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Abstract We consider embedding deterministic Runge-Kutta methods with high or-
der into weak order stochastic Runge-Kutta (SRK) methods for non-commutative
stochastic differential equations (SDEs). As a result, we have obtained weak second
order SRK methods which have good properties with respect to not only practical
errors but also mean square stability. In our stability analysis, as well as a scalar test
equation with complex-valued parameters, we have used a multi-dimensional non-
commutative test SDE. The performance of our new schemes will be shown through
comparisons with an efficient and optimal weak second order scheme proposed by
Debrabant and R̈oßler (2009).
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1 Introduction

We are concerned with developing and analyzing weak second order explicit stochas-
tic Runge-Kutta (SRK) methods for non-commutative stochastic differential equa-
tions (SDEs). Among such methods, derivative-free methods are especially important
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because they can numerically solve SDEs with less computational effort compared to
other methods which need derivatives.

In fact, weak second order and derivative-free methods have been recently stud-
ied by many researchers. Kloeden and Platen [11, pp. 486–487] have proposed a
derivative-free numerical scheme of weak order two for non-commutative Itô SDEs.
Tocino and Vigo-Aguiar [21] have also proposed it as an example in their SRK fam-
ily. Komori [12] has proposed a different scheme which is for non-commutative
Stratonovich SDEs and which has the advantage that it can reduce the number of
random variables that need to be simulated. This scheme, however, still has the draw-
back that its computational cost for each diffusion coefficient linearly depends on the
dimension of the Wiener process. Rößler [16] and Debrabant and Rößler [5] have pro-
posed new schemes which overcome this drawback for Stratonovich and Itô SDEs,
respectively, while keeping the advantage mentioned above.

Komori and Burrage [13] have also proposed an efficient SRK scheme which
overcomes this drawback by improving the scheme in [12]. In addition, they have
indicated that, even in a 10-dimensional Wiener process case, not only the scheme in
[13] but also the other one in [12] can perform much better than an efficient scheme
[16] in terms of computational costs. The classical Runge-Kutta (RK) method is em-
bedded in both methods [12,13]. This fact motivates us.

In the present paper we consider embedding deterministic high order RK methods
into weak second order SRK methods proposed by Rößler [17] for non-commutative
Itô SDEs. In stability analysis on numerical methods for SDEs, scalar test SDEs were
used very often for about one decade [8,9,14,18], but very recently some researchers
have proposed or started to use multi-dimensional test SDEs [2,4,19,20]. Especially,
Buckwar and Sickenberger [4] have proposed a two-dimensional test stochastic dif-
ferential equation (SDE) with non-commutative noise terms expressed by a few pa-
rameters, and they have given general results for two methods. We use a more gener-
alized test SDE as well as a scalar test SDE, and utilize their general results.

The paper is organized as follows. In Section 2 we will introduce the SRK meth-
ods that we deal with and will solve order conditions for weak order two. In Section 3
we will study mean square stability properties for our new SRK methods. In Section
4 we will investigate their effectiveness in computation by numerical experiments,
comparing them with the DRI1 scheme proposed by Debrabant and Rößler [5], which
is an efficient weak second order scheme with minimized error constant. Finally, we
will give conclusions.

2 SRK methods for weak approximations

Consider the autonomousd-dimensional It̂o SDE

dyyy(t) = ggg0(yyy(t))dt +
m

∑
j=1

ggg j(yyy(t))dWj(t), t > 0, yyy(0) = xxx0, (2.1)

whereWj(t) is a scalar Wiener process andxxx0 is independent ofWj(t)−Wj(0) for
t > 0. We assume a global Lipschitz condition is satisfied such that the SDE has ex-
actly one continuous global solution on the entire interval[0,∞) [1, p. 113]. For a
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given timeTend, let tn be an equidistant grid pointnh (n = 0,1, . . . ,M) with step size

h
def= Tend/M < 1 (M is a natural number) and letyyyn be a discrete approximation to

the solutionyyy(tn) of (2.1). In addition, letCL
P(RRRd,RRR) be the family ofL times contin-

uously differentiable real-valued functions onRRRd, whose partial derivatives of order
less than or equal toL have polynomial growth. Further, suppose that all moments of
the initial valuexxx0 exist andggg j ( j = 0,1, . . . ,m) are Lipschitz continuous with all their

components belonging toC2(q+1)
P (RRRd,RRR). Then, the definition of weak convergence

of orderq is given as follows [11, p. 327].

Definition 2.1 Suppose that discrete approximationsyyyn are given by a numerical
scheme. Then, we say that the scheme is of weak(global) order q if for all G ∈
C2(q+1)

P (RRRd,RRR), constantsC > 0 (independent ofh) andδ0 > 0 exist, such that

|E[G(yyy(tM)]−E[G(yyyM)]| ≤Chq, h∈ (0,δ0).

