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 

Abstract— The authors proposed an innovative 

superconducting DC power cable using the longitudinal magnetic 

field effect, i.e., a significant enhancement of the critical current 

density of a superconductor in a parallel magnetic field. It was 

expected that a cable with a high current-carrying capacity could 

be realized with REBa2Cu3O7-δ(REBCO) coated conductors. 

However, the critical current density in most commercial coated 

conductors does not increase but slightly decreases with 

increasing parallel magnetic field. Nevertheless, the critical 

current density in the parallel magnetic field is remarkably higher 

than that in a normal in-plane magnetic field, and it is possible to 

construct a DC cable with a higher current-carrying capacity 

using this characteristic in comparison with conventional 

superconducting cables. In this paper, we propose a new design of 

DC power cable suitable for present commercial coated 

conductors. The optimal condition of the cable is discussed.  

 
Index Terms— High-temperature superconductors, 

superconducting DC cable, critical current density, longitudinal 

magnetic field effect.  

 

I. INTRODUCTION 

uperconducting power cables have been energetically 

developed based on the development of long 

high-temperature superconducting tapes with high critical 

currents. One of the potential applications of superconducting 

power cables is DC transmission of electric power generated by 

renewable sources such as sunshine and wind power. The DC 

power transmission is suitable for superconductivity that causes 

no energy dissipation in a steady condition. In addition, a 

simpler structure is also a merit of DC power cables than in AC 

power cables. 

The authors proposed a new superconducting DC cable with 

high current-carrying capacity. It was reported that the critical 

current density was dramatically enhanced for a metallic 

superconductor in a parallel magnetic field in comparison with 

that in a normal magnetic field [1-6]. It was empirically known 

that a force-free structure for flux lines, i.e., a structure in which 

the current flowed parallel to flux lines, was established in this 
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field configuration [7-9]. An employment of artificial 

force-free structure was predicted to significantly enhance the 

current-carrying capacity of the cable [10]. The essential point 

was to use the current flowing back on the outer shield 

conductor for applying an axial magnetic field to the inner 

conductor and the inner conductor was designed to be in the 

force-free structure under this axial magnetic field produced by 

the return current. As a result, the current-carrying capacity 

could be significantly enhanced in comparison with 

conventional superconducting DC cables [10]. Especially the 

enhancement factor increased with increasing current-carrying 

capacity because of stronger axial magnetic field. 

However, the serious problem in present commercial coated 

conductors is that the critical current does not increase with 

increasing parallel magnetic field as in metallic 

superconductors [11]. Some high-quality superconducting thin 

films with the superconducting layer thickness below 0.5 μm 

showed a remarkable enhancement of the critical current 

density [12]. However, the structure of the superconducting 

layer is generally deteriorated with increasing layer thickness 

[13]. Especially it was found that a-axis grains and tilted c-axis 

grains tend to start to grow at a distance of about 0.5 μm from 

the substrate [14]. Thus, it is expected that the grain boundaries 

of these grains with the superconducting matrix meander the 

current, resulting in a decrease in the critical current density 

because of deviation from the force-free state. The degradation 

of the critical current density with increasing superconducting 

layer thickness [15-20] is consistent with the growth of such 

grains. Hopefully this situation can be overcome in the future 

by improving the fabrication process of coated conductors. 

For this reason present commercial coated conductors are not 

useful to the force-free power cable. The same thing can be said 

to Bi-based superconductors. Then, the question is an 

investigation of a cable structure that can enhance the 

current-carrying capacity even for present common coated 

conductors and Bi-based superconductors. 

  

II. PRELIMINARY INVESTIGATION  

A better critical current property was obtained for a coated 

conductor fabricated by the Pulsed Laser Deposition (PLD) 

method on the Ion-Beam Assisted Deposition (IBAD) substrate 

among various coated conductors. This was probably caused by 

a better crystallinity of the superconducting layer for a YBCO 

coated conductor fabricated by this combination. The magnetic 

field dependence of the critical current density of this coated 
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conductor is shown in Fig. 1. It is found that the critical current 

density in a parallel magnetic field (JcM) is almost constant or 

slightly decreases with increasing magnetic field. This is fairly 

higher than that in a normal in-plane magnetic field (Jcm), and 

this superior property can be used for a new power cable. The 

important thing is that, when the force-free structure is 

introduced to the cable, the outer layers in the inner conductor 

must be strongly twisted and the ratio of the transport current to 

the flowing current decreases significantly. That is, the ratio of 

the circulating current increases. When the outermost layer is 

twisted with the winding angle of π/3 for example, the ratio of 

the transport current in this layer decreases to half. Hence, if the 

critical current density does not increase more than twice, the 

employment of the force-free structure is not optimal, although 

it contributes to an enhancement of the currents in the inner 

layers through strengthening the axial field. It is considered that 

there is an optimal angle for twisting the layer, where the 

critical current density is relatively high and the transport 

efficiency is not appreciably decreased. 

