabolic network, (2) experimental data retrieved from

publications.

Table 15. The descriptions on the setting of input file in ‘reactions’ sheet

Column Column name Description
A Enzyme Enzyme name corresponding to a metabolic reaction
B Gene Gene name corresponding to a metabolic reaction
C Reaction Reaction formula
D Reversibility Reversibility of a reaction; 1 (reversible), O (irreversible).
E

Substrate uptake

The reaction corresponding to substrate uptake is indicated
by -1; the others are set to 0.

Obijective reactionl

The objective reaction for mCEF is indicated by -1; the
others are set to 0.

Objective reaction2

The objective reaction for LP (in ECF) is indicated by -1; the
others are set to 0.
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Experimental  flux

for reference cells

Experimental flux value for reference cells.

Experimental  flux

for target cells

Experimental flux value for target cells

Experimental or
designed  relative
gene expression

(target/reference)

The relative gene expression ratio of the target cells to the
reference ones. It is given by an experimental value or a
designed value.

Experimental or

designed  relative
enzyme activity
(target/reference)

The relative enzyme activity ratio of the target cells to the
reference ones. It is given by an experimental value or a
designed value.

Experimental gene
expression for

reference cells

The experimental gene expression values of reference cells

Experimental gene
expression for

target cells

The experimental gene expression values of target cells

Experimental
enzyme activity for
reference cells

Experimental enzyme activity values of reference cells.

Experimental
enzyme activity for
target cells

Experimental enzyme activity values of target cells

Predicted relative

gene expression

The predicted relative ratio of target gene expression to the
reference expression

Predicted flux for
reference cells

The predicted flux value for reference cells

Predicted flux for
target cells

The predicted flux value for target cells

Predicted EMC for
reference cells

The predicted elementary mode coefficient for reference
cells

Predicted EMC for
target cells

The predicted elementary mode coefficient for target cells
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© M~ ;e N

A B D E
metabolite name abbreviated| on |external ion for] cor fc
comment mM(0.20 h™") | mM(0.20 h™)
HXylulose 5 phosphate X5P 0
Fructose 6 phosphate F6P 1] 0.06 0.03]
Sedoheptulose 7 phosphate |S7P 0 033 0.15
Acetyl phosphate ACTP 0
3 Phosphoglycerate P3G 1] 0.34
Acetyl coenzyme A ACCOA 4]
Glucose § phosphate GEP 4] 0.18 0.13
10 Adenosine triphosphate ATP 0 131 192
11 Ribulose 5 phosphate RLSP 4] 0.08 0.07
12 |Phosphate PI 0
13 Phosphoenolpyruvate PEP 0 0.07
14 Malate MAL 0 0.09 0.09
15 |alpha Ketozlutarate IE«B 0 004
16 6 Phospho D gluconate lDGF‘GG [s]
17 Erythrose 4 phosphate E4P 0
18 |Carbon dioxide co2 1]
19 |Nicotinamide adeninedinucle|NADPH Q 0.16 0.14
20 succinate SUGC Q 0.06
21 Coenzyme A COA 0
22 CGCitrate CIT 1] 0.03
23 Adenosine diphosphate ADP 1] 056 067
24 oxaloacetate OA 0
25 Glyoxylate GLX 0
26 ribose 5 phosphate RSP 4]
27 |succinyl coenzyme A SUCCOA 4]
28 glyceraldehyde 3 phosphate |[T3P1 ]
29 Nicotinamide adeninedinucle]NADH 1]
30 Oxygen 02 0
31 isocitrate [iom 0
32 Nicotinamide adenhedimclg}NAD 0 0.79 082
33 Fumarate FUM (1] 0.06
34 dihydroxyacetate mosghatelTBPQ 1]
35 Nicotinamide adeninedinucle]NADP (1] 011 0.16
36 Acetate AC 1]
37 2 6 bisphosphate !FDF' Q 0.02

4 4 » M| experimental condition

reactions|_metaboltes] ¥

Figure 12. The ‘metabolites’ sheet template: Metabolite sheet keeps the experimental metabolites

concentration value of reference cell (wild type) and target cell (mutant type).

Table 16. The descriptions on the setting of input file in ‘metabolites’ sheet

Column Column name Description

A Metabolite name The metabolite name corresponding to the metabolic reaction

B Abbreviated name | The metabolite abbreviated name

C Description Description of metabolites

D External The metabolites status; 1 (internal), O (external).

E Experimental The experimental metabolite concentration for reference cells
concentration  for
reference cells

F Experimental The experimental metabolite concentration for target cells

concentration  for
target cells
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2.3 The simulation algorithms
Figure 13 represents the basic system flow of GMF. As mentioned before, the input for
GMF is the metabolic network file. In general, GMF consists of five (5) main modules:

(1) data preprocessing, (2) EM calculation, (3) GMF, (4) mCEF, and (5) ECF.

Read metabolic
network file

Data preprocessing
module

v

EM calculation
module

v

1
¥ v ¥

GMF mCEF ECF
module module module

END

Figure 13. The main system flow of GMF, which consists of five main modules: (1) Data

preprocessing, (2) EM calculation, (3) GMF calculation, (4) mCEF calculation, and (5) ECF calculation

In data preprocessing module, the system will extract the particular data required for
the calculation from input file to the memory. The data needed are extracted from
reaction and metabolite sheets. The system program will convert the format of reaction

formula listed in the input file in the format that accepted by efmtool.

Once converted, the system will calculate the EM (EM calculation module). We
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implemented the calculation of EM by invoking the function calculateFluxModes
(reactionFormula) as provided by efmtool. efmtool will analyze the metabolic
network from the reaction formulas as listed in the input file. From the called function,

we extract the information of EM that will be used for calculation.

GMF integrated Elementary Flux Mode Tool (efmtool) to produce stoichiometric
matrix and calculate EM. efmtool is developed in Java programming language, and
integrated into MATLAB. The implementation of bit pattern tress algorithm resulted
efmtool is currently the most efficient method for computing EM in large networks

[75].

After these processes completed, the system program will proceed to the estimation
process based on the algorithm selected by the user. As mentioned previously, if user
selects GMF or ECF algorithm, the EM calculated by efmtool will be optimized by the
given objective functions. The GMF application implemented four types of objective
functions; Linear Programming (LP), Quadratic Programming (QP) [67], Linear
Programming based on alpha spectrum (MeanLP) [51], Maximum Entropy Principle

(MEP) [52].

The implementation is performed in Matlab. The nonlinear optimization (MEP) is
using the function fmincon, while for the other objective functions (QP, LP, MeanLP)

the present programs are improved to feed bigger metabolic networks.

GMF is consists of two algorithms: modified Control Effective Flux (mCEF) and
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Enzyme Control Flux (ECF). GMF predicts the flux distribution of genetically
modified mutants [64]. The mCEF algorithm, which is derived from the Control
Effective Flux (CEF), estimates the relative expression ratios of metabolic genes of a
mutant to wild type from changes in target gene expression. ECF estimates the flux
distributions of genetically modified mutants by integrating their enzyme activity
profiles into EMs. ECF is very effective in the case that an enzyme activity profile is

provided.

2.4 The implementation

The Hypertext Preprocessor (PHP) is used as the GUI of GMF web application. All the
programs for simulation and visualization are written in MATLAB R2014a and run on
a Linux server. The efmtool program, an open source application computer interface, is
employed to calculate EMs. The GMF web application is available at:

http://kurata22.bio.kyutech.ac.jp/gmf/pub/top.php. The recommended web browser to

use the application is Mozilla Firefox or Google Chrome. The user manuals and

application programs of stand-alone version is shown in Appendix A.
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3 CHAPTER 3: RESULT AND DISCUSSION

3.1 The gene knockout database

We have collected 112 metabolic network models that contain key metabolism

processes and able to be calculated by the application [17, 18, 24, 26-30, 32-34, 76-81].

