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Abstract

Associated with a parameterization for the three-parameter log-

normal distribution, algorithm was proposed by Komori and Hirose

(2004), which can find a local maximum likelihood (ML) estimate

surely if it exists. Nevertheless, by Vera and Dı́az-Garćıa (2008) it was

shown that performance in finding a local ML estimate deteriorated

by adopting the parameterization only and using other algorithm. In

the present paper, it will be shown that Komori and Hirose’s algo-

rithm should be used for the parameterization. This work will also

give MATLAB codes as a useful tool for the parameter estimation of

the distribution.
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1 Introduction

Parameter estimation methods for the three-parameter lognormal distribu-

tion have been studied by many researchers. Many of such studies are intro-

duced in Vera and Dı́az-Garćıa (2008).

The probability density function is given by

f(x; α, β, γ)
def
=

1√
2π(x − α)β

exp

[
−{ln ((x − α)/γ)}2

2β2

]
(x > α, β > 0, γ > 0),

where x is a variable and α, β and γ are parameters. When xi (1 ≤ i ≤ n)

are independent observations, we have the likelihood function: L(α, β, γ)
def
=∏n

i=1 f(xi; α, β, γ). For the observations, x1 > x2 ≥ · · · ≥ xn−1 > xn will be

assumed in the sequel without loss of generality.

Noting that a random variable ln(X −α) is normally distributed, we can

see that L(α, β, γ) achieves its maximum at a point (α, β̂(α), γ̂(α)) for a given

α < xn, where

β̂(α)
def
=

√√√√1

n

n∑
i=1

{ln(xi − α) − ln γ̂(α)}2, γ̂(α)
def
= exp

[
1

n

n∑
i=1

ln(xi − α)

]
.

It is, however, known that L(α, β̂(α), γ̂(α)) → ∞ as α → xn − 0. Hence,

instead of a maximum likelihood (ML) estimate in the usual meaning, a

local ML estimate is considered, which makes L(α, β̂(α), γ̂(α)) maximum

under the condition xn − α > δ for a small δ > 0 (Hill, 1963).

In order to find the local ML estimate of α, one possible way is to display

L(α, β̂(α), γ̂(α)), but it may have difficulties in such cases that the shape of

L(α, β̂(α), γ̂(α)) is complicated or the range of α to search through is too
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wide (Cheng and Iles, 1990; Hill, 1963; Johnson et al., 1994). Also when an

iterative solver such as Newton’s method is used, similar or other difficul-

ties can happen (Komori and Hirose, 2004). That is why many researchers

tackled this estimation problem.

On the other hand, in order to avoid such difficulties Munro and Wixley

(1970) have proposed a parameterization for the three-parameter estimation,

where local ML estimates for α, β and γ are sought independently and si-

multaneously. In the sequel we will simply call a triplet of them a local ML

estimate. Their parameterization is given by α
def
= µ − σ/λ, β

def
= λ and

γ
def
= σ/λ and it leads to

f(x; µ − σ/λ, λ, σ/λ)

=
1√

2π{σ + λ(x − µ)}
exp

[
−{ln(σ + λ(x − µ)) − ln σ}2

2λ2

]
.

(1)

This can permit λ to be negative. We call it the extended lognormal distri-

bution, in which λ 6= 0 and σ > 0. The parameterization is much helpful to

improve the convergency of many iterative methods (Eastham et al., 1987;

Hirose, 1997). It is, however, still probable that methods fail to find a local

ML estimate. For example, see Subsection 3.3 in Komori and Hirose (2001).

In addition, when they cannot find a local ML estimate, it is unclear whether

it exists or not.

These two problems have been overcome with algorithm and another

parameterization proposed by Komori and Hirose (2004). That is, the com-

bination of them makes it possible to judge whether a local ML estimate

exists or not, and to find it surely if it exists.

Vera and Dı́az-Garćıa (2008) have proposed a global simulated annealing
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(SA) optimization heuristic for the parameterizations mentioned above as

well as Wingo’s parameterization (Wingo, 1984). In their simulation, how-

ever, successful rates in finding a local ML estimate are low for Komori and

Hirose’s parameterization. This will be shown in the present paper.

The paper is organized as follows. In Section 2, we will briefly introduce

our parameterization and algorithm. In Section 3, we will give simulation

studies and discussion. Lastly, we will give concluding remarks.