The authors proposed a new structure of superconducting 

DC cable based on this idea to attain a higher current-carrying 

capacity even for present commercial coated conductors [11, 21, 

22]. In this paper this new structure is investigated in more 

detail to find out the optimal structure for each coated 

conductor. For the investigation of designing the optimal 

configuration, the field-angle dependence of the critical current 

density is important. The measurement of the dependence of 

the critical current density on the angle φ of the in-plane 

magnetic field was conducted. Figure 2 shows the results for 

the specimen shown in Fig. 1. 

III. ANALYSIS  

The current-carrying capacity of a superconducting DC 

power cable is investigated to discuss the optimal structure of 

the cable. The numerical analysis is based on the experimental 

results of Figs. 1 and 2. Analytical expressions of these results 

are necessary, therefore, for calculating the current-carrying 

capacity of the cable. For this purpose, the magnetic field 

dependence of the critical current densities in Fig. 1 are 

approximated as 

𝐽cm(𝐵) = ∑ 𝐾m𝑗𝐵𝑗

9

𝑗=0

 , 

𝐽cM(𝐵) = ∑ 𝐾M𝑗𝐵𝑗

9

𝑗=0

 , 

(1) 

where 𝐾m𝑗 's and 𝐾M𝑗 's are expansion coefficients (see Table I). 

The solid lines in Fig. 1 show the above formulae. The in-plane 

field angle dependence of the critical current density is 

approximated as 

𝐽c(𝜑) =
1

2
(𝐽cM + 𝐽cm) +

1

2
(𝐽cM − 𝐽cm) cos 2𝜑. (2) 

 
Fig. 1. Dependences of critical current density of a commercial coated 

conductor made by Fujikura Ltd. on parallel (solid symbols) and normal 

in-plane (open symbols) magnetic fields at 77.3 K. The solid lines show 

analytic approximations of Eq. (1) with expansion coefficients in Table I. 

TABLE I 

FITTING PARAMETERS FOR 𝐽Cm AND 𝐽CM. 

𝑗 𝐾m𝑗[× 1010Am−2/T𝑗] 𝐾M𝑗[× 1010Am−2/T𝑗] 

0 2.738 2.738 

1 -0.1780 0.4024 

2 -168.3 -5.696 

3 1623 26.00 

4 -7618 -149.5 

5 20682 678.3 

6 -33854 -1716 

7 32885 2308 

8 -17433 -1560 

9 3880 417.5 

 

 
Fig. 2. In-plane field angle (φ) dependence of critical current density of a 

commercial coated conductor shown in Fig. 1 at 77.3 K. The solid lines show 

the characteristics assumed in Eq. (2). 
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The solid lines in Fig. 2 show this approximation.  

The structure of the cable is defined. We treat the case where 

the inner conductor is composed of n layers of coated 

conductors aligned parallel on a cylindrical plane with the same 

angle 𝜃𝑖 in the i-th layer (i = 1, 2, ⋯, n). The radius of the i-th 

layer is denoted as 

𝑅𝑖 = 𝑅0 + 𝑖𝑑 , (3) 

where 𝑅0 is the radius of the inner former on which the coated 

conductors are wound and d is the sum of the thickness of the 

coated conductor and that of the isolation tape. For simplicity, it 

is assumed that there is no gap between adjacent coated 

conductors in the same layer (although small gaps will appear 

between adjacent conductors in a practical cable, it is expected 

that this does not appreciably affects the predicted 

current-carrying capacity). The angle of each layer is assumed 

to increase linearly for simplicity from the innermost layer 

angle, 𝜃1, to the outermost layer angle, 𝜃𝑛. If the twisting angle 

of the outermost layer in a continuum model for an infinite n is 

denoted by 𝜃𝑚 , the i-th layer covers the field angle region 

between (𝑖 − 1)𝜃𝑚/𝑛  and 𝑖𝜃𝑚/𝑛 . Hence, we change the 

distribution of the twisting angle from that in Ref. 21 and 

determine in average as 

𝜃𝑖 =
(𝑖 − 1/2)

𝑛
𝜃𝑚 . (4) 

Then, the innermost layer is not parallel to the cable axis, and 

this is beneficial for winding the cable. We selected the linear 

angle distribution because the current-carrying capacity is 

deteriorated when the angle distribution changes from the 

linear one. The structure of the conductor is schematically 

illustrated in Fig. 3, where 𝐵ext  is the axial magnetic field 

produced by the current flowing in the outer shield conductor. 