On the basis of the SRK framework proposed by Rößler [17], we consider the
following SRK method for the approximation of Eq. (2.1):

HHH(0)
i = yyyn +

i−1

∑
k=1

A(0)
ik hggg0

(
HHH(0)

k

)
(1≤ i ≤ s−2),

HHH(0)
i = yyyn +

i−1

∑
k=1

A(0)
ik hggg0

(
HHH(0)

k

)
+

i−1

∑
k=s−2

m

∑
l=1

B(0)
ik 4Ŵlgggl

(
HHH(l)

k

)
(i = s−1,s),

HHH( j)
s−2 = yyyn +

s−2

∑
k=1

A(1)
s−2,khggg0

(
HHH(0)

k

)
(1≤ j ≤ m),

HHH( j)
i = yyyn +

i

∑
k=1

A(1)
ik hggg0

(
HHH(0)

k

)
+

i−1

∑
k=s−2

B(1)
ik

√
hggg j

(
HHH( j)

k

)
(i = s−1,s and 1≤ j ≤ m),

Ĥ̂ĤH( j)
i = yyyn +

s

∑
k=1

A(2)
ik hggg0

(
HHH(0)

k

)
+

s

∑
k=s−2

m

∑
l=1
l 6= j

B(2)
ik η̃( j,l)gggl

(
HHH(l)

k

)
(s−2≤ i ≤ sand 1≤ j ≤ m),

yyyn+1 = yyyn +
s

∑
i=1

αihggg0

(
HHH(0)

i

)
+

s

∑
i=s−2

m

∑
j=1

β (1)
i 4Ŵjggg j

(
HHH( j)

i

)
+

s

∑
i=s−2

m

∑
j=1

β (2)
i η̃( j, j)ggg j

(
HHH( j)

i

)
+

s

∑
i=s−2

m

∑
j=1

β (3)
i 4Ŵjggg j

(
ĤHH

( j)
i

)
+

s

∑
i=s−2

m

∑
j=1

β (4)
i

√
hggg j

(
ĤHH

( j)
i

)
, (2.2)

where theαi , β (ra)
i , A(rb)

ik , andB(rb)
ik (1≤ ra ≤ 4 and 0≤ rb ≤ 2) denote the parameters

of the method. The random variables involved in the scheme are given byη̃( j, j) def=



4 Yoshio Komori, Evelyn Buckwar

Table 2.1 Butcher tableau in general form

A(0)
21
...

. ..

A(0)
s−1,1 · · · A(0)

s−1,s−2 B(0)
s−1,s−2

A(0)
s,1 · · · A(0)

s,s−2 A(0)
s,s−1 B(0)

s,s−2 B(0)
s,s−1

A(1)
s−2,1 · · · A(1)

s−2,s−2

A(1)
s−1,1 · · · A(1)

s−1,s−2 A(1)
s−1,s−1 B(1)

s−1,s−2

A(1)
s,1 · · · A(1)

s,s−2 A(1)
s,s−1 A(1)

s,s B(1)
s,s−2 B(1)

s,s−1

A(2)
s−2,1 · · · A(2)

s−2,s−2 A(2)
s−2,s−1 A(2)

s−2,s B(2)
s−2,s−2 B(2)

s−2,s−1 B(2)
s−2,s

A(2)
s−1,1 · · · A(2)

s−1,s−2 A(2)
s−1,s−1 A(2)

s−1,s B(2)
s−1,s−2 B(2)

s−1,s−1 B(2)
s−1,s

A(2)
s,1 · · · A(2)

s,s−2 A(2)
s,s−1 A(2)

s,s B(2)
s,s−2 B(2)

s,s−1 B(2)
s,s

α1 · · · αs−2 αs−1 αs β (1)
s−2 β (1)

s−1 β (1)
s β (2)

s−2 β (2)
s−1 β (2)

s

β (3)
s−2 β (3)

s−1 β (3)
s β (4)

s−2 β (4)
s−1 β (4)

s

((4Ŵj)2−h)/(2
√

h),

η̃( j,l) def=
{

(4Ŵj4Ŵl −
√

h4W̃j)/(2
√

h) ( j < l),
(4Ŵj4Ŵl +

√
h4W̃l )/(2

√
h) ( j > l),

the 4W̃l (1 ≤ l ≤ m− 1) are independent two-point distributed random variables
with P(4W̃j = ±

√
h) = 1/2 and the4Ŵj (1≤ j ≤ m) are independent three-point

distributed random variables withP(4Ŵj = ±
√

3h) = 1/6 andP(4Ŵj = 0) = 2/3
[11, p. 225]. Here, (2.2) is characterized by the Butcher tableau in Table 2.1.

In addition to the SRK framework, R̈oßler [17] has given 59 order conditions
for it to achieve weak order two. In order to satisfy the order conditions, we have
to supposes≥ 3 when we consider explicit SRK methods. In fact, Debrabant and
Rößler [5] have supposeds= 3 and given the families of the solutions. Let us utilize
some of their results because (2.2) has the stochastic parts fori = s−2,s−1,s only.
That is, we assume

β (1)
s−2 =

−1+2
(

B(1)
s−1,s−2

)2

2ε1

(
B(1)

s−1,s−2

)2 , β (1)
s−1 = β (1)

s =
1

4ε1

(
B(1)

s−1,s−2

)2 ,

β (2)
s−2 = 0, β (2)

s−1 = −β (2)
s =

1

2B(1)
s−1,s−2

, β (3)
s−2 = − 1

2ε1b2
s−1

,

β (3)
s−1 = β (3)

s =
1

4ε1b2
s−1

, β (4)
s−2 = 0, β (4)

s−1 = −β (4)
s =

1
2bs−1

(2.3)
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and

B(0)
s,s−1 = 0, B(1)

s,s−2 = −B(1)
s−1,s−2, B(1)

s,s−1 = 0,

B(2)
s−2,s−2 = B(2)

s−2,s−1 = B(2)
s−2,s = 0, B(2)

s−1,s = B(2)
s−1,s−1,

B(2)
s,s−2 = −B(2)

s−1,s−2, B(2)
s,s−1 = B(2)

s,s = −B(2)
s−1,s−1

(2.4)

whenB(1)
s−1,s−2, B(2)

s−1,s−2 andB(2)
s−1,s−1 are given. Here,ε1

def= ±1 andbs−1
def= B(2)

s−1,s−2+

2B(2)
s−1,s−1. Similarly, taking their results into account as well as simplicity, we assume

