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Abstract In order to simulate stiff biochemical reaction systems, an explicit expo-
nential Euler scheme is derived for multi-dimensional, non-commutative stochastic
differential equations with a semilinear drift term. The scheme is of strong order
one half and A-stable in mean square. The combination with this and the projection
method shows good performance in numerical experiments dealing with an alterna-
tive formulation of the chemical Langevin equation for a human ether a-go-go related
gene ion channel model.
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1 Introduction

While it has been customary to treat the numerical solution of stiff ordinary differen-
tial equations (ODEs) by implicit methods, there are some classes of explicit meth-
ods that are well suited to solving some types of stiff problems. One such class is the
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class of Runge-Kutta Chebyshev (RKC) methods. They are useful for stiff problems
whose eigenvalues lie near the negative real axis. An original contribution is given by
van der Houwen and Sommeijer [22] who have constructed explicits-stage Runge-
Kutta (RK) methods whose stability functions are shifted Chebyshev polynomials
Ts(1+ z/s2). These have stability regions along the negative real axis of[−2s2,0].
In order to achieve second or fourth order, this class of methods has been modified
by Abdulle and Medovikov [4] and Abdulle [1], respectively. Note that these meth-
ods need to increase the stage numbers for stabilization. Another suitable class of
methods is the class of explicit exponential RK methods for semilinear problems [16,
19–21,32,36]. Although these methods were proposed many years ago, until recently
they have not been regarded as practical because of the cost of calculations for matrix
exponentials, especially for large problems. In order to overcome this problem, new
methods have been proposed [19–21]. Note that explicit exponential RK methods are
A-stable.

Similarly, for stochastic differential equations (SDEs) stabilized explicit RK meth-
ods have been developed. An original contribution concerning RKC methods is by
Abdulle and his colleagues [2,3] who have developed a family of explicit stochastic
orthogonal Runge-Kutta Chebyshev (SROCK) methods with extended mean square
(MS) stability regions. Their methods have strong order one half and weak order
one for non-commutative Stratonovich and Itô SDEs, whereas they reduce to the
first order RKC methods when applied to ODEs. By developing their ideas, Komori
and Burrage [30,31] have proposed weak second order SROCK methods for non-
commutative Stratonovich SDEs and strong first order SROCK methods for non-
commutative It̂o and Stratonovich SDEs. They reduce to the first or second order
RKC methods when applied to ODEs. Note that these methods also need to increase
the stage number for stabilization. In addition, a class of exponential integrators for
SDEs, known as Local Linearization (LL) methods, has been proposed by Jimenez
[25–27] and Cruz [14] for the strong approximation to solutions of SDEs with addi-
tive noise, whereas Biscay [9] and Shoji [39] have considered LL methods for scalar
SDEs with multiplicative noise driven by a scalar Wiener process. Mora [34] and
Carbonell, Jimenez and Biscay [12] have also proposed LL methods for the weak ap-
proximation to solutions of SDEs with additive noise. Shi, Xiao and Zhang [38] have
considered an exponential Euler scheme for the strong approximation to solutions of
SDEs with multiplicative noise driven by a scalar Wiener process. In addition, expo-
nential integrators have been considered for stochastic partial differential equations
with a semilinear drift term and additive noise [24] or multiplicative noise [5].

In biochemical kinetics, the chemical Langevin equation (CLE) is an important
modelling framework and it plays an intermediate role between the chemical master
equation and the reaction rate equation for biochemical simulation [17,23,33]. The
CLE consists of a system of Itô SDEs with non-commutative noise. In a seminal pa-
per Gillespie [17] has derived an original form of the CLE. Mélykúti, Burrage and
Zygalakis [33] have considered other possible forms and have derived a computa-
tionally effective form that needs fewer Wiener increments than that in Gillespie’s
original formulation. In order for simulation of the CLE to be biological meaningful,
approximate solutions have to be non-negative and they are often required to satisfy
other boundary conditions. Dangerfield, Kay and Burrage [15] have proposed tack-
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ling such problems by the use of reflected SDEs [40,41] and the projection method
[13]. Although the issue of non-negativity and weak approximations are often dealt
with for a specific type of SDEs also in the field of finance [6], note that strong ap-
proximations are essential in our problems.

