SOI 超高速横型シリコンダイオード

今城 寛紀* 大村 一郎(九州工業大学) 附田 正則(アジア成長研究所)

Ultra-fast lateral SOI PiN diode Hironori Imaki^{*}, Ichiro Omura, (Kyushu Institute of Technology) Masanori Tsukuda, (Asian Growth Research Institute)

Power semiconductors are becoming key devices for energy-saving society, therefore higher performance and productivity is required. We proposed a silicon-on-insulator (SOI) PiN diode, which realizes ultra-fast reverse recovery without waveform oscillation. This diode is expected to reduce energy loss of power devices and to improve performance of inverter circuits.

キーワード:パワーデバイス、シリコン、PiN ダイオード、SOI、リバースリカバリ、波形振動

(power device, silicon, PiN diode, SOI, reverse recovery, waveform oscillation)

1. 要約

パワー半導体は省エネ社会実現のためのキーデバイスと して需要が拡大しており、量産性向上と高性能化が求めら れている。本研究では、インバータ回路の効率改善のカギ となるダイオードに注目し、量産性に優れたシリコンパワ ー半導体をベースに、高性能化を阻んでいたノイズ発生を 究極まで抑制する構造をシミュレーションで実証した。本 ダイオードの適用により、パワー半導体の損失低減とイン バータ回路の効率改善が期待できる。

2. まえがき

パワーエレクトロニクス機器の効率改善及び普及拡大は 省エネルギー社会を実現するための重要な要素である。そ のため、パワーエレクトロニクス機器のキーデバイスとな るパワー半導体には、高速スイッチング、導通損失及びス イッチング損失の低減、そして低コスト化が要求される。 現在、これらを満たすためにシリコンデバイスの更なる改 良・改善や、化合物半導体などシリコンに代わる新材料を 用いたデバイス開発が進んでいる⁽²⁾。シリコンデバイスは量 産性の面で化合物半導体デバイスより優れ、化合物半導体 デバイスはスイッチングの高速性の面において優れている (図1)⁽¹⁾。本研究では、量産性に優れたシリコン材料に注 目し、化合物半導体デバイスに迫る性能を可能にするデバ イス構造を提案する。

図 1 現状の製品化されたダイオードとのトレードオフ⁽¹⁾ Fig. 1 Performance of diodes

3. ダイオードの高速化とその課題

〈3・1〉リバースリカバリ特性とターンオン損失

リバースリカバリ時間と順方向電圧降下はダイオードの 性能の中でも重要な項目である。シリコン PiN ダイオード (Si-PiN)の順方向電圧降下は、PN 接合のビルトインポテン シャルと、蓄積キャリアによって低抵抗化する N ベース層 の電圧降下との合計である。それに対し、シリコンカーバ イド・ショットキーバリアダイオード(SiC-SBD)の順方向電 圧降下は、金属-SiC 接合境界面でのショットキー障壁の高 さと薄型化されたドリフト層内に生じる電圧降下の合計で ある。Si-PiN と SiC-SBD の 2 つを比較すると、順方向電 圧降下はほぼ等しいのに対して、リバースリカバリスピー ドはNベース層からのキャリア掃出し時間の分 Si-PiN が遅 くなる。

ダイオードのリバースリカバリ高速化はスイッチング素 子にも大きなインパクトを持つ。スイッチング素子のター ンオン時に流れる電流には、ダイオードのリバースリカバ リ電流が上乗せされる。したがって、ダイオードのリバー スリカバリ電荷を低減することは、スイッチング素子のタ ーンオン損失低減につながる。図 2 に実験で高速スイッチ ングダイオードを用いた場合の、ダイオード及びスイッチ ング素子の損失変化を示す⁽³⁾。リバースリカバリ損失及びス イッチング素子のターンオン損失が大きく低減しているこ とが分かる。

〈3·2〉Si-PiN ダイオードの高速化可能性と課題

我々は解析モデルを用いてリバースリカバリ時間を解析 し、Si-PiN ダイオードの高速化にはまだ十分な余地がある ことを明らかにした⁽⁴⁾⁽⁵⁾。しかしその一方で、最新の Si-PiN よりも薄い N ベース層の Si-PiN では、リバースリカバリ時 大きな振動を引き起こすことも明らかとなった(表 1)。こ れが、現在まで高速 Si-PiN が実現しなかった理由の一つで ある。