Details are described in Tables 17-21.

Table 17: The number of files according to microorganism in the database

Microorganism

Number of files

Escherichia coli

104

Corynebacterium glutamicum

Saccharomyces cerevisiae

Chinese Hamster Ovary 1

Total 112

Table 18: List of E.coli wild type data file

Dilution rate

0.10h* | 0.40n* | 0.50h™

070 Total

1 1 1

1

Total
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Table 19: List of E.coli genetic deletion mutant files

Dilution rate
Gene
Pathway _ , | 0.20n™ | 0.20n™ | 0.20h™ | 0.20h™ . . . . . | 0.50h-! | 0.50h-" | 0.50h-" | Total
deletion | 0.10h 0.20h™ | 0.22h™ | 0.40h™ | 0.60h™ | 0.66h"
June July Sept Oct (5H) (6H) (7H)
1. fbaB 1* 1* 1* 1* 4
2. fbp 1* 1* 1* 1* 4
3. gapC 1* 1* 1* 1* 4
4. gpmA 1* 1* 1* 1* 4
5. gpmB 1* 1* 1* 1* 4
6. pfkA 1* 1* 1* 1* 4
Glycolysis
7. pfkB 1* 1* 1* 1* 4
8. pai 1* 1* 1* 1* 1* 5
9. pykA 1* 1* 1* 1* 4
10. pykF 1* 1* 1* 1* 1* 1** 1** 1** 1** 9
11. ppsA 1* 1* 1* 1* 4
12. IpdA 1* 1
13. gnd 1* 1* 1* 1* 2% 6
14. pgl 1* 1* 1* 1* 4
15. rpe 1* 1* 1* 1* 4
Pentose -
16. rpiA 1* 1* 1* 1* 4
Phosphate
17. rpiB 1* 1* 1* 1* 4
18. tktA 1* 1* 1* 1* 4
19. tkiB 1* 1* 1* 1* 4

At
(o]




20. talA 1* 1* 1* 1* 4

21. talB 1* 1* 1* 1* 4

22. SucA 1* 1

23. zwf 1* 1* 1* 1* 1* 1* 1* 1* 8

Anapleurotic | 24. ppc 1* 1
Reactions | 25. pck 1* 1
Total | 100

“*” represents continuous culture; “**” represents batch culture

Table 20: List of C.glutamicum genetic deletion mutant files

Gene
Pathway . Total
deletion
1. fbp 1
Glycolysis | 2. gnd 1
3. zwf 2
Total 4

Table 21: List of S.cerevisiae wild type files

Dilution rate
m m -1 Total
0.15h™ | 0.30h™ | 0.40h
1 1 1 3
Total 3
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3.2 The GMF application (web and standalone version)

Figure 14 shows the main page of the GMF web application. Users can (1) upload their

own file or (2) select a file out of the registered files. (3) Users select an algorithm to

estimate a flux distribution and an objective function out of the four functions (MEP, QP,

LP, or MeanLP). When ECF is used, they can select a ratio type of gene expression and

enzyme activity profiles. (4) Once an input file is selected, details in the metabolic

network are displayed. 112 metabolic network files were registered with their associated

experimental data.

GMF Web GUI Application - La.. x | &
i kyutechacjp

Calculation

Notice
1f you want to use your own inpat Excel file, choose ‘Custon’ and select your local input Excel file
1f you want o use already-registered input Excel fle, choose Registered’ and select one of them in the list

Custom
Browse... Upload
® -

[1D:250] Ecol_Ishii_foaB_020_Julyxis | Download

G)
3

& mCEF © ECF GMF

IR R RN B BB RUREE R EREE

N

Figure 14. The main page of GMF web application. Users can (1) upload their own file or (2) select a

file out of the registered files. (3) Users select an algorithm to estimate a flux distribution or gene

expression profile, a ratio type of gene expression or enzyme activity profiles, and an objective function.

(4) Once an input file is selected, details in the metabolic network are displayed.
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'@ GMF Web GUI Application - Calculation Result - Mozilla

@ kurata22.bio.kyutech.ac.jp/gmf/common/calc_result.php?lid=6778&sid2=440

Download all outputfiles

Abort | Completed [ (Custom) Ecoli_Ishii_pfk._0.2_Septxls ] - Algorithm: GMEF, Objective function: MEP, Ratio type: gene

| efm count before postprocessing: 677
2015-08-19 11:52:48.169 main efm.impl INFO
| efm count after filtering/consolidation: 664
- 2015-08-19 11:52:48.169 main efm.impl INFO
Lm | uncompressing modes (can take a while)
2015-08-19 11:52:48.556 main efm.impl INFO
lﬂﬂ | TIME postprocessing: 40lms
2015-08-19 11:52:48.557 main efm.impl INFO
Lmic | overall computation time: 1165ms
xw R nw R w kR wwkwwn**EFME00]l start!
t@; EM matrix was calculated!
Do Ll *rxanknnnnnnnwnwwrwEFMtool finish!

EM matrix was calculated!
. Done.

————————— mCEFs starts!

mCEFs were calculated!
rges of target cells were estimated

Optimization for EMCs starts!
::3:MEP
EMCs of reference cells were optimized!
Flux distribution of reference cells was calculated!
EMCs of target cells were optimized!
Flux distribution of target cells was predicted!
. Done.

Calculation completed successfully.

E

Figure 15. The sample of GMF calculation result page in the web version. Users can click (1) on a

particular tab to get the desired output or (2) download all output files, by clicking on ‘Download all

output files’.
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r .
B GMF _System rev0_Main =N

Genetic Modification Flux (GMF)

Application
TABASE .fA\ B
— Y
Ishii_foa_0.2_July.x -

Ecoli_lshii_gapC_0.2_Oct.xis
Ecoli_Ishii_gapC_0.2_Sept.xls
Ecoli_lshii_gnd_0.2_Sept.xls
Ecoli_Ishii_pgi_0.2_Sept.xls < (:D
Ecoli_Ishii_talA_0.2_Sept.xls

Ecoli_Ishii_talB_0.2_Sept.xls
Ecoli_Ishii_tktB_0.2_Sept.xls
Ecoli_Portais_Pzwf xls
Ecoli_Shimizu_gnd_1.xls
Ecoli_Shimizu_pck xls

| File Details

File Name: Ecoli_Ishii_fba_0.2_July

Author:
Ishii N*, Nakahigashi K*, Baba T*, Robert M*, Soga T*, Kanai A", Hirasawa T*,
Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada

S, Masuda T, i N, Togashi T, M, Takai Y, Yugi K,
Arakawa K, hwata N, Toya Y, Nakayama Y, Hishioka T, Shimizu K, Mori H, (2
Tomita M. (2007)