In the present paper we shall put all these ideas together. In using projection
method, numerical methods with one intermediate stage are the most favourable and
so we will derive an explicit exponential Euler scheme for multi-dimensional, non-
commutative It̂o SDEs with a semilinear drift term. The scheme together with the
projection method will show very good performance for stiff biochemical problems.
In Section 2 we will introduce the exponential Euler scheme for ODEs and derive the
exponential Euler scheme for SDEs. After that, we will investigate its MS stability.
Section 3 will present numerical results and Section 4 our conclusions.

2 Exponential schemes

2.1 Exponential Euler scheme

We consider autonomous semilinear ODEs given by

yyy′(t) = Ayyy(t)+ fff (yyy(t)), t > 0, yyy(0) = yyy0, (2.1)

whereyyy is anRd-valued function on[0,∞), A is ad×d matrix andfff is anRd-valued
nonlinear function onRd or a constant vector. By the variation-of-constants formula,
the exact solution of (2.1) is represented as

yyy(t) = eAtyyy0 +
∫ t

0
eA(t−s)fff (yyy(s))ds. (2.2)

Whenyyyn denotes a discrete approximation to the solutionyyy(tn) of (2.1) for an

equidistant grid pointtn
def= nh (n = 1,2, . . . ,M) with step sizeh (M is a natural num-

ber), we can derive a numerical scheme by utilizing (2.2). From (2.2), we have

yyy(tn+1) = eAhyyyn +
∫ tn+1

tn
eA(tn+1−s)fff (yyy(s))ds

if yyy(tn) =yyyn. By interpolatingfff (yyy(s)) atfff (yyyn) only, we obtain the simplest exponential
scheme for (2.1) [21]:

yyyn+1 = eAhyyyn +ϕ1(Ah)fff (yyyn)h, (2.3)

whereϕ1(Z) def= Z−1(eZ − I) andI stands for thed×d identity matrix. This is called
the exponential Euler scheme.

When we apply (2.3) to the scalar test equation

y′(t) = λy(t), t > 0, y(0) = y0, (2.4)

whereℜ(λ ) ≤ 0 andy0 6= 0, we haveyn+1 = R(λh)yn for which R(z) = ez. Thus,
although (2.3) is an explicit scheme, it is A-stable, that is, its stability region{z |
|R(z)| ≤ 1} contains the whole left half of the complex plane [11].
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2.2 Exponential Euler scheme for SDEs

Similarly to the previous subsection, we are concerned with autonomous SDEs with
the semilinear drift term given by

dyyy(t) = (Ayyy(t)+ fff (yyy(t)))dt +
m

∑
j=1

ggg j(yyy(t))dWj(t), t > 0, yyy(0) = yyy0, (2.5)

whereggg j , j = 1,2, . . . ,mareRd-valued functions onRd, theWj(t), j = 1,2, . . . ,mare
independent Wiener processes andyyy0 is independent ofWj(t)−Wj(0) for t > 0. If a
global Lipschitz condition is satisfied, the stochastic differential equation (SDE) has
exactly one continuous global solution on the entire interval[0,∞) [7, p. 113].

Similarly to (2.1), the exact solution of (2.5) is represented by

yyy(t) = eAtyyy0 +
∫ t

0
eA(t−s)fff (yyy(s))ds+

m

∑
j=1

∫ t

0
eA(t−s)ggg j(yyy(s))dWj(s)