表1 厚さの異なるNベース層をもつ縦型ダイオードの リバースリカバリ波形のシミュレーション結果⁽⁶⁾

TABLE 1. Simulated reverse recovery waveforms of conventional vertical diodes with different N- layer width $^{\rm (5)}.$

振動のトリガは先行研究で明らかになっている^{(6)・(9)}。Nベ ース層が薄いダイオードは、導通状態からターンオフが始 まるとキャリアの注入が停止し、蓄積キャリアはアノード 側とカソード側の両方から掃き出される。このとき、キャ リアが掃き出されると同時に両側から空乏層が広がり、最 終的に2つの空乏層がつながり1つとなる。これが振動発 生のトリガであり、この振動の現象をダイナミックパンチ スルーと呼ぶ。対照的にNベース層が厚い場合、ダイナミ ックパンチスルーが発生しないため波形は振動しない。

以前までの振動抑制のために提案されていたダイオード は、大きく2種類に分けることが出来る。1つ目は、部分的 にドーピング層を作りターンオフ時にキャリアの再注入を 促す構造、2つ目はNベース層濃度を少し高くして空乏層 の広がりを抑制する構造である⁽⁷⁾⁽¹⁰⁾⁻⁽¹⁴⁾。しかし、キャリア の再注入はリバースリカバリ損失の増加を促し、Nベース 層の高濃度化は電流がより長い経路を流れる。したがって どちらの構造もリバースリカバリ損失もしくは順方向電圧 降下のトレードオフを悪化させるため、ダイオードの大幅 な改善は困難であった。

4. トラップを用いた超高速横型 SOI ダイオード

波形振動の抑制のためには、ダイナミックパンチスルー を防止する必要があるが、最先端のダイオードより高速な 構造は縦型ダイオードでは実現が非常に困難である。そこ で、ダイナミックパンチスルーを抑制させるため、図 3 に 示すような横型 SOI 構造に SiO₂トラップを用いたダイオー ドを提案する。

トラップのコンセプトは、トラップキャリアを用いてパ ワーデバイスの高耐圧化を目指した研究で紹介されてお り、凹凸状の酸化膜や、皿状の酸化膜がそれぞれ横型もし くは縦型のデバイスに用いられてきた⁽¹⁵⁾⁻⁽¹⁹⁾。トラップの大 きな特徴は、高電界領域の拡大を抑制することであり、我々 は、N ベース層に高濃度層を用いることなく電界の拡大を 抑制するために、SOI構造にSiO₂トラップを用いることで、 ダイナミックパンチスルーを抑制することが出来るのでは ないかと考えた。

図 3 トラップを用いた横型 SOI ダイオードの構造 Fig. 3. Structure of proposed lateral SOI PiN diode with traps.

図 4 TCAD 上の各ダイオードの構造と破線部の電界分布 Fig. 4. Diode structures and corresponding electric field along dotted line by TCAD simulation.

Hole density (cm³)

図 5 TCAD によるリバースリカバリ波形と各時間のホー ル密度分布

Fig. 5. Waveform during reverse recovery and corresponding to hole density by TCAD simulation.

図 6 図 4(c)の SiO₂トラップ付近のホール密度分布 Fig. 6. Trapped hole in buried SiO₂ corresponding with Fig. 4. (c).

本研究は 2 次元 TCAD シミュレーションを用いて縦型 PiN ダイオード、横型 SOI ダイオード、新構造の3種類の 構造を比較した。このときの横型ダイオードのシリコンと 埋め込み酸化膜の厚さはそれぞれ 10µm と 5µm であり、ト ラップの高さは 0.5µm、ピッチ幅は 5µm である。このトラ ップ構造は電界分布から設計される。