Sample: wild-type: K-12 strain BW25113disruptant samples: fbaB

Culture: R culture
were used

Select an algorithm: 3
@ | mcee| Ece @

Figure 16. The main graphical user interface (GUI) of GMF stand-alone application. The data files

are available in (1). Once a particular file is clicked, the details are shown as in (2). User need to select an

algorithm as marked in (3) to start the calculation.
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- N
outputl [E=E )
GMF Calculation Qutput
Gene Name | Flux of Mutant (Experimental) Flux of Mutant (Predicted) RGE (Experimental) RGE (Predicted)
| 1 |gleup 100 100.0000 1 1 - 5 150
| 2 |pts 100 100.0000 1 1 E
| 3 |pgi 51 58.0420 1 0.5240 2
4 |pfk i 79.9412 1 09114 5
2 2 100
| 5 |mp 0.5745 1 1.0185 E
| 6 |ma e 79,3657 1 0.9002 =
BN 7 79.3857 1 0.5002 :g a1
| 8 |op 185 167.6768 1 0.5443 i -
| 9 |eno 158 157.3623 1 0.9411 E o
| 10 |pyk 0 0.0018 0.0100 1.2567e-04
| 11 |ipd 113 117.1483 1 0.9963 Ug 50 100 150
| 12 |ppc 52 56.2761 1 1.0833 Experimental flux distribution
13 |pck 2.3538 1 08923
Ipps 0 1 1
| 15 |zwf 47 40.5627 1 1.0789 Prediction Error- 4 5203
| 16 |and 47 40.5625 1 0.8077
| 17 |rpi 2 18.5702 1 0.8492
18 |mpe 2% 220123 1 0.3980 Input File: Shimizu_pykF_7H_1
| 19 tda 15 12.3814 1 0.8975 Algorithm: gmf
| 20 [tals 15 12,3814 1 0.8975 Objective Function: MEP
| 21 [tk 12 9.6309 1 0.9156 Relative Activity: gene
| 22 |eda 1.7657e-04 1 11185
| 23 |ota 35.3798 1 1.1563
| 24 |ack 28 353798 1 1.1563 Elapsed Time: 1.6949
25 |gt s9 53.9064 1 0.8532
| 26 |acn 53,9064 1 09532
| 27 lice 55 514858 1 0.9470 OK
ucab 51 431921 1 0% i

Figure 17. The sample of GMF calculation result page using stand-alone version. The information
related to estimation result is displayed in the center table of the page. Users can refer the information of

selected file name, algorithm to perform the estimation in the right hand side of the page.

3.3 Feasibility of application programs
To validate the feasibility of the application programs, we tested them with registered

models. The prediction accuracy by GMF or ECF was evaluated by:

P e 1 2
Prediction error (PE) = \/EZ?=1(vpredicti0ni - vexperimentali) (58)
Where Vpreqiction; 1S the ith flux predicted, Vexperimentar; 1S the ith experimental

flux, and n the number of reactions.

We picked up E.coli gene deletion mutants: gapC, talB [17], pck [34], pykF [18], and
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zwf [30], and E.coli over-expression mutants: zwf [29], and estimated the flux
distributions by GMF and ECF with MEP, QP, LP, or MeanLP objective functions.
Table 22 shows the effect of an objective function on the prediction error of the genetic
mutants by GMF and ECF. The MEP predicted their flux distributions more accurately

than other objective functions.

Table 22. Effect of objective functions on the prediction errors using GMF and ECF.

Prediction error by GMF Prediction error by ECF
FE.coli
Sample  Growth rate | MEP QP LP Mean | MEP QP LP Mean
mutant
LP LP
gapC  0.20h1(Oct) | 11.52 13.63 46.58 13.03 | 10.08 11.83  41.93  11.47
talB 0.20h(Sept) | 5.27 6.61 4449 555 | 513 6,53 4502 551
dggﬁfm pck 0.10h! 9.48 19.33 4657 25.36 | 8.86 16.94 4451  20.39
pykF  0.50h (7hrs) | 4.52 7.89 39.71 6.45 | 598 6.75 38.05 5.1
zwf 0.20h°1 700 811 17.81 7.08 | 432 669 2619 5.15
Over zwf 0.66h°1 472 758 43.43 928 | 513 853 4531 10.25
expression

Thus, we used MEP to compare the GMF- and ECF- predicted flux distributions of the
genetic mutants with the experimental flux distributions, as shown in Figures 18 and 19.
The predicted flux distributions were consistent with the experimental data. The
estimated flux distributions using GMF are shown in Tables 24-29. To statistically
validate the prediction errors, we performed linear regression analysis between the
GMF- or ECF- predicted flux distributions and experimental data, as shown in Table 23.
The coefficients of determination (R?) ranged between 0.940 and 0.993 for GMF and
0.940 to 0.997 for ECF, respectively. The Pearson correlations (r) for GMF and ECF
were from 0.935 to 0.994 and 0.950 to 0.997, respectively. Both methods provided

significant correlation between the predicted gene expression and experimental data.
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Table 23. The coefficients of determination (R®) and Pearson correlation (r) of prediction accuracy by
GMF and ECF. MEP is used

E.coli GMF ECF

Mutant condition Sample Growth rate R2 r R2 r
gapC 0.20h°1 (Oct) 0.942 0.983 0.955 0.986
talB 0.20h1 (Sept) 0.989 0.935 0.990 0.950
gene deletion pck 0.10h! 0.940 0.971 0.940 0.971
pykF 0.50h* (7hrs) 0.977 0.989 0.981 0.991
zwf 0.20h" 0.985 0.994 0.997 0.997
Over expression zwf 0.66h! 0.993 0.985 0.992 0.984
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Figure 18. Comparison between the predicted and experimental flux distributions for the E.coli mutants
of (A) gapC gene deletion, (B) talB gene deletion, (C) pck gene deletion, (D) pykF gene deletion, (E) zwf
gene deletion, and (F) zwf overexpression. GMF is tested with the MEP objective function.
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Figure 19. Comparison between the predicted and experimental flux distributions for the E.coli mutants
of (A) gapC gene deletion, (B) talB gene deletion, (C) pck gene deletion, (D) pykF gene deletion, (E) zwf
gene deletion, and (F) zwf overexpression. ECF is tested with the MEP objective function.
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Table 24. Prediction result of E.coli gapC 0.20h™ (Oct) gene deletion using GMF. Experimental fluxes

(exp fluxes) are from [17]

Gene Exp Predicted fluxes
fluxes MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 73.15 55.45 49.19 -1.30 51.187
pfk 83.38 77.28 78.96 95.40 79.66
fba 83.38 77.07 69.90 -1.89 70.96
tpi 83.38 77.07 69.90 -1.89 70.96
gap 169.48 162.87 155.92 88.83 157.13
eno 158.68 150.34 143.59 80.65 144.92
pyk 44,94 47.64 45.58 7.24 44.28
Ipd 122.84 124,77 132.35 196.66 130.76
ppc 9.85 0.42 5.85 75.61 7.35
zwf 25.25 42.88 49.17 100.21 47.19
gnd 25.25 42.88 41.34 5.94 39.82
rpi 14.22 20.42 19.81 5.98 19.24
rpe 11.03 22.46 21.53 -0.04 20.58
tktA 7.12 12.90 12.41 1.07 11.92
talB 7.12 12.90 12.41 1.07 11.92
tktB 3.92 9.56 9.12 -1.11 8.66
pta 0 0.01 0 51.36 4.50
glt 80.08 67.63 70.02 69.52 67.24
acn 80.08 67.63 70.02 69.52 67.24
icd 66.93 41.42 38.10 13.93 38.33
SucAB 58.23 32.23 29.06 7.93 29.38
sdh 71.38 58.44 60.97 63.51 58.30
fum 71.38 58.44 60.97 63.51 58.30
mdh 84.54 84.14 90.92 108.66 85.31
maeB 0.00 0.51 1.97 10.44 1.90
aceA 13.16 26.21 31.91 55.58 28.91
aceB 13.16 26.21 31.91 55.58 28.91
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Table 25.