The engineering critical current density is given by 𝐽e = 𝛽𝐽c,  

where 𝛽 is the fraction of the superconductor in the winding 

area. If the thickness of the superconducting layer is t, we have 

𝛽 = 𝑡/𝑑. The current flowing in the i-th layer is 

𝐼𝑖 = 2𝜋𝑅𝑖𝐽e𝑖𝑑. (5) 

The magnetic field on each layer is formally described, and 

the magnetic field and critical current density must be solved 

self-consistently. The analysis method is described in Ref. 21. 

For convenience it is given in Appendix. 

 

IV. RESULTS AND DISCUSSION  

 

The current-carrying capacity of the new cable with 6 - 12 

layers are calculated under various conditions of the external 

axial magnetic field, 𝐵ext, produced by the return current. It is 

assumed that 𝑅0 = 20 mm, 𝑑 = 200 μm and 𝑡 = 2.00 μm. 

Figure 4 shows the current-carrying capacity of a cable with 

8-layers (𝑛 = 8) as a function of 𝜃m in various values of 𝐵ext. 

Windings of superconducting tapes in usual superconducting 

DC cables are essentially the same as those in AC cables. In 

these cables, the superconducting layers are twisted with 

positive and negative angles, so that the axial magnetic field is 

eliminated to reduce additional AC losses. Hence, the structure 

is different from that shown in Fig. 3. Such cables are assumed 

as conventional cables. In this case, the self-field is directed 

almost normal to the axis of the cable. Hence, for the 

calculation of the current-carrying capacity of conventional 

cables, we can assume 𝜑 = π/2, and it corresponds to the point 

at 𝜃m = 0  for 𝐵ext = 0  in Fig. 4. It is found that the 

current-carrying capacity can be enhanced from that in the 

conventional cable over a wide region of 𝜃m  and 𝐵ext . The 

current-carrying capacity increases with increasing the angle 

𝜃m  and takes a peak and then, tends to decrease. The first 

increase comes from the effect of the axial self-field due to the 

current that increases the critical current density, and the 

accompanied decrease is caused by a reduction in the transport 

 
Fig. 3. Schematic illustration of winding structure of coated conductors in 

inner conductor. The angle 𝜃𝑖 for the current is measured from the cable axis, 

and 𝜑𝑖 is the angle between the current and magnetic field. The axial magnetic 

field produced by the outside shield conductor is 𝐵ext. 

 
Fig. 4. Current-carrying capacity vs. 𝜃m  in various values of external 

longitudinal magnetic field 𝐵ext for 𝑛 = 8. 
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efficiency. It is found that the value of 𝜃m at the peak capacity 

is much lower than that for the force-free cable, 𝜃𝑚 ≅ 53° [10]. 

It clearly shows that there is no merit to realize the ideal 

force-free configuration and a choice of a slight increase in the 

critical current density by lowering the Lorentz force is better. 

The current-carrying capacity increases with 𝐵ext  so long as 

𝐵ext is small. This comes from the enhancement of the critical 

current density by reducing the magnetic field angle. When 

𝐵ext  becomes large, the current-carrying capacity decreases 

with increasing 𝐵ext. This is because the axial magnetic field 

dependence of the critical current density is weak.  

It should be noted here that 𝐵ext is produced by the current 

flowing back in the shield conductor and hence, it is a function 

of 𝐼c. That is, there is an achievable limit of the 𝐵ext-value. 