(see also [5,38]). We can derive numerical schemes by utilizing this. From it, we have

yyy(tn+1) = eAhyyyn +
∫ tn+1

tn
eA(tn+1−s)fff (yyy(s))ds

+
m

∑
j=1

∫ tn+1

tn
eA(tn+1−s)ggg j(yyy(s))dWj(s) (2.6)

if yyy(tn) = yyyn. If we simply choose the left-hand point of the interval to approximate
the integrals in both of the drift and diffusion terms, we have

yyyn+1 = eAhyyyn +eAhfff (yyyn)h+eAh
m

∑
j=1

ggg j(yyyn)4Wj (2.7)

as an approximation toyyy(tn+1), where4Wj
def= Wj(tn+1)−Wj(tn). Form= 1 (2.7) is

the same as an exponential Euler scheme proposed by Shi et al. [38] for SDEs with a
scalar Wiener process. When (2.7) is applied to ODEs, it is equivalent to the Lawson-
Euler scheme [32,38]. In addition, it has a similar type of approximations in both of
the drift and diffusion terms. Thus, let us call it the stochastic Lawson-Euler (SLE)
scheme in the sequel.

For (2.6), if we interpolatefff (yyy(s)) at fff (yyyn) similarly to (2.3) and choose the left-
hand point of the interval in the diffusion terms similarly to (2.7), then we have

yyyn+1 = eAhyyyn +ϕ1(Ah)fff (yyyn)h+eAh
m

∑
j=1

ggg j(yyyn)4Wj . (2.8)

Adamu [5] has proposed this scheme and has called it the SETD0 scheme. (SETD
stands for “stochastic exponential time differencing”.)

When we interpolatefff (yyy(s)) atfff (yyyn) similarly to (2.3) and also interpolateggg j(yyy(s))
atggg j(yyyn) in (2.6), we obtain the following approximation toyyy(tn+1):

yyy(tn+1) ' eAhyyyn +ϕ1(Ah)fff (yyyn)h+
m

∑
j=1

(∫ tn+1

tn
eA(tn+1−s)dWj(s)

)
ggg j(yyyn).
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In [39], another approximation was considered for scalar SDEs. In order to approxi-
mate the stochastic integrals in the right-hand side, let us consider an approximation∫ tn+1

tn
αdWj(s) (2.9)

to
∫ tn+1
tn ea(tn+1−s)dWj(s), wherea∈ R. Because its MS error is given by

E

[{∫ tn+1

tn

(
ea(tn+1−s) −α

)
dWj(s)

}2
]

=
∫ tn+1

tn

(
ea(tn+1−s) −α

)2
ds,

by differentiating this with respect toα and setting it at zero, we obtain

α = (ah)−1
(

eah−1
)

. (2.10)

Hence, we can derive the following scheme:

yyyn+1 = eAhyyyn +ϕ1(Ah)fff (yyyn)h+ϕ1(Ah)
m

∑
j=1

ggg j(yyyn)4Wj . (2.11)

When (2.11) is applied to ODEs, it is equivalent to the exponential Euler scheme.
In addition, it has a similar type of approximations in both of the drift and diffusion
terms. Thus, let us call it the stochastic exponential Euler (SEE) scheme.

In general, when discrete approximationsyyyn are given by a numerical scheme, we
say that the scheme is of strong orderp if there exists a constantC such that(

E[||yyyM −yyy(T)||2]
)1/2 ≤Chp (2.12)

with T = Mh andh sufficiently small [29,37], where|| · || stands for the Euclidean
norm. Here, remember that we have already given some notations in Subsection
2.1. Let us assumefff ,ggg j ∈ CCC2 for j = 1,2, . . . ,m. Then, it is known that the Euler-
Maruyama (EM) scheme for solving (2.5)

yyyn+1 = yyyn +(Ayyyn + fff (yyyn))h+
m

∑
j=1

ggg j(yyyn)4Wj (2.13)

is of strong order one half [29,37].
The following points can be made.

• WhenA goes to the zero matrix, (2.11) is equivalent to the EM scheme.
• Because the expression on the right-hand side of (2.11) can be truncated in the

following form

yyyn+1 = yyyn +(Ayyyn + fff (yyyn))h+
m

∑
j=1

ggg j(yyyn)4Wj

+
1
2

A(Ayyyn + fff (yyyn))h2 +
1
2

Ah
m

∑
j=1

ggg j(yyyn)4Wj

for a smallh, (2.11) is also of strong order one half.
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• It is reasonable to approximate ea(tn+1−s) by the constantα in (2.9) as even∫ tn+1
tn sdWj(s) is of order one and one half in MS.