A(1)
s−1,k = A(1)

s,k (1≤ k≤ s−2), A(1)
s−1,s−1 = A(1)

s,s−1 = A(1)
s,s = 0,

A(2)
s−2,k = A(2)

s−1,k = A(2)
s,k (1≤ k≤ s).

In the end, because we embed deterministic high order RK methods into our SRK
methods, only the following three order conditions remain to be solved:

1.
s

∑
i=s−1

αi

(
B(0)

i,s−2

)2
=

1
2
, 2.

s

∑
i=s−1

αiB
(0)
i,s−2 =

ε1

2
,

3.
s

∑
i=s−2

β (1)
i

(
s−2

∑
k=1

A(1)
ik

)
=

ε1

2
.

Here, note that each of these corresponds to Conditions 11, 12 and 13 in [5], respec-
tively.

From Conditions 1 and 2, we obtain

B(0)
s−1,s−2 =

(αs−1/ε1)±
√γ1

2αs−1(αs−1 +αs)
, B(0)

s,s−2 =
(αs/ε1)∓

√γ1

2αs(αs−1 +αs)
(2.5)

(double sign in same order) ifαs−1 6= 0, αs 6= 0, αs−1 6= −αs and

γ1
def= αs−1αs

(
−1+2(αs−1 +αs)

)
≥ 0. (2.6)

Taking into account thatB(0)
s−1,s−2, B(0)

s,s−2, β (1)
i and β (3)

i (i = s− 2,s− 1,s) are

multiplied by4Ŵj (1≤ j ≤ m) in (2.2), in the sequel we supposeε1 = 1 without loss

of generality. Because of our assumption onA(1)
ik , Condition 3 automatically holds if

s−2

∑
k=1

A(1)
s−2,k =

s−2

∑
k=1

A(1)
s−1,k =

1
2
, (2.7)

or we haveB(1)
s−1,s−2 = ±√γ2 from Condition 3 if

γ2
def=

(
s−2

∑
k=1

A(1)
s−1,k−

s−2

∑
k=1

A(1)
s−2,k

)/(
1−2

s−2

∑
k=1

A(1)
s−2,k

)
> 0. (2.8)



6 Yoshio Komori, Evelyn Buckwar

As an example, we can choose the coefficients of the classical RK scheme for

A(0)
k j andαi , and can set

A(1)
s−2,k = A(1)

s−1,k = A(0)
s−2,k (s= 4 and 1≤ k≤ s−2),

which satisfies (2.7) and leads to the same deterministic part inHHH(0)
s−2 andHHH( j)

i (s−2≤
i ≤ s and 1≤ j ≤ m). We will call it the SRKCL method. As another example, we

can choose the coefficients of the Fehlberg 4(5) scheme [6, p. 177] forA(0)
k j andαi ,

and can set

A(1)
s−2,k = A(0)

2,k, A(1)
s−1,k = A(0)

3,k (s= 6 and 1≤ k≤ s−2),

which satisfies (2.8) and leads to the same deterministic part inHHH(0)
2 andHHH( j)

s−2 or

in HHH(0)
3 andHHH( j)

i (i = s−1,s and 1≤ j ≤ m). We will call it the SRKF45 method.
Of course, the SRKCL and SRKF45 methods are of order four and five for ordinary
differential equations (ODEs), respectively.

3 Mean square (MS) stability analysis

3.1 Concepts for MS stability

Before our analysis, we introduce some definitions for linear stability analysis in
general form. When we substitute

ggg0(yyy) = Fyyy, ggg j(yyy) = G jyyy (1≤ j ≤ m)

into (2.1), we have

dyyy(t) = Fyyy(t)dt +
m

∑
j=1

G jyyy(t)dWj(t), t > 0, yyy(0) = xxx0, (3.1)

whereF and G j (1 ≤ j ≤ m) are real-valued square matrices of sized. This has
the zero solutionyyy(t) ≡ 000 whenxxx0 = 000 with probability one (w. p. 1). We call it the
equilibrium position. Now, we can have the following concepts [1,10].

Definition 3.1 In (3.1), the equilibrium position is said to be MS stable if, for each
ε > 0, there exists aδ > 0 such that

E
[
‖yyy(t)‖2]< ε, t ≥ 0

wheneverE
[
‖xxx0‖2

]
< δ . Here,‖yyy‖ def=

(
yyy>yyy
)1/2

. Further if

lim
t→∞

E
[
‖yyy(t)‖2]= 0

wheneverE
[
‖xxx0‖2

]
< δ , the equilibrium position is said to be asymptotically MS

stable.
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When we apply (2.2) to (3.1), it has the equilibrium positionyyyn ≡ 000 with xxx0 = 000
(w. p. 1). Thus, we can have the following similar concepts [3,4,8,9].