Here, the maximum value of 𝐵ext(𝐵extm) is determined. We 

assume that the mean radius and twisting angle of the shield 

conductor are 𝑅s  and 𝜃s , respectively. If the helical current 

flowing in the shield conductor is 𝐼c′, the transport current must 

be the same: 𝐼c′ cos 𝜃s = 𝐼c . Then, the external longitudinal 

magnetic field is formally given by 

𝐵ext =
𝜇0𝐼c′ sin 𝜃s

2𝜋𝑅s
=

𝜇0𝐼c

2𝜋𝑅s
tan 𝜃s. (6) 

This must be solved self-consistently to obtain the achievable 

values of 𝐵ext and 𝐼c. For this purpose the iteration method is 

used again. Here, we assume as 𝑅s = 25 mm and 𝜃s = 40°.  
The transport efficiency of the cable is defined by the ratio of 

the maximum current-carrying capacity, 𝐼cm, of the new cable 

for various 𝜃m  values to that in the conventional 

superconducting DC cable, 𝐼0; 

𝜂 =
𝐼cm

𝐼0
. (7) 

The dependence of the transport efficiency on 𝐵ext is shown in 

Fig. 5. The dashed curves show virtual efficiencies for which 

𝐵ext cannot be realized by the current flowing back in the shield 

conductor. The achievable regions and maximum transport 

efficiencies are shown by solid lines and open symbols, 

respectively. The corresponding values of 𝜃m  are shown in 

Table II. The transport efficiency increases monotonically with 

increasing layer number n and/or 𝐵ext . Hence, if we could 

 
Fig. 5. Transport efficiency vs. external axial magnetic field. The solid lines 

show attainable regions and the open symbols show the optimal conditions for 

each layer number. The dashed curves show unrealized efficiencies limited by 

the current in the shield conductor. 
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(a) 

 
(b) 

Fig. 6. (a) Distributions of twisting angle 𝜃𝑖 and (b) angle 𝜑𝑖 of magnetic field 

from the superconductor axis for the present optimal cable and the ideal 

force-free cable for 𝑛 = 8. 
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TABLE II 
OPTIMUM TWISTING ANGLE FOR DIFFERENT LAYER NUMBERS N IN CASE OF 

𝑅S = 25 MM AND 𝜃S = 40°. 

n 6 7 8 9 10 11 12 

𝜃m[°] 25 26 27 28 29 30 30 
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improve the critical current density of the coated conductor, the 

achievable transport efficiency would be increased more 

through the increase in 𝐵extm. This will be discussed later. 

Here we discuss the difference of the present cable and the 

ideal force-free cable. In the case of n = 8, the maximum 

transport efficiency of the present cable is 1.18, while that of 

the force-free cable is 2.13 [10]. This large difference comes 

from the difference in the critical current density in parallel 

magnetic field. As a result, the force free state cannot be 

selected, since transport efficiency decreases appreciably. The 

distributions of twisting angle are compared in Fig. 6(a). The 

distribution is strictly determined so that the magnetic field is 

parallel to the superconducting tape: It can be seen that the 

superconductors are more tightly twisted in the force-free 

cable: 𝜃m = 𝜇0𝐽cM𝑛𝑑/𝐵 with B being a magnetic field which is 

constant throughout the cable [10]. This is possible, since there 

is a room of twisting. That is, although the twisting lowers the 

rate of the transport current, the enhancement of the critical 

current density is sufficiently high to cover this factor. As a 

result, the force-free state, in which the magnetic field and the 

 
Fig. 7. Maximum transport efficiency of cable vs. layer number. 
 

 
(a)   

 
(b) 

Fig. 8. Transport efficiency vs. external axial magnetic field when the critical 

current density is simply improved by factors (a) A=1.5 and (b) A=2.0. The 

dashed curves show unrealized efficiencies. 
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TABLE III 

CURRENT-CARRYING CAPACITY OF CONVENTIONAL CABLE (𝐼0), ACHIEVABLE 

EXTERNAL AXIAL MAGNETIC FIELD (𝐵EXTM), MAXIMUM CURRENT-CARRYING 

CAPACITY OF NEW CABLE (𝐼EXTM) AND MAXIMUM TRANSPORT EFFICIENCY (𝜂MAX) 

FOR EACH LAYER NUMBER (N) IN CASE OF 𝑅𝑠 = 25 MM AND 𝜃S = 40°. 

 

n 𝐼0[kA] 𝐵extm[T] 𝐼cmax[kA] 𝜂max 

6 17.18 0.1294 19.27 1.122 

7 19.39 0.1498 22.31 1.151 

8 21.52 0.1701 25.34 1.177 

9 23.59 0.1903 28.35 1.202 

10 25.60 0.2106 31.37 1.225 

11 2756 0.2309 34.39 1.248 

12 29.48 0.2511 37.41 1.269 

 

TABLE IV 

MAXIMUM TRANSPORT EFFICIENCY FOR DIFFERENT COMBINATIONS OF 𝑅S 

AND 𝜃S. 