従来の縦型ダイオードは N ベース層のドーピング濃度に 対応した直線的な傾斜で電界分布を形成する(図 4(a))。し たがって、縦型ダイオードはサージ電圧のような高電圧に よりダイナミックパンチスルーを引き起こす (図 5(a))。横 型 SOI ダイオードはNベース中に2つの電界ピークを持つ (図 4(b))。縦型ダイオードに比べ電界分布が変わるため、 ダイナミックパンチスルーをある程度抑制することが出来 るが、図 5(b)に示すように波形振動を完全に抑えることは できない。横型 SOI ダイオードに比べ横型 SOI 構造にトラ ップを加えたダイオードは、同じように電界ピークを2つ 持つが、図6に示すようにホールがトラップされるため、N 層付近の電界ピーク値が低減される(図 4(c))。このため、 この新構造ダイオードは他の2 つの構造に比べ大きくダイ ナミックパンチスルーを抑制することができる。その結果、 図 5(c)に示すようにリバースリカバリの波形は振動が抑制 される。

図 7 に縦型ダイオードと提案したダイオードのトレード オフの比較を示す。ただし、縦型ダイオードは波形振動が 起こらないようにするため、新構造ダイオードとは N ベー ス幅が異なる。提案したダイオードは振動を起こすことな く最先端の縦型ダイオードよりもリバースリカバリ時間が 半分となった。図 8 にリバースリカバリ中におけるシリコ ン基板の厚さが半分となる部分のホール密度分布の推移を 示す。図 8 より、リバースリカバリが終わるまでホールが 残留していることが分かる。

図7 縦型ダイオードと提案した新構造ダイオードのトレ ードオフの比較

Fig. 7. Performance of proposed lateral SOI PiN diode and benchmarks.

図 8 TCAD による図 5(c)のリバースリカバリ中における ホール密度分布の推移

Fig. 8. Hole density change during reverse recovery corresponding to Fig. 5 (c) by TCAD simulation.

5. 考察:新構造ダイオードのシリコン基板厚型化

提案した新構造は縦型ダイオードに比べ、同じチップ面 積の場合、電流の導通方向に対する電流密度が大きくなる。 すなわち、チップ面積を等しくすればリバースリカバリ時 間は半分以下に抑えられるが、順方向電圧降下が大きくな る。そのため、この構造の課題である順方向電圧降下の増 加を改善するために、シリコン基板の厚型化をシミュレー ション上で試みた。

シリコン基板厚さごとの、チップ面積の変化に対する順 方向電圧降下とリバースリカバリ時間のトレードオフカー ブを図 9 に示す。シリコン基板を厚くすると順方向電圧降 下の低減を確認できたが、同時にリバースリカバリ時間が 長くなることも明らかとなった。原因として、シリコン基 板が厚くするにつれてカソード下部の蓄積キャリアが多く なることが考えられる(図 10)。また、提案した新構造は、 厚型化するとリバースリカバリのテール電流が大きくなる ため、リバースリカバリ損失が増大する(図 11)。リバース リカバリ時間の定義には、テール電流を含んでいないため、 図 9 及び図 11 で厚型化による変化の程度が異なる。

図 9 新構造ダイオードの各シリコン基板厚さにおける 順方向電圧降下とリバースリカバリ時間のトレードオフ Fig.9 trade-off of different silicon thickness of proposed diode without waveform oscillation by TCAD between reverse recovery time and forward voltage drop.

図 10 シリコン基板厚さが異なる各構造の導通時におけ るホール密度分布

図 11 新構造の各シリコン基板厚さにおける順方向電 圧降下とリバースリカバリ損失のトレードオフ Fig.11 trade-off of different silicon thickness of proposed diode by TCAD between reverse recovery loss and forward

voltage drop.

6. 結論

省エネ社会の実現に向けて、パワー半導体の高性能化・量 産性向上が求められる。本研究では量産性に優れたシリコ ンを用いて、高速スイッチングが可能な新構造ダイオード を提案した。提案したダイオードのスイッチング時間が従 来の縦型ダイオードと比べおよそ 50%低減することをシミ ュレーション上で確認出来た。