2 Komori and Hirose’s parameterization and

algorithm

The substitution of τ
def
= σ − λµ and s

def
= ln σ into (1) yields

f(x;−τ/λ, λ, es/λ) =
1√

2π(λx + τ)
exp

[
−{ln(λx + τ) − s}2

2λ2

]
(λ 6= 0).

By arranging ln L̄(λ, τ, s)
def
=
∑n

i=1 ln f(xi;−τ/λ, λ, es/λ), we obtain

ln L̄(λ, τ, s) = − n

2λ2

{
s − 1

n

n∑
i=1

ln(λxi + τ)

}2

− n ln
√

2π

+
1

2nλ2

{
n∑

i=1

ln(λxi + τ)

}2

− 1

2λ2

n∑
i=1

{ln(λxi + τ)}2

−
n∑

i=1

ln(λxi + τ).

The first term has the maximum value 0 when s = (1/n)
∑n

i=1 ln(λxi + τ).

Hence, all we need to do is to maximize the following function:

F (λ, τ)
def
=

1

2nλ2

{
n∑

i=1

ln(λxi + τ)

}2

− 1

2λ2

n∑
i=1

{ln(λxi+τ)}2−
n∑

i=1

ln(λxi+τ).

4



In order to achieve it, Komori and Hirose (2004) have proved the following

theorem.

Theorem 2.1 Let us define τ+
U (λ) and τ−

U (λ) by

τ+
U (λ)

def
= −λxn

(
1 − x̄/xne−λ2

1 − e−λ2

)
for λ > 0,

τ−
U (λ)

def
= −λx1

(
1 − x̄/x1e

−λ2

1 − e−λ2

)
for λ < 0,

where x̄ stands for the arithmetic mean of data, that is, (1/n)
∑n

i=1 xi. Then,

the following statements hold.

1)

∂F

∂τ
(λ, τ+

U (λ)) < 0 for λ > 0,
∂F

∂τ
(λ, τ−

U (λ)) < 0 for λ < 0.

2)

lim
τ→−λxn+0

∂F

∂τ
(λ, τ) = +∞ for λ > 0, lim

τ→−λx1+0

∂F

∂τ
(λ, τ) = +∞ for λ < 0.

3) If a point (λ, τ) satisfies
∂2F

∂τ 2
(λ, τ) = 0, then

∂F

∂τ
(λ, τ) < 0 holds for

the point.

4) lim
λ→+∞

F (λ, τ+
U (λ)) = +∞, lim

λ→−∞
F (λ, τ−

U (λ)) = +∞.

5) F0(τ)
def
= lim

λ→±0
F (λ, τ) achieves the relative maximum when

τ = τ ∗ def
=

1

n

√√√√n−1∑
i=1

n∑
j=i+1

(xi − xj)2.
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Based on the theorem, our algorithm is given and it provides the profile of

F (λ, τ) for λ > 0 and λ < 0, respectively.

For λ > 0, the profile is sought by the following procedure. Here, τ ,

λ, τmin and τmax stands for variables, whereas ε0, ε1, ε2, λ+
max and 4λ are

preassigned positive constants.

1) Set τ = τ ∗ and λ = ε0 for a small preassigned constant ε0 > 0.

2) For a sufficient large preassigned constant λ+
max, if λ > λ+

max, go to 8).

Otherwise, set τmin = −λxn and τmax = τ+
U (λ).

3) Make sure that τmin < τ < τmax is satisfied. If it is not satisfied, go to

8).

4) If
∂F

∂τ
(λ, τ) > 0, set τmin = τ . Otherwise, set τmax = τ .

5) If
∂F

∂τ
(λ, (τmin + τmax)/2) > 0, set τmin = (τmin + τmax)/2. Otherwise,

set τmax = (τmin + τmax)/2.

6) If (τmax − τmin)/|τmax| > ε1, go to 5). Otherwise, set τ = τmax.

7) If

∣∣∣∣∂F

∂τ
(λ, τ)

∣∣∣∣ < ε2, then record (λ, τ, F (λ, τ)), set λ = λ + 4λ and go

to 2).

8) End the procedure.