• For (2.10), (2.9) obeys the normal distribution with mean 0 and variance∫ tn+1

tn
α2ds=

1
a2h

(
eah−1

)2
= h+ah2 +

7
12

a2h3 +O(h4),

whereas
∫ tn+1
tn ea(tn+1−s)dWj(s) obeys the normal distribution with mean 0 and

variance∫ tn+1

tn
e2a(tn+1−s)ds=

1
2a

(
e2ah−1

)
= h+ah2 +

2
3

a2h3 +O(h4).

In [5,39], another approximation was considered for the stochastic integral and it
finally led to the square root of a matrix exponential function.

2.3 MS stability analysis for the SEE scheme

As with the deterministic case, if we apply (2.11) to the scalar test equation [18]

dy(t) = λy(t)dt +
m

∑
j=1

σ jy(t)dWj(t), t > 0, y(0) = y0, (2.14)

wherey0 6= 0 with probability one (w. p. 1) and whereλ andσ j (1 ≤ j ≤ m) are
complex values and they satisfy

2ℜ(λ )+
m

∑
j=1

∣∣σ j
∣∣2 < 0, (2.15)

then, we have

yn+1 = R

(
λh,

m

∑
j=1

σ j4Wj

)
yn

for whichR(z,w) = ez+z−1(ez−1)w.
Because of (2.15), the solution of (2.14) is MS stable (limt→∞ E[|y(t)|2] = 0) [18].

On the other hand, the MS stability functionR̂of (2.11) is given by

R̂(pr , pi ,q) def= E

∣∣∣∣∣R
(

λh,
m

∑
j=1

σ j4Wj

)∣∣∣∣∣
2


= e2pr +

(
e2pr −2epr cospi +1

)
q

p2
r + p2

i

(2.16)

wherepr
def= ℜ(λ )h, pi

def= ℑ(λ )h andq
def= ∑m

j=1 |σ j |2h. The MS stability (E[|yn|2] →
0 (n → ∞)) for (2.11) is equivalent tôR(pr , pi ,q) < 1 [18]. Thus, the MS stability
domain of (2.11) is defined by{(pr , pi ,q) | R̂(pr , pi ,q) < 1}.
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Fig. 2.1 MS stability domain (top left) and its profiles (top right and bottom) for the SEE scheme

We can rewrite (2.15) as 2pr +q < 0. Using this, we obtain

R̂(pr , pi ,q) < R̃(pr , pi)
def= e2pr −

2pr
(
e2pr −2epr cospi +1

)
p2

r + p2
i

, (2.17)

from (2.16).
First, let us consider the case ofpi = 0. As

R̃(pr ,0) =
(pr −2)e2pr +4epr −2

pr
,

we have limpr→−0 R̃(pr ,0) = 1 andR̃(pr ,0) is a monotone increasing function ofpr .
Thus,R̃(pr ,0) < 1 for pr < 0.

Next, let us consider the case ofpi ≥ π. In this case, we have

R̃(pr , pi) ≤
(p2

r −2pr +π2)e2pr −4prepr −2pr

p2
r +π2 .
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pi

pr

q

q

pr

pi = 0

Fig. 2.2 MS stability domain (left) and its profile (right) for the EM scheme

When we denote byψ1(pr) the expression in the right-hand side, we haveψ1(0) = 1
and

ψ ′
1(pr)= 2

{(
p2

r +π2 +π
)

epr − pr +π
}

u(pr)−2pr
(
p2

r +π2
)

e2pr + p2
r (epr +2)epr

(p2
r +π2)2 ,

where
u(pr)

def=
(
p2

r +π2−π
)

epr − pr −π.

As u′(0) > 0, limpr→−∞ u′(pr) = −1 andu′′(pr) > 0, u(pr) is a convex function and
it reaches its minimum value at a point, say,β , in the interval(−∞,0]. We can nu-
merically obtainβ = −1.869 andu(β ) = 0.304. Thus,u(pr) > 0 holds forpr ≤ 0.
This fact leads tõR(pr , pi) < 1 for pr ≤ 0 andpi ≥ π.