 

n 𝑅s = 25 mm 𝑅s = 30 mm 

𝜃s = 30° 𝜃s = 35° 𝜃s = 40° 

6 1.099 1.111 1.111 

7 1.126 1.139 1.139 

8 1.151 1.165 1.165 

9 1.175 1.189 1.189 

10 1.197 1.212 1.212 

11 1.218 1.234 1.234 

12 1.238 1.254 1.254 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

current are parallel to each other, can be realized as shown in 

Fig. 6(b). If the dependence of the critical current density on the 

parallel magnetic field is improved, the optimal distribution of 

the present cable will get closer to that of the force-free cable. 

The relationship between 𝜂max and layer number n is shown 

in Fig. 7. It can be seen that 𝜂max monotonically increases with 

n. The obtained results for n from 6 to 12 are summarized in 

Table III. 

The obtained results in Fig. 5 indicates that, if we could 

improve the critical current density of coated conductor, the 

achieved transport efficiency would be increased more through 

the increase in 𝐵extm. In fact, if the critical current densities in 

Eq. (1) are simply improved by factor A=1.5 or 2.0, the 

transport efficiency is predicted to be improved as shown in Fig. 

8(a) or (b), respectively. This seems to be a practical method to 

improve the efficiency, since it may take many years to 

essentially improve the longitudinal field effect of coated 

conductors. Figure 9 compares the current-carrying capacity 

between the present and conventional cables as a function of 

the improvement factor of the critical current density. It is 

found that the current-carrying capacity of the present cable 

increases almost linearly with increasing the critical current 

density, while that in the conventional cable tends to be 

saturated because of the enhanced self-field. This also shows 

that the proposed cable is suitable for transportation of large 

currents. 

The calculated results for different values of 𝑅s and 𝜃s are 

listed in Table IV. When 𝑅s  is increased or 𝜃s  is decreased, 

𝜂max  decreases because of the decrease in 𝐵ext . Even for 

𝑅s = 25 mm  and 𝜃s = 40° , however, the value of 𝜂max  is 

about 1.27 for 𝑛 = 12, and the current-carrying capacity can be 

appreciably increased from the conventional cables. 

Thus, the proposed design of superconducting DC cable is 

effective for improving the current-carrying capacity even for 

present coated conductors that do not show a remarkable 

enhancement of the critical current density in a parallel 

magnetic field. Recently it was shown [21] that the 

current-carrying capacity of a one layer cable made with 

Bi-2223 tapes had a peak value under the condition where the 

magnetic field was parallel to the tapes, and a similar result was 

obtained for a one layer cable made with REBCO coated 

conductors [24]. This shows that the proposed cable structure is 

promising. The key point of this structure is to enhance the ratio 

of the transport current and to utilize a merit of reducing the 

Lorentz force. The optimal design is different depending on the 

critical current density properties of coated conductors, and if 

the critical current density is improved, an achievement of 

much higher current-carrying capacity can be expected. The 

important point is that this structure can be applied to cables 

fabricated with Bi-based superconductors. 

One practical problem in the proposed structure is that the 

twisting angle in the optimized conductor is too small for 𝑖=1 

and 2 in Fig. 6(a). Such almost straight winding makes it 

difficult to bend the cable. The low winding angles might be 

increased to around 10°. Then, the current-carrying capacity of 

the cable will be slightly reduced from the present estimation 

by this change. 

However, we have to bear in mind that the force-free cable is 

of the best efficiency. Hence, efforts should be made to 

improve the critical current density of coated conductors in a 

longitudinal magnetic field to realize the force-free cable in the 

future. For this purpose it is important at first to improve the 

weak link behavior by eliminating a-axis and tilted c-axis 

grains in the superconducting layer in coated conductors. The 

next step is to improve directly the critical current properties. 

The mechanism that determines the critical current density in 

the superconductor in the longitudinal magnetic field is not the 

flux cutting [25-28] but flux pinning [3, 29-31]. That is, the 

balance between the force-free torque to reduce the torsional 

shear of flux lines and the pinning torque determines the critical 

current density [32, 33], in an analogous manner to the balance 

between the Lorentz force and the pinning force in transverse 

magnetic field. The pinning centers effective for enhancement 

of the critical current density in this field configuration are 

those that prevent flux lines from rotating in the a-b plane to 

reduce the torsional shear. Introduction of such pinning centers 

will contribute to a further improvement of the critical current 

density. 