Definition 3.2 Assume that a numerical method such as (2.2) is applied to (3.1) for a
givenh > 0. Then, the equilibrium position is said to be MS stable if, for eachε > 0,
there exists aδ > 0 such that

E
[
‖yyyn‖2]< ε , n≥ 0

wheneverE
[
‖xxx0‖2

]
< δ . Further if

lim
n→∞

E
[
‖yyyn‖2]= 0

wheneverE
[
‖xxx0‖2

]
< δ , the equilibrium position is said to be asymptotically MS

stable.

3.2 For a scalar test SDE with anm-dimensional Wiener process

In order to study stability properties, let us start with the following scalar test SDE

dy(t) = λy(t)dt +
m

∑
j=1

σ jy(t)dWj(t), t > 0, y(0) = x0, (3.2)

whereλ andσ j (1≤ j ≤ m) are complex values. By applying (2.2) to (3.2), we have

yn+1 = R
(

h,λ ,
{
4Ŵj

}m
j=1 ,

{
4W̃l

}m−1
l=1 ,

{
σ j
}m

j=1

)
yn. (3.3)

Here, by usingβ (1)
s−1 = β (1)

s , β (2)
s−2 =

s

∑
i=s−2

β (3)
i = β (4)

s−2 = B(0)
s,s−1 = B(1)

s,s−1 = B(2)
s−2,k = 0

(s−2≤ k≤ s), β (2)
s−1 = −β (2)

s andβ (4)
s−1 = −β (4)

s from (2.3), we obtain

R
(

h,λ ,
{
4Ŵj

}m
j=1 ,

{
4W̃l

}m−1
l=1 ,

{
σ j
}m

j=1

)
= c+

m

∑
j=1

4Ŵjd j +
m

∑
j=1

η̃( j, j)
√

hvj j +
m

∑
j=1

m

∑
l=1
l 6= j

η̃( j,l)
√

hvjl , (3.4)

where

c
def= 1+

s

∑
i=1

αihλQi−1(hλ ),

d j
def= β (1)

s−2σ jQ̂s−2(hλ )+2β (1)
s−1σ jQ̂s−1(hλ )+δ1hλσ jQ̂s−2(hλ )

+αsA
(0)
s,s−1B(0)

s−1,s−2(hλ )2σ jQ̂s−2(hλ ),

v jl
def=


2β (2)

s−1B(1)
s−1,s−2σ2

j Q̂s−2(hλ ) ( j = l),

2β (4)
s−1

(
B(2)

s−1,s−2σ jσl Q̂s−2(hλ )+2B(2)
s−1,s−1σ jσl Q̂s−1(hλ )

)
( j 6= l),

δ1
def= αs−1B(0)

s−1,s−2 +αsB
(0)
s,s−2, Q0(z)

def= 1,
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Qi(z)
def= 1+z

i

∑
k=1

A(0)
i+1,kQk−1(z), Q̂i(z)

def= 1+z
i

∑
k=1

A(1)
ik Qk−1(z) (i ≥ 1).

By noting that

E

[(
η̃( j, j)

)2
]

= E

[(
η̃( j,l)

)2
]

=
h
2

( j 6= l),

E
[
η̃( j,la)η̃( j,lb)

]
= E

[
η̃(la, j)η̃(lb, j)

]
=

h
4

(la 6= lb andla, lb > j),

E
[
η̃( j,la)η̃(lb, j)

]
= −h

4
(la 6= lb andla, lb > j)

and the expectation of the other terms concerningη̃( j,l) vanishes when we take the
expectation of|R|2, we have

E
[
|R|2

]
= |c|2 +

m

∑
j=1

h|d j |2 +
1
2

m

∑
j=1

h2|v j j |2 +
1
2

m

∑
j=1

m

∑
l=1
l 6= j

h2|v jl |2. (3.5)

Further, by substituting (2.3), (2.4) and (2.5) into this, we obtain the stability function
for (2.2) as follows:

R̂(p,q1,q2, . . . ,qm)

=

∣∣∣∣∣1+ p
s

∑
i=1

αiQi−1(p)

∣∣∣∣∣
2

+
m

∑
j=1

q j

∣∣∣∣∣∣ 1

2(B(1)
s−1,s−2)2

(
Q̂s−1(p)− Q̂s−2(p)

)

+

1+
1
2

p+
αsA

(0)
s,s−1(αs−1±

√γ1)

2αs−1(αs−1 +αs)
p2

Q̂s−2(p)

∣∣∣∣∣∣
2

+
1
2

m

∑
j=1

q2
j

∣∣Q̂s−2(p)
∣∣2

+
1
2

m

∑
j=1

m

∑
l=1
l 6= j

q jql

∣∣∣∣∣∣B
(2)
s−1,s−2Q̂s−2(p)+2B(2)

s−1,s−1Q̂s−1(p)

B(2)
s−1,s−2 +2B(2)

s−1,s−1

∣∣∣∣∣∣
2

, (3.6)

whereR̂(p,q1,q2, . . . ,qm) def= E[|R|2], p
def= hλ , andq j

def= h|σ j |2. The following are
remarkable.

• When fourth order RK methods with four stages are embedded in our SRK meth-
ods, the first term is exactly the same in the right-hand side of (3.6) because of
explicit methods [7, p. 17].