Prediction result of E.coli talB 0.20h™ (Sept) gene deletion using GMF. Experimental

fluxes (exp fluxes) are from [17].

Gene Exp Predicted fluxes
fluxes MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 85.80 90.97 84.90 16.81 91.35
pfk 88.10 89.81 87.79 95.65 90.28
fba 88.10 89.69 87.42 15.34 89.80
tpi 88.10 89.69 87.42 15.34 89.80
gap 175.10 176.84 174.14 105.96 177.00
eno 165.00 165.50 162.43 97.68 165.71
pyk 41.48 50.92 48.27 8.68 51.34
Ipd 120.68 130.00 127.74 183.69 131.21
ppc 19.82 11.94 12.68 69.98 13.28
zwf 12.70 7.52 13.54 82.09 7.15
gnd 12.70 7.52 13.54 4.69 7.09
rpi 9.70 8.05 10.24 5.61 7.89
rpe 3.00 -0.53 3.30 -0.92 -0.79
tkta 3.00 1.25 3.21 0.64 1.11
talb 3.00 1.25 3.21 0.64 1.11
tktb 0.00 -1.78 0.09 -1.56 -1.90
pta 0.00 0.00 0.00 61.68 0.23
glt 90.90 90.69 85.12 58.78 91.00
acn 90.90 90.69 85.12 58.78 91.00
icd 89.03 79.34 71.40 15.97 78.89
sucab 80.83 71.03 62.81 9.90 70.60
sdh 82.70 82.38 76.53 52.71 82.72
fum 82.70 82.38 76.53 52.71 82.72
mdh 84.58 93.49 88.92 82.47 93.95
maeB 0.00 0.24 1.33 13.06 0.89
aceA 1.88 11.35 13.72 42.81 12.12
aceB 1.88 11.35 13.72 42.81 12.12
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Table 26. Prediction result of E.coli pck 0.10h™ gene deletion using GMF. Experimental fluxes (exp

fluxes) are from [34].

Gene Exp Predicted fluxes
fluxes MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 69.00 65.31 42.51 8.53 28.64
fba 84.00 80.89 51.85 7.09 38.54
gap 172.00 167.63 140.86 95.86 127.73
eno 161.00 155.93 131.16 85.95 118.19
pyk 137.00 126.16 105.74 55.48 88.73
Ipd 113.00 107.55 125.15 143.12 126.20
ppc 16.00 26.77 22.72 27.45 26.29
pck 0.90 0.55 0.28 0.01
gnd 30.00 33.13 22.11 6.09 22.80
tktA 10.00 9.74 6.29 0.93 6.54
talB 10.00 9.74 6.29 0.93 6.54
tktB 6.00 6.62 3.70 -1.71 4.00
glt 74.00 78.68 74.09 33.85 51.20
icd 57.00 78.68 74.09 19.78 51.05
sucab 46.00 70.10 66.98 12.52 44.06
sdh 63.00 70.10 66.98 26.58 44.20
fum 63.00 70.10 66.98 26.58 44.20
mdh 74.00 66.86 63.56 18.57 36.36
maeB 5.00 3.24 3.42 22.08 7.98
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Table 27. Prediction result of E.coli pykF 0.50h™ (7H) gene deletion using GMF. Experimental fluxes

(exp fluxes) are from [18].

Gene Exp Predicted fluxes
fluxes | MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 51.00 58.04 60.10 9.39 53.41
pfk 77.00 79.94 81.70 94.68 79.12
fba 77.00 79.37 79.91 8.53 77.62
tpi 77.00 79.37 79.91 8.53 77.62
gap 165.00 167.68 167.96 100.09 165.78
eno 156.00 157.36 157.42 92.64 155.33
pyk 0.00 0.00 0.00 0.00 0.00
Ipd 113.00 117.15 122.53 181.51 118.51
ppc 52.00 56.28 60.79 84.65 56.97
zwf 47.00 40.58 38.49 89.62 45.20
gnd 47.00 40.58 38.49 4.92 45.02
rpi 21.00 18.57 17.98 5.28 20.11
rpe 26.00 22.01 20.51 -0.36 24.91
tktA 15.00 12.38 11.66 0.81 13.85
talB 15.00 12.38 11.66 0.81 13.85
tktB 12.00 9.63 8.85 -1.17 11.06
ack 28.00 35.38 37.50 83.05 37.50
glt 59.00 53.91 50.35 45.14 49.07
icd 59.00 51.49 41.67 10.19 42.89
SucAB 51.00 43.92 33.94 4.73 35.23
sdh 51.00 46.34 42.62 39.67 41.41
fum 51.00 46.34 42.62 39.67 41.41
mdh 19.00 12.36 9.09 63.92 9.76
maeB 32.00 36.40 42.21 10.71 37.83
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fluxes) are from [30].

Table 28. Prediction result of E.coli zwf 0.20h™ gene deletion using GMF. Experimental fluxes (exp

Gene Exp Predicted fluxes
fluxes MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 98.90 98.33 98.27 87.56 98.44
fba 94.20 92.70 91.85 82.40 91.93
gap 184.00 180.85 178.57 171.35 178.65
eno 172.00 170.39 166.85 161.59 166.93
pyk 150.00 145.64 139.48 125.17 139.51
Ipd 137.00 127.17 118.47 161.74 118.55
ppc 19.40 21.26 23.46 52.68 23.53
pck 0.00 0.00 0.00 19.51 0.02
zwf 0.00 0.27 0.17 11.14 0.00
gnd 0.00 0.27 0.13 0.39 0.00
rpi 4.10 5.20 5.77 4.90 5.73
rpe -4.10 -4.93 -5.64 -4.51 -5.73
tkta -0.94 -1.07 -1.26 -0.95 -1.30
talb -0.94 -1.07 -1.26 -0.95 -1.30
tktb -3.20 -3.86 -4.38 -3.55 -4.43
eda 0.00 0.00 0.04 10.75 0.00
ack 29.00 19.72 5.89 46.82 0.06
glt 87.00 81.65 83.68 61.14 89.53
acn 87.00 81.65 83.68 61.14 89.53
icd 87.00 81.65 83.67 31.43 89.47
sucab 80.80 73.98 75.08 24.28 80.88
succd 80.80 73.98 75.08 24.28 80.88
sdh 80.80 73.98 75.08 53.99 80.94
fum 80.80 73.98 75.08 53.99 80.94
mdh 77.80 72.93 74.27 39.68 80.08
maeb 3.00 1.05 0.82 44.03 0.92
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Table 29. Prediction result of E.coli zwf 0.66h™ gene deletion (overexpression) using GMF. Experimental

fluxes (exp fluxes) are from [29]

Gene Exp Predicted fluxes
fluxes MEP QP LP MeanLP
glcup 100.00 100.00 100.00 100.00 100.00
pts 100.00 100.00 100.00 100.00 100.00
pgi 75.90 71.53 58.48 -1.02 56.15
pfk 78.50 77.51 69.85 26.08 67.12
gap 163.50 161.03 152.07 85.31 147.73
eno 149.90 146.51 138.46 74.25 133.93
pyk 117.40 113.49 106.01 50.07 100.80
Ipd 99.40 91.97 97.34 142.07 98.05
ppc 26.00 28.18 27.92 38.24 28.63
zwf 22.20 26.53 39.71 99.54 42.01
gnd 14.60 21.04 24.88 7.52 22.32
tkta 3.20 5.40 6.78 1.28 591
talb 3.20 5.40 6.78 1.28 591
tktb 0.00 1.53 3.15 -1.67 2.23
ack 44.00 35.49 39.16 51.44 38.96
glt 28.60 20.65 24.28 41.82 23.59
mdh 18.80 9.90 12.70 34.60 11.62
maeb 0.00 0.10 1.91 20.62 331
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4 CHAPTER 4: CONCLUSION

Molecular biology encompasses uncovered coherent biological facts, which
significantly essential in upholding life. The progression of systems biology approach is
rapidly emerges, from the definition of single components i.e. cells, tissues, organs, and
organisms towards its specific interactions. Thousands of genome sequences from
humans, plants, animals and disease tissues are now made available; the recent systems
biology application is now giving extra focuses on the needs to produce quantitative
interpretation that demonstrate the potential contribution for disease and drug discovery.
In accomplishing as such, understanding system-level becomes the primary goal of

systems biology.