 

V. SUMMARY  

 

A new design is proposed for superconducting DC power 

cable with present commercial coated conductors. It is found 

that the current-carrying capacity can be significantly enhanced 

from conventional cables, although the critical current density 

decreases slightly with increasing parallel magnetic field. 

Therefore, this theoretical approach provides a practical design 

suitable for each coated conductor with different critical current 

density. It should be noted that this design can also be used for 

Bi-based superconductors. It is expected to practically examine 

a feasibility of this design of DC cable. At the same time, 

 
Fig. 9. Current-carrying capacity vs. improvement factor A of critical current 

density for proposed and conventional cables. 
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efforts should be made to improve the critical current density of 

coated conductors in a parallel magnetic field to realize the 

force-free cable in the future, because the current-carrying 

capacity of the force-free cable is much higher than that in 

cables with the present structure.  

APPENDIX 

The critical state is assumed for every layer to estimate the 

current-carrying capacity. The current flowing in the i-th layer 

produces an axial magnetic field 

𝐵𝑖‖
′ =

𝜇0𝐼𝑖 cos 𝜃𝑖

𝐿𝑖
=

𝜇0𝐼𝑖 sin 𝜃𝑖

2𝜋𝑅𝑖
, (8) 

in the inner region (𝑅 < 𝑅𝑖 ), where 𝐿𝑖 = 2𝜋𝑅𝑖 cot 𝜃𝑖  is the 

winding pitch of the i-th layer. The azimuthal magnetic field 

produced outside the i-th layer (𝑅 < 𝑅𝑖) is 

𝐵𝑖⏊
′ =

𝜇0𝐼𝑖 cos 𝜃𝑖

2𝜋𝑅
. (9) 

Hence, if the external axial magnetic field produced by the 

return current flowing in the shield conductor is 𝐵ext, the axial 

and azimuthal magnetic fields on the i-th layer are 

𝐵𝑖‖ = ∑
𝜇0𝐼𝑘 sin 𝜃𝑘

2𝜋𝑅𝑘

𝑛

𝑘=𝑖+1

+ 𝐵ext (10) 

and 

𝐵𝑖⏊ = ∑
𝜇0𝐼𝑘 cos 𝜃𝑘

2𝜋𝑅

𝑖−1

𝑘=1

, (11) 

respectively. Then, the strength of the magnetic field on the i-th 

layer is 

𝐵𝑖 = (𝐵𝑖‖
2 + 𝐵𝑖⏊

2 )
1/2

, (12) 

and its angle from the direction of the tape is 

𝜑𝑖 = 𝜃𝑖 − tan−1
𝐵𝑖⏊

𝐵𝑖‖
. (13) 

The transport current of the i-th layer is 𝐼𝑖 cos 𝜃𝑖  and the 

current-carrying capacity of the cable is 

𝐼c = ∑ 𝐼𝑖

𝑛

𝑖=1

cos 𝜃𝑖 . (14) 

The critical current density of the i-th layer is given by 

𝐽c(𝜑𝑖) =
1

2
(𝐽cM(𝐵𝑖) + 𝐽cm(𝐵𝑖))

+
1

2
(𝐽cM(𝐵𝑖)

− 𝐽cm(𝐵𝑖)) cos 2𝜑𝑖

= 𝐽c𝑖. 

(15) 

There are n sets of the above equations. These set of equations 

can be numerically calculated using the iteration method: 

𝐽c𝑖 = 𝑓(𝐽c1, 𝐽c2, ⋯ ,  𝐽c𝑛). (16) 

In the initial condition we assume that all layers have the 

same critical current densities 𝐽c1
(0)

= ⋯ = 𝐽c1
(0)

= 𝐽cM(𝐵 = 0), 

and the calculation of the next step is done with obtained 

critical current densities in each layer. The calculation is 

iterated until an unchanged set of solutions are obtained. In Ref. 

21 it was shown that the iteration method can reproduce the 

results of analytic solution for the ideal force-free case. 

On the other hand, the current-carrying capacity 𝐼0 in usual 

superconducting cable in the azimuthal magnetic field is simply 

obtained by putting 𝐵ext = 0 and φ = π/2 (𝜃𝑚 = 0). 
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