• On the other hand, when fifth order RK methods are embedded, the term in gen-
eral differs, depending on each method, and their stability properties can be better
than those of SRK methods in which fourth order RK methods are embedded if
the noise terms are very small. However, note that the methods must satisfy the
critical restriction (2.6).
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Table 3.1 Butcher tableau of the SRKCL method

1
2

0 1
2 1

0 0 1 1 0

1
2 0

1
2 0 0 B(1)

32

1
2 0 0 0 −B(1)

32 0

A(2)
21 A(2)

22 A(2)
23 A(2)

24 0 0 0

A(2)
21 A(2)

22 A(2)
23 A(2)

24 B(2)
32 B(2)

33 B(2)
33

A(2)
21 A(2)

22 A(2)
23 A(2)

24 −B(2)
32 −B(2)

33 −B(2)
33

1
6

1
3

1
3

1
6 1− 1

2
(

B
(1)
32

)2
1

4
(

B
(1)
32

)2
1

4
(

B
(1)
32

)2 0 1

2B
(1)
32

− 1

2B
(1)
32

− 1
2b2

3

1
4b2

3

1
4b2

3
0 1

2b3
− 1

2b3

Table 3.2 Butcher tableau of the SRKF45 method

1
4
3
32

9
32

1932
2197 − 7200

2197
7296
2197

439
216 −8 3680

513 − 845
4104 K±

F1

− 8
27 2 − 3544

2565
1859
4104 − 11

40 K±
F2 0

1
4 0 0 0
3
32

9
32 0 0 0 1

2
3
32

9
32 0 0 0 0 − 1

2 0

A(2)
41 A(2)

42 A(2)
43 A(2)

44 A(2)
45 A(2)

46 0 0 0

A(2)
41 A(2)

42 A(2)
43 A(2)

44 A(2)
45 A(2)

46 B(2)
54 0 0

A(2)
41 A(2)

42 A(2)
43 A(2)

44 A(2)
45 A(2)

46 −B(2)
54 0 0

16
135 0 6656

12825
28561
56430 − 9

50
2
55 −1 1 1 0 1 −1

− 1

2
(

B
(2)
54

)2
1

4
(

B
(2)
54

)2
1

4
(

B
(2)
54

)2 0 1

2B
(2)
54

− 1

2B
(2)
54

• The sum of the last two terms in (3.6) is equal to1
2

(
∑m

j=1q j

)2 ∣∣Q̂s−2(p)
∣∣2 if

Q̂s−2(p) = Q̂s−1(p) or B(2)
s−1,s−1 = 0, and thenR̂ simply becomes a function ofp

andq̂
def= ∑m

j=1q j . The SRKCL method satisfies the former equality.

For the SRKF45 method, let us setB(2)
s−1,s−1 at 0. After all, the Butcher tableaux

of the SRKCL method and the SRKF45 method are given in Tables 3.1 and 3.2. In
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ℜ(p)

ℑ(p)

q̂

the SRKF45 method forK+
F1 andK+

F2

ℜ(p)

ℑ(p)

q̂

the SRKCL method

ℜ(p)

ℑ(p)

q1

the DRI1 scheme

Fig. 3.1 MS stability domains of SRK methods

Table 3.2,

K±
F1

def=
5(−165±2

√
1770)

237
, K±

F2
def=

11(−50±3
√

1770)
158

(double sign in same order).
If and only if R̂< 1, the equilibrium position of (3.3) is asymptotically MS stable

[8]. Let us plot the MS stability domains of our methods, that is,{(ℜ(p),ℑ(p), q̂) |
R̂< 1}. They are given with colored parts in Fig. 3.1. The parts enclosed by mesh
indicate the domain in which the equilibrium position of (3.2) is asymptotically
MS stable [8]. On the other hand, because the DRI1 scheme in [5] neither satisfies
Q̂s−2(p) = Q̂s−1(p) nor B(2)

s−1,s−1 = 0, its stability function cannot be expressed with
p andq̂. For this, under the assumptionm= 1 the MS stability domain of the scheme
is given in Fig. 3.1. We can see that the SRKF45 and SRKCL methods are better than
the DRI1 scheme in terms of the MS stability domain. In the figure, the following are
also remarkable:

• The stability functionR̂ does not depend on ˆq whenℜ(p) = −2 andℑ(p) = 0 in
the SRKCL method sincêQs−1(p) = Q̂s−2(p) = 1+ p/2.

• The profile of MS stability domains for ˆq= 0 orq1 = 0 shows (ordinary) stability
regions for RK methods which are applied to ODEs.
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3.3 For multi-dimensional non-commutative test SDEs

By applying (2.2) to (3.1), we have

yyyn+1 = RRR
(

h,F,
{
4Ŵj

}m
j=1 ,

{
4W̃l

}m−1
l=1 ,

{
G j
}m

j=1

)
yyyn, (3.7)

where

RRR
(

h,F,
{
4Ŵj

}m
j=1 ,

{
4W̃l

}m−1
l=1 ,

{
G j
}m

j=1

)
def= C+

m

∑
j=1

4ŴjD j +
m

∑
j=1

η̃( j, j)
√

hVj j +
m

∑
j=1

m

∑
l=1
l 6= j

η̃( j,l)
√

hVjl (3.8)

and

C
def= I +

s

∑
i=1

αihFQQQi−1(hF),

D j
def= β (1)

s−2G jQ̂QQs−2(hF)+2β (1)
s−1G jQ̂QQs−1(hF)+δ1hFGjQ̂s−2(hF)