The specific interactions of systems biology components are manifested through
metabolic network. In understanding as such, the integration of heterogeneous
biological data becomes a major concern. This concern is promisingly solved by the

combination of experimental and computational approaches, i.e. computational biology.

In examining a metabolic network and its pathway, the study on genetic perturbed
condition such as genetic knockout is one of significant strategies to comprehend the
complexity of cellular systems. Due to its significant contribution to support the
metabolic engineering and biotechnology applications, various methods have been
proposed, which implements either optimization-based or pathway-based analysis. FBA,
MOMA, ROOM are some of the methods that include constraints and/or linear
optimization techniques to analyze metabolic fluxes. Alternatively, MFA, EM, Extreme

Pathway, CEF, mCEF, ECF, GMF are the example of pathway-based method that able
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to recognize a complete fluxes solution from a metabolic network without any cellular

objective bias are provided.

Over the multi omics level of cellular systems, fluxomics provides essential information.
To facilitate in-depth analysis and generalization, a comprehensive, systematic and
standardize flux knockout data set with different experimental conditions and
methodology would be useful. The variety is important since for the knockout study,

different culturing conditions has affected on flux results.

In this work, we developed the web application of GMF to estimate the flux distribution
of genetic mutants with overexpressed or deleted genes. The originality of GMF is
derived based on EM, and the former study showed that the performance of GMF is
outperformed as compared to FBA and MOMA. This application implements the GMF
and ECF with four types of objective functions: MEP, QP, LP, and MeanLP. As an

alternative, GMF is also developed in stand-alone version.

To assist the analysis process, a database was attached that registers metabolic network
files with a variety of experimental data. To the date, we have collected 112 data set;
which included E.coli (104), C.glutamicum (4), S.cerevisiae (3) and CHO (1). In
representing the data, the experimental data of fluxes, enzyme activity profiles and
metabolite concentration are collected in re-arranged in a consistent and standardized

data files. The information on experimental condition and method was recorded as well.

The metabolic network models presented in GMF were reconstructed and designed
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based on central carbon metabolism. We focus on this metabolism system since it
contains ‘busy’ pathways with high-traffic of energy, cofactors and precursors that
would be high priority for understanding in metabolic engineering purposes. To
demonstrate the feasibility of the application programs, we tested the registered models.
Based on the measured prediction accuracy, the predicted flux distributions were
consistent to the experimental data. The MEP predicted their flux distributions more

accurately than other objective functions.

4.1 The contribution and advantages

GMF provides the real-time or simultaneous analysis platform with original
experimental data of flux, enzyme profiles, and metabolite concentration. This simulator
application can be readily extended by adding latest simulation tools and be a

user-friendly application that contributes to advances in metabolic flux analysis.

A part of the simulator, the database provides a variation of experimental data files,
represented in a metabolic network model and simulation-ready format. The availability
of real sample data contributes a valuable reference platform in facilitating the analysis
for systems biology tasks; particularly for further observation where a large number of

knockout mutant data becomes necessary.

Furthermore, the proposed metabolic network used in representing the data set can be

the basis as predictive model in analysis tasks.

To date, the use of GMF and ECF algorithms had required an expensive MATLAB
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license and its associated command line operation, but the new web application solved
such problems. Users can use the GMF and ECF through the web without any license

and command line operation.

Metabolic network data are often written in the SBML format [82], where each reaction
is decomposed into multiple classified components. This format has an advantage in the
exact definition of each component, while it requires lots of memory due to redundancy
of XML tags and sometimes hampers human readability. On the other hand, the GMF
web application presents one metabolic reaction in one cell in an ordinary Microsoft

Excel format, enhancing the human readability and usability.

4.2 The future works

The works that have been done in building GMF to publicly accessible is still having

room of improvements. With the consideration based on the current works, further

improvement should be planned in future:

(1) Towards automatic reconstructing the metabolic network
The reconstruction of metabolic network in GMF now is done manually. This
reconstructing process should be improved towards computerized process by
extracting relevant information from available online genome and pathway
databases. As mentioned previously, the processes in reconstructing a computer
executable model will having challenges (blocked reaction problem, missing gap),
however by implementing suitable algorithm these problems will solve.

(2) Towards a large, standardized flux data set

We have produced a standardized knockouts data set of central carbon metabolism
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for E.coli, C.glutamicum, S.cerevisae and CHO. These data set are arranged in a
consistent metabolic network (according to particular organism model), each files
comprises the experimental data on: fluxes, enzyme activity profiles (gene
expression and enzyme activity), mRNA, and metabolite concentrations. The
condition and method conducted during the experimental process were also recorded

in the files.

The current data set will become more valuable by increasing the current number of
data files, as more variety files will facilitates comprehensive analysis. Another
valuable data set should include the data set of multiple perturbation experiment i.e.

double, triple or more knockouts [10].

The next practical value of data set should include the regulators of central
metabolism. By including such information, more comprehensive models are
needed to reconstruct in future. The regulatory network layer is essential to
substitute the modeling principle that applied stand-in concept (e.g. objective
function) or other heuristics, to fundamental mechanistic models. It is also important
to have a data collection of gene set that related to the aerobic/anaerobic responses,
stress response and carbon sources catabolism from other sources than glucose, i.e.

xylose, glycerol, and acetate.

(3) Towards improved quantitative analysis
The current development of GMF is only able to perform estimation process within

a singular input files. It would be more favorable if two or more files (e.g. the same
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gene knockout type of different growth rates) are estimated concurrently. This

would assist for efficient analysis tasks.

In addition, to improve the interpretation of metabolism, it could be ideal to apply many
existing and proven theoretical frameworks, for example graph theory of metabolic
robustness, flux coupling, transcriptional versus metabolic limited fluxes classifications,

modularized network analysis or other relevant principles.
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Appendix A: The Instruction of application programs (User Manual)

Genetic Modification Flux (GMF) web application
1. Selecting a file
() GMF for a registered file

| GMF Web GUI Application - La... x \+

i & @ kurata22 bio.kyutech.ac.jp/gmf/pub/top.phpver=12 c
| Calculation

Notice :
If you want to use your own input Excel file, choose 'Custom' and select your local input Excel file.
If you want to use already-registered input Excel file, choose Registered' and select one of them in the list.

Custom

Brovas.] ol sl

© Registered © .(m:«s] Ecoli_pyk_0.1_Shimizu_53.xls
: N

D N Algorithm : ®mCEF O ECF GMF .

