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Abstract: In this study, the adhesive strength for single lap joint is investigated based on the intensity of 

singular stress field. First, the critical intensity of singular stress at the adhesive dissimilar joint is calculated 
by using finite element method (FEM) based on the experimental result. It is found that the adhesive 
strength can be expressed as the critical intensity of singular stress field. Then, a suitable evaluation 
method of adhesive strength is investigated focusing on the intensity of singular stress field. The effect of 
specimen geometry on the intensity of singular stress is considered. The results show that the intensity of 
singular stress field decreases with increasing the adherend thickness, the minimum intensity of singular 
stress can be obtained when the adherend thickness is large enough. The results of the deformation angle 
at the interface corner edge show a similar trend as in intensity of singular stress field, and the minimum 
deformation angle can be obtained when the adherend thickness is large enough. The usefulness of the 
method is investigated focusing on the deformation angle at the interface corner edge. 
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1 INTRODUCTION  

Since adhesively joints are economical, practical and easy to be used; thus they have been widely used in 
a variety of industries. A number of studies of adhesive joints have been made so far [1-4]. The authors 
investigated the adhesive butt joint strength in Fig. 1 by changing the adhesive thickness and material 
combination [5,6]. It is found that the adhesive strength can be expressed as the critical intensity of singular 

stress field as cK =const based on the experimental results. The adhesive strengths of the single lap joint 

(see Fig. 2(a)) and double lap joint (see Fig.2(b)) were also investigated previouly [7]. In this result, the 
adhesive strength of double lap joint is not equal to the one of single lap joint as expected and is almost 
twice larger than the one of single lap joint. Compared with double lap joint, single lap joint testing is more 
stable and used conveniently. The testing method and experimental adhesive strength are prescribed by 
Japanese Industrial Standards (JIS) [8]. However, since the debonding strength is defined as the 
magnitude of the load, the strength is affected by the specimen dimension and difficult to be applied to 
other geometries. Therefore, it is necessary to find a suitable method to evaluation the debonding strength 
of single lap joint testing. 
In this paper, first, the debonding strength of single lap joint will be investigated based on the experimental 
results [9] by using the evaluation method shown in [6]. Then, a suitable evaluation method of adhesive 
strength will be evaluated focusing on the intensity of singular stress field and the deformation angle 
appearing at the end of interface. 

 

 

(a) Single lap joint  

 

(b) Double lap joint 

Fig.1 Adhesive strength expressed as cK =const 

for butt joint. 

Fig.2  Single and double lap joints. 
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2 ADHESIVE STRENGTH EXPRESSED AS A CONSTAN CRITICAL INTENSITY OF SINGULAR 

STRESS  
cK  FOR SINGLE LAP JOINT WITH VARYING ADHESIVE GEOMETRY 

adl AND 
adt  

Figure 3 shows the schematic illustration of the analysis models. It has been reported that the singularity 

exists near the interface corner, and the singularity depending on the singular indexes 
1 and

2   at the 

interface [10]. In this paper, 
1 =0.6062,

2 =0.9989. The stress   at r direction ( 0 ) can be expressed 

as follows. The notation r  denotes the radial distance away from the corner singular point O.  
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Here, 
1,K  and 

2,K  are the intensities of the singular stress field. The intensities of singular stress field 

can be obtained based on our previous study[11,12] by using Reciprocal Work Contour Integral Method[13] 

(RWCIM). The intensities of the singular stress field can be represented with only 
1,K  since C is almost 

constant expressed as 5.2387 0.2659C    . 

In this study, the thick specimens used by Park [9] in Fig.3 are analyzed where the adherends aluminum 
alloy 6061-T6 (Young’s modulus E =68.9 [GPa], Poisson’s ratio  =0.3) are bonded with adhesive FM73 M 

epoxy (Young’s modulus E =4.2 [GPa], Poisson’s ratio  =0.45). The typical force-displacement curves of 

the adhesive joints show nearly linear behavior. A drop in load was used to detect a failure. The total length 

of the specimen is 225mm, adherend thickness 1t =7mm, d =10mm, adhesive thickness 
adt  =0.15~0.9mm, 

adhesive length 
adl  =20~50mm, L =50mm, 

o =1MPa ( P =14.15N).  

Fig.4 shows the cK with different 
adl  and adt  under a fP P . Here, 

a fP is the fracture load, “A25” means 

adl =25mm and adt =0.15mm, “A25-30” means 
adl =25mm and adt =0.30mm, and so on. It is found that the 

average value of 
cK  is 4.030 11-

MPa m


 , and the 
cK  values are almost constant independent of the 

adl  

and adt . It is seen that the adhesive strength can be expressed as 
cK =const. 

  

Fig. 3 Analysis model and boundary condition. Fig. 4  Adhesive strength expressed as 

cK =const for adt =0.15~0.9mm and adl =20~50mm 

under fixed 1t =7mm, L =50mm. 