Step 1) comes from Statement 5) in the theorem. Step 2) comes from

the fact that for each λ > 0 there exists the unique solution, say τ0(λ), of

∂F
∂τ

(λ, τ) = 0 in (−λxn, τ
+
U (λ)). In fact, from Statements 1) and 2), we can
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see that there exists a solution τ0(λ). Because

∂F

∂τ
(λ, τ) <

1

λ2

(
n∑

i=1

1

λxi + τ

)(
ln

λx̄ + τ

λxn + τ
− λ2

)
holds for λ > 0 (Komori and Hirose, 2004), τ0(λ) must be smaller than

τ+
U (λ) for which the expression in the right-hand side vanishes. Furthermore,

because of Statements 1) and 3), ∂F
∂τ

(λ, τ) < 0 holds for τ ∈ (τ0(λ), τ+
U (λ)).

Thus, τ0(λ) is unique. Step 3) confirms τmin < τ < τmax to start the bisection

method with respect to τ . The violation of it means that the preassigned

positive constant ε0 or 4λ is too large. Step 4) helps to shorten the interval

to search through before the bisection method starts. Steps 5) and 6) indicate

the bisection method with respect to τ . Using {(λ, F (λ, τ))} in the records in

Step 7), we can plot the profile of F (λ, τ0(λ)) for λ > 0. From Statements 1),

4) and the things mentioned above, we can see that lim
λ→±∞

F (λ, τ0(λ)) = ∞.

On the other hand, when we seek the profile of F (λ, τ) for λ < 0, we

replace 1), 2) and 7) with 1′), 2′) and 7′), respectively:

1′) Set τ = τ ∗ and λ = −ε0.

2′) For a sufficient small preassigned constant λ−
min < 0, if λ < λ−

min, go to

8). Otherwise, set τmin = −λx1 and τmax = τ−
U (λ).

7′) If

∣∣∣∣∂F

∂τ
(λ, τ)

∣∣∣∣ < ε2, then record (λ, τ, F (λ, τ)), set λ = λ −4λ and go

to 2′).

For simulation studies in Section 3, some of the constants will be given

as follows:

ε0 = 0.05, ε1 = 10−14, ε2 = 0.01, λ+
max = 6, λ−

min = −6.
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Here, note that the interval in which a τ0(λ) exists becomes rapidly narrower

as |λ| becomes larger. When λ = 6, for example, the width of (−λxn, τ
+
U (λ))

is 6
e36−1

(x̄ − xn), which means the value of λ+
max is large enough.

If a local ML estimate exists and we set 4λ at a sufficiently small positive

value, then, from the plot data we can immediately get the extreme point of

F (λ, τ) with high accuracy.

3 Simulation studies and discussion

In this section we give numerical results for data simulated by using the

function that was used in Vera and Dı́az-Garćıa (2008).

Table 1 shows the results given by Vera and Dı́az-Garćıa (2008). When

they obtained the results, the combination of the SA algorithm and our

parameterization was used. In their simulation, µ and σ were fixed at 0 and

1, respectively. In addition, by communicating with one of them, the present

author has known that

1. the function ‘randn’ with a method ‘state’ in MATLAB was used,

2. the initial state changed each time to generate 1000 sets of pseudo-

random data,

3. the existence of a non-degenerate solution was manually checked for

each data set.

These mean that it is almost impossible to reproduce the same data sets

and results. Thus, whereas we reconstruct a similar setting for simulation by

using the same function, differently from their way we use a constant initial
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Table 1: Successful rate in finding a local ML estimate and existence rate of

a local ML estimate in Vera and Dı́az-Garćıa (2008)

λ

.25 .50 .75 1.0 1.25 1.5 1.75 2.0

n

10

15

.989

(.962)

1.00

(.990)

.966

(.951)

.997

(.994)

.942

(.903)

.995

(.990)

.880

(.791)

.991

(.975)

.736

(.655)

.974

(.944)

.651

(.375)

.926

(.891)

.604

(.169)

.822

(.697)

.623

(.077)

.686

(.379)

Note: A value in parentheses indicates an existence rate.

state for the function and seek for existence rates automatically by utilizing

F (λ, τ0(λ)).

Before Monte Carlo experiments, let us see two examples as a single set

of data. They are given in Table 2, which were generated by setting (λ, n) =

(2, 10) or (2, 20) and the initial state at 0 for the function ‘randn’. For these

data sets, Figure 1 shows profiles of F . They indicate cases in which a local

ML estimate exists or not. In the figure, the solid curves denote F (λ, τ0(λ)),

whereas the dash curves denote F (λ, τ+
U (λ)) or F (λ, τ−

U (λ)). As in the figure,

because we may regard F (λ, τ+
U (λ)) or F (λ, τ−

U (λ)) as F (λ, τ0(λ))) for large

|λ| (Komori and Hirose, 2004), we can see that the interval [−6, 6] of λ is

large enough for the global search. For other empirical data sets, see Komori

and Hirose (2004).