10 APlsample Xls - Objective Function MEP © MeanLP O LP QP ’
238 artcyclel xls Ratio Type : © gene enzyme

239 artcycle2 xls

240 artcycle3 xls

64 Ecoli_fbaB_0.1_Ishii_53.xls
1 EcolimetabolicNetwork xlsx
46} Ecoli_pyk_0.1_Shimizu_53.xls

244 GYLCOI11.xls Publication

242 i GYLCOlxis Metabolic flux analysis of pykF gene knockout Eschericia coli based on 13C-labeling experiments
241 PPP1.xls together with measurements of enzyme activities and intracellular metabolic concentrations

p st K. Al Zaid Siddiquee, M. J , K. Shimizu

[Microbiol biotechnol (2004) 63:407-417

n

Notice

Users of the data should carefully read the original manuscript and supplementary methods and text
for additional information

about the measurement values, samples and data series, and the normalization methods used and be
laware of the limitations

before pursuing any analysis using this data.

Failure to do so might result in erronecus interpretations and conclusions for which the authors of
this study cannot be held responsible.

Measurements

Flux
Metabolites-intercelluler
Enzyme activity

Batch culture

Samples
[PykF knockout mutant JWK1666 from Ecoli derivative BW25113 using the method of Datsenko and Wanner

Remarks

[<Culture>

1. Continous culture:

was conducted in a working volume of 500 ml in a 1 1 reactor (Marubishi, Tokyo, Japan)

The minimual medium was used, the composition is same as for batch culture except that the feed

Fig. B1: The GMF main page to calculate a registered network in the database

. Click on the ‘Registered’ radio button.

Click on a file name from the list.

Once a file is selected, the file name will be displayed in 3.

Click on the desired algorithm and ratio type.
Click the ‘Calculate’ button.

g A W N P
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(b) GMF for user’s own file

o . W —
GMF Web GUI Application - La... x | &
& @ kurata22.bio kyutech.acjp/gmt/pub/top.phpiver=12 || Q Seorch TE $ O =
|
Calculation [
i |
Notice : I
If you want to use your own input Excel file, choose 'Custom’ and select your local input Excel file. |
If you want to use already-registered input Excel file, choose Registered’ and select one of them in the list \

Fig. B2: The GMF main page to calculate user’s own file (before a file is selected)

1. Click on the ‘Custom’ radio button. Click on the ‘Browse’ button and make a file

selection from the user’s local drive. Click on the ‘Upload’ button.

| GMF Web GUI Application - La... % |+

|
‘ € @ kurata22 bio kyutech.ac,jp/gmf/pub/top.phpiver=1.2

| Calculation

C || Q Search

Notice :
If you want to use your own input Excel file, choose 'Custom' and select your local input Excel file.
If you want to use already-registered input Excel file, choose Registered' and select one of them in the list.

0 Custom : Ishii_rpiA_0.1_1.xls

[Brome- | Notle seecs

e [ User Custom] Ishii_rpid_0.1_xls | Download |

) Registered
Keyword
D Name Algorithm : @©mCEF OECF O GMF .

10 APlsample xls - Objective Fus MEP ) MeanLP O LP QP ‘
238§ antcyclelxls Ratio Type : ©@gene O enzyme

239 artcycle2 xls Calculate
240 artcycle3.xls
64 Ecoli_fbaB_0.1_Ishii_53.xls

11 EcolimetabolicNetwork xlsx

46 Ecoli_pyk 0.1_Shimizu_53.xls i
244 i GYLCOllxs Samples

242 GYLCO1 xls jwild-type: K-12 strain BW25113
241 i PPPIxis disruptant samples: rp:

47 i _testxls

Publication

Ishii N+, Nakahigashi K+, Baba T+, Robert M+, Soga T+, Kanai A+, Hirasawa T+, Naba M, Hirai K, =
Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T,
Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K,
Tomita M. (2007)

[Multiple high-throughput analyses monitor the response of E. coli to perturbations.

Science, 316(5824):593-597.

PMID: 17379776

Mori H,

Notice

Users of the data should carefully read the original manuscript and supplementary methods and text
for additional information

about the measurement values, samples and data series, and the normalization methods used and be
aware of the limitations

before pursuing any analysis using this data.
Failure to do so might result in 1) P
this study cannot be held responsible.

ns and nclusions for which the authors of

Measurements

Flux
[Metabolites-intercelluler
Enzyme activity

Chemost culture

Fig. B3: The GMF main page to calculate user’s file (after a file is uploaded)
Click on the desired algorithm and ratio type.
Click on the ‘Calculate’ button. The calculation completion time depends on the
metabolic network size, algorithms, and objective functions. The calculation

completion time is shown as follows.
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File name: Ecoli_Ishii_pfkA 0.2_Sept, Reaction number: 48

Calculation completion time (sec)

GMF ECF
mCEF
MEP | QP LP | MeanLP | MEP | QP LP MeanLP
42 37 42 157 42 37 4 157 37

2. Retrieving the Calculated Results

@ GMF Web GUI Application - Calculation Result - Mozilla Firefox

@ kurata22.bio.kyutech.ac.jp/gmf/common/calc_result.php?lid=6778tsid2=440
| Result

1 Abort  Completed [ (Custom) Ecoli_Ishii_pfkA_02_Septxls ] - Algorithm: GMF, Objective function: MEP, Ratio type: gene

Download all output files @

| efm count before postprocessing: 677
2015-08-19 11:52:48.169 main efm.impl INFO
| efm count after filtering/consolidation: 664
2015-08-19 11:52:48.169 main efm.impl INFO
| uncompressing modes (can take a while)
2015-08-19 11:52:48.556 main efm.impl INFO
Lﬂﬂ | TIME postprocessing: 40lms

2015-08-19 11:52:48.557 main efm.impl INFO
© stoic | overall computation time: 1165ms
W H R AN R AR R Wk RN ¥ *EFME00]l start!
lm EM matrix was calculated!

WHE R AN R A AN AN RN HEFME00l finish!

lmm EM maD:::x was calculated!

Lﬂuxhtgetﬂedimd --------- mCEFs starcs!

mCEFs were calculated!
Lunchlgetpl‘edkmd/ rges of target cells were estimated I

Optimization for EMCs starts!
—( 1 ) s:3:MEP

EMCs of reference cells were optimized!

Flux distribution of reference cells was calculated!
EMCs of target cells were optimized!

Flux distribution of target cells was predicted!

/

Done. ‘
‘ﬂ
Calculation completed successfully.

o i)
—
——

Fig. B4: The GMF calculation result page

1. Click on a particular tab to get the desired output.

2. To download all output files, click on ‘Download all output files’.
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Matlab Stand-Alone Version

1. Main graphical user interface (GUI)

§

-
B GMF _System_rev0_Main

Genetic Modification Flux (GMF)
Application

DATARASE

P ®
|

Fitter by keyword

[Ecoli_Ishii_fba_0.2_July.xls -
Ecoli_Ishii_gapC_0.2_Oct.xls
Ecoli_lshii_gapC_0.2_Sept.xls
Ecoli_lshii_gnd_0.2_Sept.xls
Ecoli_Ishii_pgi_0.2_Sept.xls
Ecoli_Ishii_talA_0.2_Sept.xls

m

Ecoli_lshii_talB_0.2_Sept.xls
Ecoli_Ishii_tktB_0.2_Sept.xls
Ecoli_Portais_Pzwf xls
Ecoli_Shimizu_gnd_1.xIs
Ecoli_Shimizu_pck xls

| File Details

File Name: Ecoli_Ishii_fba_0.2_July

Author:

Ishii N*, Nakahigashi K, Baba T*, Robert M*, Soga T*, Kanai A, Hirasawa T*,
Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada
S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K,
Arakawa K, lwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H,
Tomita M. (2007)

Sample: wild-type: K-12 strain BW25113disruptant samples: fbaB

@

Culture: Remarks:
were used

cultivati culture

—Select an algorithm:

EE e

Fig. B5: The main graphical user interface (GUI) of GMF stand-alone program.