Ϋ́	献
\sim	יעדו

- (1) Masanori Tsukuda, Hironori Imaki and Ichiro Omura, "Ultra-fast Lateral 600 V Silicon PiN Diode Superior to SiC-SBD" Proc. of ISPSD, pp. 31-34, 2014
- (2) Hiromichi Ohashi, "Power devices now and future, strategy of Japan Role of power electronics for a low carbon society," Proc. of ISPSD, pp. 9-12, 2012.
- (3) Masanori Tsukuda, Ichiro Omura, Wataru Saito, Tomokazu Domon and Masakazu Yamaguchi, "Power Loss Estimate for 2 Level 3 Phase Inverter using 1200 V-Class Si-IGBT and 1200 V-Class SiC-SBD," (in Japanese) Proc. of IEEJ, Issues 4, pp. 5-6, 2005.
- (4) Ichiro Omura, Wataru Saito, Tomokazu Domon and Kunio Tsuda, "Gallium Nitride Power HEMT for High Switching Frequency Power Electronics," Proc. of IWPSD, pp. 781-786, 2007.
- (5) M. Tsukuda, K. Kawakami, K. Takahama, I. Omura, "Design for EMI" approach on power PiN diode reverse recovery," Microelectronics Reliability Vol. 51, Issues 9-11, pp. 1972-1975, 2011.
- (6) Masanori Tsukuda, Ichiro Omura, Yoko Sakiyama, Masakazu Yamaguchi, Ken'ichi Matsushita and Tsuneo Ogura, "Critical IGBT Design Regarding EMI and Switching Losses," Proc. of ISPSD, pp. 185-188, 2008.
- (7) Masanori Tsukuda, Yoko Sakiyama, Hideaki Ninomiya and Masakazu Yamaguchi, "Dynamic Punch-Through Design of High-Voltage Diode for Suppression of Waveform Oscillation and Switching Loss," Proc. of ISPSD, pp. 128-131, 2009.
- (8) Kenichi Takahama and Ichiro Omura, "Numerical study on very high speed silicon PiN diode possibility for power ICs in comparison with SiC-SBD," Proc. of ISPSD, pp. 169-172, 2010.
- (9) Josef Lutz, Heinrich Schlangenotto, Uwe Scheuermann and Rik De Doncker, "Semiconductor Power Devices: Physics, Characteristics, Reliability," Springer, 2011.
- (10) M. Mori, Y. Yasuda, N. Sakurai and Y. Sugawara, "A NOVEL SOFT AND FAST RECOVERY DIODE (SFD) WITH THIN P-LAYER FORMED BY AIS ELECTRODE," Proc. of ISPSD, pp. 113-117, 1991
- (11) K. T. Kaschani and R. Sittig, "How to avoid TRAPATT Oscillation at the Reverse-Recovery of Power Diodes," Proc. of CAS'95, pp. 571-574, 1995.
- (12) K. Satoh, K. Morishita, Y. Yamaguchi, N. Hirano, H. Iwamoto and A. Kawakami, "A Newly Structured High Voltage Diode Highlighting Oscillation Free Function In Recovery Process," Proc. of ISPSD, pp. 249-252, 2000.
- (13) M. Nemoto, T. Naito, A. Nishiura and K. Ueno, "MBBL Diode : A Novel Soft Recovery Diode," Proc. of ISPSD, pp. 433-436, 2004.
- (14) F. Hille, M. Bassler, H. Schulze, E. Falck, H.P. Felsl, A. Schieber, A. Mauder, "1200V Emcon4 freewheeling diode - a soft alternative," Proc. of ISPSD, pp. 109-112, 2007.
- (15) Robert Plikat, Dieter Silber and Wolfgang Wondrak, ""Very High Voltage Integration" in SOI Based on a New Floating Channel Technology," Proc. of IEEE International SOI Conference, pp. 59-60, 1998.
- (16) Ichiro Omura and Akio Nakagawa, "Silicon on Insulator semiconductor device with increased withstand voltage," United States Patent, 6,049,109, April 11, 2000.
- (17) Holger Kapels, Robert Plikat and Dieter Silber, "Dielectric Charge Traps: A New Structure Element for Power Devices," Proc. of ISPSD, pp. 205-208, 2000.
- (18) Xiaorong Luo, Bo Zhang, Zhaoji Li, Yufeng Guo, Xinwei Tang, and Yong Liu, "A Novel 700-V SOI LDMOS With Double-Sided Trench," IEEE Electron Device Lett., vol. 28, No. 5, pp. 422-424, May 2007.
- (19) Satoshi Shiraki, Yoichi Ashida, Shigeki Takahashi, and Norihito Tokura, "Analysis of Transient Characteristics of Lateral IGBTs and Diodes on Silicon-on-Insulator Substrates with Trenched Buried Oxide Structure," Proc. of ISPSD, pp. 261-264, 2010.