3 PURE SHEAR TESTING TO MINIMIZE 
1,K   

The butt joint in Fig.1 is used to obtain the adhesive strength under pure tension [5, 6] and the single lap 
joint in Fig.2 is used to obtain the adhesive strength under pure shear. However, due to the deformation of 
single lap joint during testing, peeling force as well as shearing force is applied to the adhesive region. 

Then, the intensity of singular stress 
1,K   is also affected by the peeling force due to the deformation. 

Since the single lap joint testing should be done under pure shear loading, smaller
1,K   is desirable. The 

fracture load a fP increases with increasing the adhesive length 
adl  as described in [9], and the adhesive 

strength can be expressed as cK =const independent of adhesive geometry 
adl  and adt . This means that 
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when 
1,K  is small, the fracture load 

afP  is large.  Therefore, in order to minimize
1,K  , the effect of 

specimen geometry is considered under the same adhesive geometry and load P . In this section, we 

assume P =14.15N, the adhesive length 
adl =25mm, and adhesive thickness 

adt =0.15mm. Then, the 

effects of specimen geometries 
1t (adherend thickness) and L (fixed boundary length) on the intensity of 

singular stress field 
1,K  are discussed.  

Figure 5 shows the relationship between the intensity of singular stress field 
1,K   and adherend thickness 

1t  under different fixed length L . The dashed line shows the minimum value of
1,K  . Here, JIS* means only 

the adherend thickness 
1t =1.5mm and fixed boundary length L =50mm in JIS K6850 are used as shown in 

Fig.3. As can be seen from Fig.5, the 
1,K  decreases with increasing 

1t  and L . The 
1,K   value becomes 

constant if  
1t  is large enough. The 

1 1, 1.5mm|tK   (JIS K6850) is 5 times larger than the one of ,minK , and the 

1 1, 7mm|tK   [9] is more than twice than that of ,minK . It is seen that the specimen in [9] is better than the JIS, 

but it is more desirable to use larger adherend thickness.   

 

 

Fig. 5. Effect of L and 
1t  on 

1,K  under fixed 
adl and 

adt (JIS*: Only 
1t =1.5mm and L =50mm in JIS K6850 are 

used as shown in Fig.3). 

Fig.6. Definition of deformation angle. 

 

4 DEFORMATION ANGLE AT THE INTERFACE CORNER 

As shown in section 3, the intensity of singular stress
1,K  decreases with increasing the adherend 

thickness
1t . It is found that the minimum 

1,K  can be obtained when 
1t  is large enough. In this section, the 

deformation angle at interface corner is considered by changing the distance l . 

Fig. 6 shows the deformation example near the interface corners. In order to obtain the deformation angle, 

two target points are considered. For the deformation angle
ol at interface corner O, two target points are 

points O and A with the distance l . For the deformation angle
or at interface corner O, two target points are 

points O and B with the distance l .  Fig. 7 shows the deformation angles 
ol  and 

or  vs. l  under 
1t =7mm. 

It is found that the values of 
ol  and 

or  both increase with increasing l , and the difference between 
ol  

and 
or  increases with decreasing l . Therefore, we cannot obtain the maximum deformation angle at 

corner O. Fig. 8 shows the deformation angle 
C  vs. l  under 

1t =7mm. It is seen that the value of 
C  

increases initially with increasing l and then decreases. Then, the maximum 
C  can be obtained when 

l =1/33mm. Thus, in this study, the deformation angle will be considered by using the maximum 

deformation angle at corner C rather than at corner O. 



 

International Journal of Fracture Fatigue and Wear, Volume 4 

102 

 

  

 Fig. 7 Deformation angle at corner edge O.   Fig. 8 Deformation angle at corner edge C. 
 

As can be seen from Fig. 5, the minimum 
1,K  can be obtained when 

1t  is large enough. Similar to the 

variation trend of 
1,K  , the minimum 

C  can be obtained when the adherend thickness 
1t  is large enough.   

5  CONCLUSION 

In this study, the adhesive strength for single lap joint is investigated based on the intensity of singular 
stress field. Since the experiments are often time-consuming and costly, the analysis method shown in this 
paper can help to predict the strength of adhesive joint accurately and conveniently. The conclusions can 
be summarized in the following way. 

(1) In this paper, the critical intensity of singular stress field 
cK  is investigated by using the analysis 

method presented. It is seen that the adhesive strength can be expressed as cK =const.  

(2) The effects of specimen geometries 
1t (adherend thickness) and L (fixed boundary length) on the 

intensity of singular stress field
1,K  are discussed. The results show that the 

1,K  at the interface corner 

decreases with increasing the 
1t , and the minimum intensity of singular stress field ,minK can be 

obtained when 
1t  is large enough. 

(3) The deformation angle at the interface corner is investigated by using the maximum deformation angle 

at interface corner C. It is found that the minimum deformation angle 
C can be obtained when the 

adherend thickness 
1t is large enough.  
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