1. The data collection

(i)

2. The details of selected file, i.e. Author (s), Sample and Culture are displayed

3. Calculation algorithms selection. Click on the desired algorithm to perform
the calculation

4. Additional functions: A: Search a file by using keyword; B: Add a new file to
the database

Select a file by clicking on a file name from the list.



2. Selection of the GMF algorithm

r menu

=)

Genetic Modification Flux (GMF)

1. Select relative activity type: 2. Select objective function:

Relative Activity Profile——§ 9] Objective function 2

@ enzyme data @ MEP 2 QP

_) gene expression data 9 LP ECFLP
Calculate ] [ Cancel

Fig. B6: The GMF selection menu if GMF algorithm button is selected in Fig. S5

1. Select the relative activity type

2. Select the desired objective function

3. Click on the ‘Calculate’ button

'n outputl - r— - — - =1 =]
GMF Calculation Output
Gene Mame |Flux of Mutant (Experimental) Flux of Mutant (Predicted) RGE (Experimental) RGE (Predicted)

iglcup 100 100.0000 1 1 ol g 150

2 |pts 100 100.0000 1 1 =
| 3 |pai 51 55.0420 1 05240 = .
|4 |ow b 79.9412 1 0.9114 S 10
| 5 |me 0.5745 1 1.0185 5
| 6 |ma bl 79,3867 1 0.9002 =
[ 7 [wi bl 79.3867 1 0.9002 % o
| & |oap 185 167.6768 1 09443 3 -
[ 9 [eno 156 157.3823 1 09411 = o
[ 10 [pyk ] 0.0018 0.0100 1.2567e-04
| 11 |[ld 113 1171483 1 09963 U[] 50 100 150
| 12 |ppc 52 56.2761 1 1.0833 Experimental flux distribution
| 13 [pek 23538 1 09923
| 14 [pes 0 1 1
| 15 [zwf 47 40.5827 ! 1.0789) Prediction Error: 4.5203
| 16 |and a7 40.5825 1 08077 L

17 |mi 21 18.5702 1 09492
[ 18 |rpe 26 220123 1 0.8980 Input File: Shimizu_pykF_7H_1
| 19 [ica 15 12.3814 1 0.8575 Algorithm: gmf
| 20 |l 15 12.3814 1 0.8975 Objective Function: MEP
| 21 |tk 12 9.6309 1 0.9158 Relative Activity: gene
[ 22 |eds 1.7657¢-04 1 11185
| 23 |pta 35.3798 1 11583
| 24 |ack 28 35.3798 1 1.1563 Elapsed Time: 1.6949
[ 25 ot 59 53.9064 1 09532

26 |acn 53.9064 1 09532
| 27 |iea 59 51.4858 1 0.9470 OK

22_|sucab 51 43821 1 08273 S

Fig. B7: The sample of GMF calculation output page
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3. Selection of the ECF algorithm

rn menu

Enzyme Control Flux (ECF)

1. Select relative activity type: 2. Select objective function:

Relative Activity Profile 1 ] Objective function 2

Q@ enzyme data @ MEP QP

_) gene expression data LP ECFLP
Calculate ] l Cancel

Fig. B8: The ECF selection menu if ECF algorithm button is selected in Fig. S5

1. Select the relative activity type

2. Select the desired objective function
3. Click on the ‘Calculate’ button

rn output3

ECF Calculation Output

Gene Name |Flux of Mutant (Experimental)| Flux of Mutant (Predicted)

1 |gleup 100 100.0000 -
2 [ots 100 100.0000 I
| 3 |pai 51 54.9763

4 |pfk T 81.9118
5 |me 0.5972
| 6 |fa 77 81.3146
Itpi 77 81.3145
| & |sap 165 168.9858

9 |eno 156 158.1073 E
|10 |pyk 0 0.1975
| 11 [ld 12 115.3632
| 12 |ppc 52 56.5327
| 13 |pck 2.2480

14 |pps o
| 15 |zwf 7 335733
Egnﬂ 47 33.5729 ]

17 |wpi 21 16.5093
| 18 |pe 2 17.0635
| 19 |tda 15 9.9823
| 20 tab 18 9.9823
| 21 |tkp 12 7.0813

22 |eda 3.7653e-04
23 |pta 233932
|24 |ack 28 233932
Egn 59 62,9170

26 |acn 62.9170
| 27 |ica 59 606973

28 |sucab 51 57 7168 S

Prediction flux distribution

150

100

50

0 . . .
0 50 100 150
Experimental flux distribution

Prediction Error: 5.9841

Input File: Shimizu_pykF_7H_1
Algonthm: ecf

Objective Function: MEP
Relative Activity: gene

Elapsed Time: 0.90108

Fig. B9: The sample of ECF calculation output page
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4. Selection of the mCEF algorithm

B menu lil_lg

Modified Control-Effective Flux (mCEF)
1. Select relative activity type: 2. Select objective function:
Relative Activity Profile——] 1 Objective
@ enzyme data @ MEP QP
_) gene expression data LP ECFLP
Calculate I ‘ Cancel

Fig. B10: The ECF selection menu if ECF algorithm button is selected in Fig. S5

1. Select the relative activity type
2. Click on the ‘Calculate’ button

F - = Al
noutputZ =1
mCEF Calculation Output
Gene Mame |RGE (Experlmental]|RGE(Predlct-
| 1 |geup 1 [
|2 |pts ' B
| 3 |pgi 1 0.9¢
L pfk 1 0.8
| 5 |p 1 0.84
| 6 |fba 1 0.8]
| 7 [tei 1 0.8
: | 8 |[oap 1 0.9 =
9 |eno 1 0.9¢
| 10 oy 100006-03  1.2693¢
| | 11 |ipd 1 0.99
| [ 12 |ppc 1 1.0¢
(| | 13 |pck 1 U.SE\\
| | 14 |ppe 1 0.7¢
| 15 |zwt 1 1.0¢
| 16 |ond 1 0.9:
[ 17 |wi 1 0.9
15 |mpe 1 0.9¢ Input File: Shimizu_pykF_TH
13 |tka 1 0.9¢ Algonthm: mcef
Etalb 1 0.9¢ Relative Activity: enzyme
21 [tktb 1 0.8
| 22 |eda 1 1.0¢
| 23 |pta 1 107
| 24 [ack 1 107 | Elapsed Time: 0.058094
| 25 |gt 1 0.9¢
26 |acn 1 0.9¢
77 liea 1 0o =
4| 1 | [3
kL

Fig. B11:The sample of mCEF calculation output page



5. Additional functions
(a) To search a file by using keyword

Genetic Modification Flux (GMF)
Application

— DATABASE

{1
Fiter by keyword zwf \( Add new file to database
Ecoli Portais Pzwf.xls A

Ecoli_Shimizu_zwf_0.1.xls
Ecoli_Shimizu_zwf_0.2.xIs

| ©)

—File Details

File Name: Ecoli_Portais_Pzwf
Author:
Ce’cile Nicolas, Patrick Kiefer, Fabien Letisse, Jens Kro 'mer, Ste’'phane
Massou, Philippe Soucaille, Christoph Wittmann, Nic D. Lindley,
Jean-Charles Portais*