As R̂(pr , pi ,q) = R̂(pr ,−pi ,q), all that remains is the case ofπ > pi > 0. Let
ψ2(pr) be R̃(pr ,ε) for a positiveε < π. Then, sinceψ ′

2(pr) > 0 for pr ≤ −ε, we
haveψ2(pr) ≤ ψ2(−π) for pr ≤ −π, which impliesR̃(pr ,ε) ≤ R̃(−π,ε). On the
other hand,̃R(−π, pi) is a monotone decreasing function ofpi when 0< pi < π, and
R̃(−π,0) < 1. Thus,R̃(pr , pi) < 1 for pr ≤ −π and 0< pi < π. Consequently, we
plot the MS stability domain for−π < pr < 0 and 0< pi < π.

The MS stability domain and its profiles are given in Figure 2.1. The MS stability
domain is indicated by the colored part in the top left of the figure. Here, the other
part enclosed by the mesh indicates the domain in which the solution of the test SDE
is MS stable. In the bottom of the figure, the colored area indicates the profile of
the MS stability domain whenpi = 0 or 0.25, whereas the area enclosed by the mesh
indicates the region in which the solution of the test SDE is MS stable. In the top right
of the figure, the colored area indicates the profile of the MS stability domain when
q = −2pr , which is the boundary of the stability region of the test SDE. From these
results, we can see that the SEE scheme is A-stable in MS [18], that is, its stability
domain contains the domain that satisfies 2pr +q < 0.
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For comparisons, lastly let us check the stability of the EM scheme. When (2.13)
is applied to (2.14), the MS stability function of (2.13) is given by

R̂(pr , pi ,q) = (1+ pr)2 + p2
i +q.

The MS stability domain and its profile are given in Figures 2.2. Note that the col-
orless part or area enclosed by the mesh indicates situations in which the solution of
the test SDE is MS stable, but the numerical solution by the EM scheme is not.

3 Simulation for a K+ channel

3.1 Reflected SDEs and projection method

When (2.5) is considered for biological simulation, one of the critical problems often
leads to keeping the non-negativity ofyi(t) (i = 1,2, . . . ,d) and conserving the sum of
them because of having biological meaning – the componentsyi ’s represent chemical
concentrations. Let us denote byD the hyperplane given by∑d

i=1yi(t) = L for an
L > 0 which lies inside the hypercube bounded by the intervals[0,L], and by∂D
the boundary ofD. In order to overcome the problem, Dangerfield et al. [15] have
proposed using reflected SDEs [40,41] instead of directly using (2.5). The reflected
SDEs are given by the following form:

dyyy(t) = (Ayyy(t)+ fff (yyy(t)))dt +
m

∑
j=1

ggg j(yyy(t))dWj(t)+drrr(t), t > 0,

yyy(0) = yyy0

(3.1)

with the properties [8,15]

|rrr|(t) =
∫ t

0
111{yyy(s)∈∂D}d|rrr|(s), rrr(t) =

∫ t

0
ν(s)d|rrr|(s), (3.2)

where111 stands for an indicator function,ν(s) ∈ N(yyy(s)) if yyy(s) ∈ ∂D andN(aaa) is
the set of inward pointing unit vectors to the pointaaa that lies on∂D. As a numerical
method to solve reflected SDEs, Dangerfield et al. [15] have adopted the projection
method, rather than penalization methods. Although the solution of (3.1) is a pair
(yyy(t),rrr(t)) that satisfies (3.2) [35,42], the projection method can give numerical so-
lutions without explicitly performing calculations for the reflecting processrrr(t).

The projection method is described as follows. When we have an approximate
solutionyyyn ∈D at timetn, from this we calculate an unreflected approximate solution,

sayyyy(un)
n+1, by using the EM scheme or an exponential scheme. Ifyyy(un)

n+1 ∈ D, we use this

as an approximate solutionyyyn+1 at time tn+1. If not, we use the projection ofyyy(un)
n+1

onto∂D. WhenΠ(·) denotes the projection, this procedure can be rewritten as

yyyn+1 =

yyy(un)
n+1 if yyy(un)

n+1 ∈ D,

Π(yyy(un)
n+1) if yyy(un)

n+1 /∈ D.