+αsA
(0)
s,s−1B(0)

s−1,s−2(hF)2G jQ̂s−2(hF),

Vjl
def=

2β (2)
s−1B(1)

s−1,s−2G2
jQ̂QQs−2(hF) ( j = l),

2β (4)
s−1

(
B(2)

s−1,s−2G jGlQ̂QQs−2(hF)+2B(2)
s−1,s−1G jGlQ̂QQs−1(hF)

)
( j 6= l),

QQQ0(Z) def= I , QQQi(Z) def= I +Z
i

∑
k=1

A(0)
i+1,kQQQk−1(Z) (i ≥ 1),

Q̂QQi(Z) def= I +Z
i

∑
k=1

A(1)
ik QQQk−1(Z) (i ≥ 1).

Here and in the sequel,I stands for thed-dimensional identity matrix. In addition,
remember thatδ1 was defined in Subsection 3.2

In order to analyze stability properties of numerical methods for (3.1), Buckwar
and Sickenberger [4] have introduced the MS stability matrix of numerical methods:
E[RRR⊗RRR]. Here,⊗ stands for the Kronecker product. Concerning this, in a similar way
to that in which we got (3.5), we obtain

E [RRR⊗RRR] = (C⊗C)+
m

∑
j=1

h(D j ⊗D j)+
1
2

m

∑
j=1

h2 (Vj j ⊗Vj j )

+
1
2

m

∑
j=1

m

∑
l=1
l 6= j

h2(Vjl ⊗Vjl
)
. (3.9)
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For our SRK methods, let us seekC, D j , Vj j andVjl concretely. In the SRKCL
method we have

C = I +hF +
1
2
(hF)2 +

1
6
(hF)3 +

1
24

(hF)4,

D j = G j +
1
2

G jhF +
1
2

hFGj

(
I +

1
2

hF

)
+

1
6

(hF)2G j

(
I +

1
2

hF

)
,

Vjl =


G2

j +
1
2

G2
j hF ( j = l),

G jGl +
1
2

G jGl hF ( j 6= l),

(3.10)

whereas in the SRKF45 method we have

C = I +hF +
1
2
(hF)2 +

1
6
(hF)3 +

1
24

(hF)4 +
1

120
(hF)5

+
1

2080
(hF)6,

D j = G j +
1
2

G jhF +
9
64

G j(hF)2 +
1
2

hFGj

(
I +

1
4

hF

)
− 1

100
K±

F1(hF)2G j

(
I +

1
4

hF

)
,

Vjl =


G2

j +
1
4

G2
j hF ( j = l),

G jGl +
1
4

G jGl hF ( j 6= l).

(3.11)

Incidentally, in the DRI1 scheme

C = I +hF +
1
2
(hF)2 +

1
6
(hF)3,

D j = G j +
1
2

G jhF +
1
2

hFGj +KD(hF)2G j ,

Vjl =


G2

j ( j = l),

G jGl +
1
3

G jGl hF ( j 6= l),

(3.12)

whereKD
def= (6−

√
6)/30.

For a non-commutative test SDE which comes from (3.1), we use

F =
[

λ1 0
0 λ2

]
, G1 =

[
σ1 0
0 −σ1

]
, G2 =

[
0 σ2

σ2 0

]
(3.13)

for d = m = 2 and real valuesλ1, λ2, σ1 andσ2. This leads to a more generalized
version of the test SDE that Buckwar and Sickenberger [4] have proposed.
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In order to analyze stability properties of the lineard-dimensional SDE (3.1),
Buckwar and Sickenberger [4] have introduced the MS stability matrixSof (3.1):

S
def= (I ⊗F)+(F ⊗ I)+

m

∑
j=1

(G j ⊗G j).

Denote byS(3.13) the MS stability matrix when we use (3.13). By standard cal-
culations, we can see that the eigenvalues ofS(3.13) areλ1 + λ2−σ2

1 ±σ2
2 andλ1 +

λ2 +σ2
1 ±
√

(λ1−λ2)2 +σ4
2 . Thus, all eigenvalues are real values and the maximum

eigenvalue isλ1 +λ2 +σ2
1 +

√
(λ1−λ2)2 +σ4

2 . After all, if and only if

λ1 +λ2 +σ2
1 +

√
(λ1−λ2)2 +σ4

2 < 0,

the equilibrium position of the test SDE is asymptotically MS stable [4]. Here, note
that the inequality is rewritten as follows:

p1 + p2 +q1 +
√

(p1− p2)2 +q2
2 < 0, (3.14)

wherepi
def= hλi .

Now, let us consider the MS stability matrices of our methods when we apply
them to the test SDE. The matrices can be written as a function ofp1, p2, q1 andq2,

say,R̂RR(p1, p2,q1,q2)
def= E[RRR⊗RRR].