! Sample: wild-type: K-12 strain MG1655: Pzwf ( XP

|
Culture: cultivation:-

Select an algorithm: —

mCEF || ECF

B

‘

Fig. B12:The main GUI

1. Put a keyword and press the ‘Enter’ key
2. The files that match to the keyword are listed in 2

3. To perform the calculation, click on the desired file and algorithm



(b) Adding new file to the database

"B GMF_System_rev0_Main

Genetic Modification Flux (GMF)
Application

| DATABASE

Fiter by keyword

Ecoli_Ishii_gapC_0.2_Oct xls
Ecoli_Ishii_gapC_0.2_Sept.xls
Ecoli_Ishii_gnd_0.2_Sept.xls
Ecoli_lshii_pgi_0.2_Sept.xls

i lohii Sont ye

B Pick file(s) to add to database
s i

@" 1. » Computer » OS(C:) » Data ~ | ¢ |[ search Data ol
-_—— —— e - -
Organize v New folder = A ©
9% Favorites “  Name d Date modified Type Size &
I Desktop i@ Ecoli_E rling_pyk 04 8/18/20154:38 PM  Microsoft Excel 97... 63KB| @ £
# Downloads @ Ecoli_Ishii_0.1_WT 8/11/2015 2:24 PM Microsoft Excel 97... 64 KB
$3 Dropbox @] Ecoli_Ishii_04_WT 8/11/20152:24 PM  Microsoft Excel 97... 64 KB
4 Recent Places @] Ecoli_Ishii_0.5_WT 8/11/20152:24 PM  Microsoft Excel 97... 64 KB
&) Ecoli_Ishii 0.7 WT 8/11/2015224 PM  Microsoft Excel 97... 64 KB
9 Libraries sj Ecoli_Ishii_fba_0.2_July 8/11/20152:25PM  Microsoft Excel 97... 64 KB
3 Documents s Ecoli_Ishii_fba_0.2_June 8/11/20152:25PM  Microsoft Excel 97... 64 KB
o Music B Ecoli_Ishii_fba_0.2_Oct 8/11/20152:25PM  Microsoft Excel 97... 64 KB
[&=) Pictures E;’] Ecoli_Ishii_fba_0.2_Sept 8/11/20152:25PM  Microsoft Excel 97... 64 KB
B videos &) Ecoli_Ishii_fbp_0.2_July 8/11/2015226PM  Microsoft Excel 97... 64 KB
@] Ecoli_Ishii_fbp_0.2_June 8/11/20152:26 PM  Microsoft Excel 97... 63 KB
1™ Computer ) Ecoli_Ishii_fbp_0.2_Oct 8/11/20152:26PM  Microsoft Excel 97... 64 KB
& osc) &) Ecoli_Ishii_fbp_0.2_Sept 8/11/2015226 PM  Microsoft Excel 97... 64 KB
cal®) E.J Ecoli_Ishii_gapC_0.2_uly 8/11/2015 2:27 PM Microsoft Excel 97... 64 KB
E_ﬂ Ecoli_Ishii_gapC_0.2_June 8/11/20152:27PM  Microsoft Excel 97... 64 KB
] Network > B Feoli Khii nanC 0.2 Oct RM11/2015 2:27 PM Microsaft Fxcel 97 64 KR A%
File name: Ecoli Emmerling_pyk 0.4 v [MS ExcelFiles (s, "ads) ]
@®lom 1 [om ]
— ___

- =

Fig. B13: The sample of file filtering by using keyword in main GUI

1. Click on <Add new file to database’ button

2. Click on a new file from the computer drive
3. Click on Open button
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6. Retrieving the Calculated Results
() MATLAB

1. Referto \results\<Excel file name> folder

» MATLAB » GMF_efmtool|» results » Ecoli_Ishii_fba 0.2 July »

R 4 E-mail Burn New folder

Documents library
Ecoli_Ishii_fba_0.2_July

Name Date modified
| . temp 8/12/2015 2:02 PM
% loadAllData 8/20/2015 4:16 PM
@ DMSA 8/20/2015 4:11 PM
@ em 8/20/2015 4:11 PM
@H emc 8/20/2015 4:16 PM
@H ems 8/20/2015 4:14 PM
@ flux_of_mutant 8/20/2015 4:16 PM
@ flux_of_wildtype 8/20/2015 4:16 PM
[@H metabolite 8/20/2015 4:11 PM
[ reaction 8/20/2015 4:11 PM
{ad reactionEFM 8/20/2015 4:11 PM
@ rge 8/20/2015 4:12 PM
[aH stoichEFM 8/20/2015 4:11 PM
[@H stoichMat 8/20/2015 4:11 PM
|| PredictionError_1.031309e+01 8/13/2015 3:25 PM

Fig. B14: The sample of calculated result in ‘results’ folder

94



(b) MS Excel file
1. Refer to column P — Q in corresponding input file

] i J K T ] N 5 P ) R s T U v W X
experiment L
perimental experiment ) )
cxperiment |experimen [or desiened ::m aleene  [TPTTRN [0erine *l esperimenta| predicted [predicted [predicted [predicted [predicted [predicted [predicted [predicted |predicted
ol fhoxfor [tal fhax [reltive 57 fexpression [DE0° [T lerzyme  flrelative  [fhacfor  ffuxtor  [thacfor  [fhocfor  [flucfor  [fhocfor  [facfor  [fhefor
reference [for target [sene for pression jactivity activity for [|esne reference |reference [reference |reference |target  [target  [tarset  |target
o |enzyme for target [reference ;
cells cels  fewression  [TENE rsference | o target cells [|expression [cells cells celis cells cells  [cells  fcells  [cells
orswm) [ETR L feetie cells o
. ; (target / [(target / § ) ) § IRtth 7
unit unit reter ) |reter g Junit unit Junit unit e o) MEP e LP [ECFLP MEP (e LP ECFLP
1 L .
55101742
02 02

137 474 _
12.281968| 1245672

146 7071

44981335(_ 2313744 16 0568] 2358155| 653518| 2048287
113107, _13 __12 72464

206646 45739547 14127617| 4784973 9.936962| 0007041] 7 75823
M_

5025811
[ [ 0000199 2.157548] 6240467 5146095]

_ﬂ__ﬂ 970678
0

asosa
66466] 7682023 7855012
~6490 196] -0 ____

[ 53.605806]
___
3ATT:

Fig. B15: The sample of calculated result in MS Excel file

32| 35.12942] 4.463385[ 34.60184)
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List of Abbreviations

API
B.subtilis
C.glutamicum
CHO
CNA
DNA
E.coli
ECF
ECFLP
EM

EMC
FBA
GEM
GMF
KEGG
LP

MEP
MFA
MILP
MOMA
MeanLP
QP
ROOM
S.cerevisiae
efmtool
mCEF

: Application Programming Interface

: Bacillus Subtilis

: Corynebacterium glutamicum

: Chinese Hamster Ovary

: CellNetAnalyzer

: Deoxyribonucleic acid

: Escherichia coli

: Enzyme control flux

: Enzyme control flux linear programming
: Elementary Mode

: Elementary mode coefficient

: Flux Balance Analysis

: genome-scale model

: Genetic modification of flux

: Kyoto Encyclopedia of Genes and Genomes
: Linear programming

: Maximum entropy principle

: Metabolic Flux Analysis

: Mixed-integer linear programming

: Minimization of Metabolic Adjustment

: Linear Programming based on alpha spectrum
: Quadratic programming

: Regulatory On/Off Minimization

: Saccharomyces cerevisiae

: Elementary flux mode tool

: Modified control effective flux
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