Chen and Ye [13] have proposed the algorithm that givesΠ(yyy(un)
n+1) as follows:
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1) Setuuu := yyy(un)
n+1, whereyyy(un)

n+1 is an approximate solution to (2.5) calculated by the
EM scheme or an exponential scheme.

2) Sort the elements ofuuu in the ascending order asu(1) ≤ u(2) ≤ ·· · ≤ u(d), and set
i := d−1.

3) Setsi by

si :=
1

d− i

(
d

∑
k=i+1

u(k) −L

)
.

If si ≥ u(i), then set ˆs := si and go to Step 5). Otherwise, seti := i −1 and redo
Step 3) ifi ≥ 1 or go to Step 4) ifi = 0.

4) Setŝby

ŝ :=
1
d

(
d

∑
k=1

u(k) −L

)
.

5) Return
[max(u1− ŝ,0) max(u2− ŝ,0) · · · max(ud − ŝ,0)]>

as the projection ofuuu, whereu1,u2, . . . ,ud are the unsorted elements ofuuu.

For more details including the error analysis of the projection method, see [15].

3.2 State space reduction

As an example of real interest to biologists, we consider a model for a human ether
a-go-go related geneK+ ion channel [10,28]. Ḿelykúti et al. [33] have given the
Langevin formulation of this model. The model has three closed states, one open state
and one inactivation state as five chemical species reacting through ten reactions, and
takes the form

A =


−k1 k2 0 0 0
k1 −k2−k3 k4 0 0
0 k3 −k4−k5−k10 k6 k9

0 0 k5 −k6−k7 k8

0 0 k10 k7 −k8−k9

 , (3.3)

fff (yyy) =
[

0 0 0 0 0
]>

,[
ggg1(yyy) ggg2(yyy) ggg3(yyy) ggg4(yyy) ggg5(yyy)

]

=


−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1

diag


√

k1y1 +k2y2√
k3y2 +k4y3√
k5y3 +k6y4√
k7y4 +k8y5√
k9y5 +k10y3


with the conditions 0≤ yi(t) ≤ L (i = 1,2, . . . ,5) and

5

∑
i=1

yi(t) = L, (3.4)
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yi

y j0

Fig. 3.1 Diagrammatical representation of how the projection method works for our formulation

whereL = ∑5
i=1yi(0). Because the rank ofA is four in (3.3), we cannot apply (2.8) or

(2.11) to this formulation. We have to reduce the number of state variables.
When we setU as

U
def=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 1 1

 ,

left multiplication byU does not change the first four rows ofA and

[ggg1(yyy) ggg2(yyy) ggg3(yyy) ggg4(yyy) ggg5(yyy)] ,

but it makes the last row vanish in both cases. This fact leads to the following equiv-
alent formulation with a smaller number of state variables:

A =


−k1 k2 0 0
k1 −k2−k3 k4 0
−k9 k3−k9 −k4−k5−k9−k10 k6−k9

−k8 −k8 k5−k8 −k6−k7−k8

 ,

fff (yyy) =
[

0 0 k9L k8L
]>

, yyy =
[

y1 y2 y3 y4
]>

,[
ggg1(yyy) ggg2(yyy) ggg3(yyy) ggg4(yyy) ggg5(yyy)

]

=


−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0

diag



√
k1y1 +k2y2√
k3y2 +k4y3√
k5y3 +k6y4√

k7y4 +k8(L−∑4
i=1yi)√

k9(L−∑4
i=1yi)+k10y3


with y5(t) = L−∑4

i=1yi(t).
As (3.4) is always satisfied in this formulation, the projection method will be used

to keep the non-negativity of the components of the solution. Figure 3.1 indicates
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how the projection method works at a certain time step for this formulation. The
oblique solid or dotted line represents the hyperplane given by (3.4). The round point
is the value at some time step of the unreflected process, which has a negativei-th
component. The star point is the projection of this point ontoD.