From (3.9) and (3.13) as well as (3.10), (3.11) or (3.12), the eigenvalues ofR̂RR for
the methods are given in the following form:

v(1)
0 v(2)

0 +V1−q1v(1)
1 v(2)

1 ±q2V2,

V(1)
3 +V(2)

3 ±
√(

V(1)
3 −V(2)

3

)2
+q2

2V4,
(3.15)

where the notations are defined depending on each method. For the SRKCL method,

v(i)
0

def= 1+ pi +
1
2

p2
i +

1
6

p3
i +

1
24

p4
i ,

v(i)
1

def=
(

1+
1
2

pi

)(
1+

1
2

pi +
1
6

p2
i

)
, v(i)

2
def= 1+

1
2

pi ,

V1
def=

1
2

(
q2

1 +q2
2

)
v(1)

2 v(2)
2 , V2

def= v(1)
1 v(2)

1 −q1v(1)
2 v(2)

2 ,

V(i)
3

def=
1
2

(
v(i)

0

)2
+

1
2

q1

(
v(i)

1

)2
+

1
4

(
q2

1 +q2
2

)(
v(i)

2

)2
,

V4
def=

2

∏
i=1

{(
v(i)

1

)2
+q1

(
v(i)

2

)2
}

.

(3.16)
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For the SRKF45 method,

v(i)
0

def= 1+ pi +
1
2

p2
i +

1
6

p3
i +

1
24

p4
i +

1
120

p5
i +

1
2080

p6
i

v(i)
1

def= 1+ pi +
(

17
64

−
K±

F1

100

)
p2

i −
K±

F1

400
p3

i , v(i)
2

def= 1+
1
4

pi ,

v(i)
3

def= 1+
1
2
(p1 + p2)+

1
8

p1p2 +
9
64

p2
i , v(i)

4
def= 1+

1
100

p2
i ,

V1
def=

1
2

(
q2

1 +q2
2

)
v(1)

2 v(2)
2 ,

V2
def=
(

K±
F1v(1)

2 v(2)
4 −v(1)

3

)(
K±

F1v(2)
2 v(1)

4 −v(2)
3

)
−q1v(1)

2 v(2)
2 ,

V(i)
3

def=
1
2

(
v(i)

0

)2
+

1
2

q1

(
v(i)

1

)2
+

1
4

(
q2

1 +q2
2

)(
v(i)

2

)2
,

V4
def= V2

2 +q1

(
v(1)

1 v(2)
2 +v(2)

1 v(1)
2

)2
.

(3.17)

For the DRI1 scheme,

v(i)
0

def= 1+ pi +
1
2

p2
i +

1
6

p3
i , v(i)

1
def= 1+ pi +KD p2

i ,

v(i)
2

def= KD p2
i , v(i)

3
def= 1+

1
3

pi , V1
def=

1
2

(
q2

1 +q2
2

)
,

V2
def=
{

1
2

(
v(1)

1 +v(2)
1

)}2

−
{

1
2

(
v(1)

2 −v(2)
2

)}2

−q1v(1)
3 v(2)

3 ,

V(i)
3

def=
1
2

(
v(i)

0

)2
+

1
2

q1

(
v(i)

1

)2
+

1
4

(
q2

1 +q2
2

)
,

V4
def=

{[
1
2

(
v(1)

1 +v(2)
1

)
− 1

2

(
v(1)

2 −v(2)
2

)]2

+q1

(
v(1)

3

)2
}

×

{[
1
2

(
v(1)

1 +v(2)
1

)
+

1
2

(
v(1)

2 −v(2)
2

)]2

+q1

(
v(2)

3

)2
}

.

(3.18)

We have obtained these results with the help of a symbolic computing package,Math-
ematica.

In order to plot the MS stability domains of our methods and the DRI1 scheme,
let us consider the two restricted cases:p1 = p2; q1 = 0. Note that each of them was
considered in [4] and [20], respectively.

Case 1 (p1 = p2)

Whenp1 = p2, the eigenvalues of̂RRR for the SRKCL method are(
v(1)

0

)2
+

1
2
(q1±q2)2

(
v(1)

2

)2
− (q1±q2)2

(
v(1)

1

)2
,(

v(1)
0

)2
+

1
2
(q1±q2)2

(
v(1)

2

)2
+(q1±q2)2

(
v(1)

1

)2
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p1

q1

q2

the SRKF45 method forK+
F1 andK+

F2

p1

q1

q2

the SRKCL method

p1

q1

q2

the DRI1 scheme

Fig. 3.2 MS stability domains of SRK methods whenp1 = p2

(double sign in same order) from (3.15) and (3.16). Thus, the spectral radius ofR̂RR,
say,ρ(R̂RR) is (

v(1)
0

)2
+

1
2
(q1 +q2)2

(
v(1)

2

)2
+(q1 +q2)

(
v(1)

1

)2
.

Similarly, from (3.15) and (3.17),ρ(R̂RR) is(
v(1)

0

)2
+

1
2
(q1 +q2)2

(
v(1)

2

)2
+(q1 +q2)

(
v(1)

1

)2

for the SRKF45 method, whereas from (3.15) and (3.18),ρ(R̂RR) is(
v(1)

0

)2
+

1
2
(q2

1 +q2
2)+(q1 +q2)

(
v(1)

1

)2
+q1q2

(
v(1)

3

)2

for the DRI1 scheme.
If and only if ρ(R̂RR) < 1, the equilibrium position of (3.7) is asymptotically MS

stable [4]. Let us plot the MS stability domains of our methods and the DRI1 scheme,
that is,{(p1,q1,q2)|ρ(R̂RR) < 1} in Case 1. They are given with colored parts in Fig.
3.2. The parts enclosed by mesh indicate the domain in which (3.14) is satisfied when
p1 = p2. We can see that the SRKF45 and SRKCL methods are better than the DRI1
scheme in terms of the MS stability domain.
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Case 2 (q1 = 0)

Whenq1 = 0, from (3.15) and (3.16) we obtain

v(1)
0 v(2)

0 +
1
2

q2
2v(1)

2 v(2)
2 ±q2v(1)

1 v(2)
1 ,

V(1)
3 +V(2)

3 ±
√(

V(1)
3 −V(2)

3

)2
+q2

2

(
v(1)

1

)2(
v(2)

1

)2

as well as

V(i)
3 =

1
2

(
v(i)

0

)2
+

1
4

q2
2

(
v(i)

2

)2
.