In a Monte Carlo experiment for a pair of n and λ, 16 batches of sets are

considered and 1000 sets of pseudo-random data are simulated for each batch,

where n pseudo-random data are generated for each set. Table 3 indicates the

mean and the standard deviation of the existence rates of a local ML estimate,
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Table 2: Examples of data set

data set (a)

4.9124 4.8934 0.4622 0.3889 0.2090 0.1424

−0.0363 −0.2895 −0.4495 −0.4821

data set (b)

38.8787 4.9124 4.8934 3.7223 1.6349 0.4622

0.3889 0.2090 0.1424 0.1280 0.0629 −0.0363

−0.0871 −0.1194 −0.1558 −0.2895 −0.3458 −0.4054

−0.4495 −0.4821

Table 3: Existence rate of a local ML estimate obtained by our algorithm

λ

.25 .50 .75 1.0 1.25 1.5 1.75 2.0

n

10

15

.974

[.006]

1.00

[.001]

.955

[.008]

.999

[.001]

.914

[.008]

.995

[.002]

.831

[.012]

.982

[.004]

.702

[.014]

.947

(.008)

.539

[.015]

.865

[.012]

.378

[.016]

.717

[.019]

.248

[.012]

.521

[.020]

Note: A value in brackets indicates standard deviation.

which were obtained for 16 batches by our algorithm automatically. Because

the standard deviation is small in all cases, we can see that the size of one

batch (1000 sets) is large enough to obtain the existence rates appropriately.

In Table 1 the values of successful rates are not for 1000 sets, but for

the limited sets in which the existence of a local ML estimate was checked

manually (Vera and Dı́az-Garćıa, 2008). In the case of n = 10 and λ = 2.0,

for example, the rate 0.623 is for 77 sets. In order to see the genuine rates
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(a) Case of no ML estimate (b) Case of existence a local
ML estimate

Figure 1: Profiles of F (λ, τ)

Table 4: Rate in finding a local ML estimate for 1000 sets in Vera and Dı́az-

Garćıa (2008)

λ

.25 .50 .75 1.0 1.25 1.5 1.75 2.0

n
10

15

.951

.990

.919

.991

.851

.985

.696

.966

.482

.920

.244

.825

.102

.573

.048

.260

for 1000 sets, we need values of successful rate multiplied by existence rate

in Table 1. These are shown in Table 4. Here, note that the values express

how often their algorithm could find a local ML estimate automatically

By comparing Tables 3 and 4, we can see how much the combination of

the SA algorithm and our parameterization worsens performance in finding

estimates by itself, especially when n = 10 and λ ≥ 1. In general, it becomes

more difficult to find a local ML estimate as n becomes smaller and/or λ

becomes larger. This fact, thus, shows that the combination of the SA algo-
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rithm and our parameterization is not useful for such difficult situations.

4 Concluding remarks

Through the simulation studies, we have shown that the combination of

our algorithm and our parameterization works better in finding a local ML

estimate than that of the SA algorithm and our parameterization, especially

when n is small and/or λ is large. Therefore, we strongly recommend using

our algorithm for our parameterization. The following are also remarkable.

• Our algorithm always successfully finds a local ML estimate if it exists

because the algorithm is based on the bisection method.

• In Vera and Dı́az-Garćıa (2008) the combinations of the SA algorithm

and the other parameterizations indicated similar performance to that

of the SA algorithm and our parameterization.

MATLAB R2007b codes for the simulation and examples are obtainable

from the following web page:

http://galois.ces.kyutech.ac.jp/˜komori/software.html

The codes will serve as a useful tool when readers want to estimate the

parameters in the distribution.
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[9] Vera, J.F., Dı́az-Garćı, J.A. (2008). A global simulated annealing heuris-

tic for the three-parameter lognormal maximum likelihood estimation.

Comput. Statist. Data Anal. 52:5055–5065.

[10] Wingo, D.R. (1984). Fitting three-parameter lognormal models by nu-

merical global optimization - an improved algorithm. Comput. Statist.

Data Anal. 2:13–25.

14