3.3 Numerical experiments

In order to see how well the SEE scheme behaves, we perform numerical experi-
ments. As the dimension of the matrixA is not too large in our problems, we can
diagonalize the matrix [21] for numerical calculations. Assume that we have a diag-
onal matrixΛ and a diagonalization matrixR such that

Λ = diag(λ1,λ2,λ3,λ4), AR= RΛ .

Then, in (2.7), (2.8) or (2.11) we have

eAh = Rdiag
(

eλ1h,eλ2h,eλ3h,eλ4h
)

R−1,

A−1
(

eAh− I
)

= Rdiag

(
eλ1h−1

λ1
,
eλ2h−1

λ2
,
eλ3h−1

λ3
,
eλ4h−1

λ4

)
R−1.

Note that once we calculate these for a givenh, we can use them for every step and
trajectory.

In the sequel, we investigate the root mean square error (RMSE) in (2.12) by
simulating 1000 independent trajectories for a givenh. We also investigate compu-

tational costs. In the simulation results, we will indicateSa
def= ne+nr , wherene and

nr stand for the number of evaluations on the drift or diffusion coefficients and the
number of generated pseudo random numbers, respectively. As we do not know the
exact solution of the SDE in our problem, we will seek a numerical solution by the
Milstein scheme [29] withh = 2−10 and use it instead of the exact solution [37]. The
Milstein scheme will be used only for this because it is very costly in our problem
due to approximations to stochastic double integrals and the derivatives of the diffu-
sion coefficients. For the approximations to stochastic double integrals, we can use
the algorithm proposed by Wiktorsson [43] as in [31,37].

Our simulation strategy is as follows. We have 10 groups each of which has 100
trajectories. For them, we seek

ε̄ j
def=

1
100

100

∑
l=1

∥∥∥yyyM( j, l)−yyyMil
M ( j, l)

∥∥∥2
( j = 1,2, . . . ,10),

whereyyyMil
M ( j, l) andyyyM( j, l) stand for an approximation on thel th trajectory in the

jth group, by the Milstein scheme and another scheme, respectively. Using them, we
seek

ε̂ def=
1
10

10

∑
j=1

ε̄ j , σ̂2 def=
1
9

10

∑
j=1

(ε̄ j − ε̂)2 .
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Fig. 3.2 Log-log plots of the RMSE ofyyy(5) versush or Sa (Solid: SEE, dash-dotted: EM, dotted: SLE,
dash: SETD0)

Finally, we obtain a 90% confidence interval(ε̂ −4ε̂, ε̂ +4ε̂) for E[‖yyyM −yyy(T)‖2],
where

4ε̂ def= 1.83

√
σ̂2

10

(see also [29, p. 46]). In figures, we will plot(1/2) log2 ε̂ with bars, which show
(1/2) log2(ε̂ −4ε̂) and(1/2) log2(ε̂ +4ε̂).

The first is a case in which many reflections occur. We set parameters and an
initial condition as follows:

k1 = 0.2, k2 =
k1

50
, ki = k1 (i = 3,4, . . . ,10), L = 400,

y1(0) = y3(0) = y5(0) = 100 (w. p. 1), y2(0) = y4(0) = 50 (w. p. 1).

The root mean square errors (RMSEs) are indicated in Figure 3.2. As the solution
is a vector, the Euclidean norm is used. The solid, dash-dotted, dotted or dash lines
denote the SEE scheme, the EM scheme, the SLE scheme or the SETD0 scheme,
respectively. We can see that the SEE scheme is the best, whereas the SLE scheme is
the worst. On the other hand, Figure 3.3 indicates the number of reflections per step
over 1000 trajectories. We can see that there is not a large difference in the number
of reflections.
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Fig. 3.3 Number of reflections per step over 1000 trajectories versus log2 h (Solid: SEE, dash-dotted: EM,
dotted: SLE, dash: SETD0)

The second problem is a stiff one depending on the value ofk1. We set the other
parameters as follows:

k2 = k1, ki = 0.5 (i = 3,4, . . . ,10).

The initial condition is the same as in the previous case. For several values ofk1,
RMSEs are indicated in Figure 3.4. Ask1 becomes large, the SDE becomes increas-
ingly stiff. Whenk1=50, for example, we need a small step sizeh for the EM scheme
to solve the SDE numerically stably. This is because one of the eigenvalues ofA is
−100.252. (Remember Figure 2.2.) On the other hand, for the SEE scheme we do
not need such a smallh as it is A-stable. The SLE and SETD0 schemes also do not
require a smallh for stability. Incidentally, Figure 3.5 indicates the RMSE versus
the computational cost and the number of reflections whenk1 = 50. In Table 3.1,
the schemes are compared in terms of CPU time to solve the same SDE. It has been
measured by Intel C++ Compiler on Windows 7, Intel Core i7 CPU, 2.80 GHz. From
these results, we can see that the SEE scheme has the best performance not only with
respect to RMSEs versush, but also in terms of computational costs and CPU time
versus errors.

Table 3.1 CPU time to solve the SDE whenk1 = 50 (the unit is seconds)

log2 h −1 −2 −3 −4 −5 −6 −7 −8
SSE 112 116 122 149 155 168 185 194
EM — — — — — 166 186 195
SLE 112 117 123 154 157 170 185 199

SETD0 112 115 122 149 155 166 183 193
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Fig. 3.4 Log-log plots of the RMSE ofyyy(5) versush for several values ofk1 (Solid: SEE, dash-dotted:
EM, dotted: SLE, dash: SETD0)
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Fig. 3.5 Log-log plots of the RMSE ofyyy(5) versusSa, and the number of reflections per step over 1000
trajectories versus log2 h whenk1 = 50 (Solid: SEE, dash-dotted: EM, dotted: SLE, dash: SETD0)

4 Conclusions

For non-commutative Itô SDEs with a semilinear drift term, we have derived the SEE
scheme, which is of strong order one half. Using the scalar test SDE with complex
coefficients, we have investigated stability properties for the scheme and have shown
that it is A-stable in MS.

For numerical experiments we have dealt with the model for aK+ channel that
is computationally efficient [15], and have carried out the state space reduction for
it. Then, using the reflection technique to keep the non-negativity of the numerical
solutions, we have confirmed the advantages of the SEE scheme in the numerical
experiments. Whereas the EM scheme has suffered from poor stability properties and
the SLE scheme has always indicated low accuracy, the SEE scheme has shown the
best performance in accuracy, computational costs and stability.
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33. Mélykúti, B., Burrage, K., Zygalakis, K.C.: Fast stochastic simulation of biochemical reaction systems
by alternative formulations of the chemical Langevin equation. J. Chem. Phys.132(16), 164109
(2010)

34. Mora, C.M.: Weak exponential schemes for stochastic differential equations with additive noise. IMA
J. Numer. Anal.25(3), 486–506 (2005)

35. Pettersson, R.: Approximations for stochastic differential equations with reflecting convex boundaries.
Stochastic Process. Appl.59(2), 295–308 (1995)

36. Pope, D.: An exponential method of numerical integration of ordinary differential equations. Comm.
ACM 6(8), 491–493 (1963)

37. R̈oßler, A.: Runge-Kutta methods for the strong approximation of solutions of stochastic differential
equations. SIAM J. Numer. Anal.48(3), 922–952 (2010)

38. Shi, C., Xiao, Y., Zhang, C.: The convergence and MS stability of exponential Euler method for
semilinear stochastic differential equations. Abstr. Appl. Anal.2012(2012). 35040701, 19 pages

39. Shoji, I.: A note on convergence rate of a linearization method for the discretization of stochastic
differential equations. Commun. Nonlinear Sci. Numer. Simul.16(7), 2667–2671 (2011)

40. Skorohod, A.V.: Stochastic equations for diffusion processes with a boundary. Theory Probab. Appl.
6, 287–298 (1961)

41. Skorohod, A.V.: Stochastic equations for diffusion processes with boundaries. II. Theory Probab.
Appl. 7, 5–25 (1962)

42. Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions.
Hiroshima Math. J.9(1), 163–177 (1979)

43. Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for
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