Now, let us denote byµmin andµmax the minimum eigenvalue and the maximum
eigenvalue of̂RRR for a method, respectively. Because(

V(1)
3 +V(2)

3

)2
−
{(

V(1)
3 −V(2)

3

)2
+q2

2

(
v(1)

1

)2(
v(2)

1

)2
}

≥
{

v(1)
0 v(2)

0 +
1
2

q2
2v(1)

2 v(2)
2

}2

−
(

q2v(1)
1 v(2)

1

)2
,

thus, for the SRKCL method we obtain

µmin = v(1)
0 v(2)

0 +
1
2

q2
2v(1)

2 v(2)
2 −q2

∣∣∣v(1)
1 v(2)

1

∣∣∣ .
On the other hand, for the method we can clearly see

µmax= V(1)
3 +V(2)

3 +

√(
V(1)

3 −V(2)
3

)2
+q2

2

(
v(1)

1

)2(
v(2)

1

)2
.

Similarly, from (3.15) and (3.17) we have

µmin = v(1)
0 v(2)

0 +
1
2

q2
2v(1)

2 v(2)
2 −q2|V2|,

µmax= V(1)
3 +V(2)

3 +

√(
V(1)

3 −V(2)
3

)2
+
(
q2

2V2
)2

,

V2 =
(

K±
F1v(1)

2 v(2)
4 −v(1)

3

)(
K±

F1v(2)
2 v(1)

4 −v(2)
3

)
,

V(i)
3 =

1
2

(
v(i)

0

)2
+

1
4

q2
2

(
v(i)

2

)2

for the SRKF45 method, whereas from (3.15) and (3.18) we have

µmin = v(1)
0 v(2)

0 +
1
2

q2
2−q2|V2|,

µmax= V(1)
3 +V(2)

3 +

√(
V(1)

3 −V(2)
3

)2
+(q2V2)

2,

V2 =
{

1
2

(
v(1)

1 +v(2)
1

)}2

−
{

1
2

(
v(1)

2 −v(2)
2

)}2

, V(i)
3 =

1
2

(
v(i)

0

)2
+

1
4

q2
2
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p1

p2

q2

the SRKF45 method forK+
F1 andK+

F2

p1

p2

q2

the SRKCL method

p1

p2

q2

the DRI1 scheme

Fig. 3.3 MS stability domains of SRK methods whenq1 = 0

for the DRI1 scheme.
Noting thatρ(R̂RR) = max(|µmin|,µmax), let us plot the MS stability domains of our

methods and the DRI1 scheme, that is,{(p1, p2,q2) | ρ(R̂RR) < 1} in Case 2. They are
given with colored parts in Fig. 3.3. The parts enclosed by mesh indicate the domain
in which (3.14) is satisfied whenq1 = 0. We can see that the SRKF45 and SRKCL
methods are better than the DRI1 scheme in terms of the MS stability domain.

4 Numerical experiments

In order to investigate computational efficiency and to check MS stability proper-

ties, we perform numerical experiments. Let us substituteA(2)
s−2,k = A(0)

2,k (1≤ k≤ s)

into both methods to have the same deterministic part inHHH(0)
2 andĤHH

( j)
i (s−2≤ i ≤

s and 1≤ j ≤ m). In addition, for simplicity, we setB(1)
3,2 = B(2)

3,2 = 1 andB(2)
3,3 = 0

in the SRKCL method andB(2)
5,4 = 1 in the SRKF45 method. Then, we compare the

numerical schemes with the DRI1 scheme in four numerical examples. As we have
mentioned in Section 1, remember that the DRI1 scheme is an efficient weak second
order scheme with minimized error constant.
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Fig. 4.1 Absolute errors aboutE[ f (ln(y(t) +
√

(y(t))2 +1)] at t = 2. (Solid: SRKCL, dotted SRKF45,
dash: DRI1.)

The first three examples come from [5]. The first example is the following non-
linear SDE:

dy(t) =
(

1
2

y(t)+
√

(y(t))2 +1

)
dt +

√
(y(t))2 +1dW(t), t > 0, y(0) = x0.

Let us seek an approximation to the expectation off (ln(y(t)+
√

(y(t))2 +1) when

x0 = 0 (w. p. 1), wheref (x) def= x3−6x2 +8x. The exact one is given byt3−3t2 +2t.
In this example, using the Mersenne twister [15] we simulate 4096×106 inde-

pendent trajectories for a givenh. The results are indicated in Fig. 4.1. In the figure,
the solid, dotted or dash lines denote the SRKCL, SRKF45 or DRI1 scheme, respec-
tively. In addition,Sa stands for the sum of the number of evaluations on the drift
or diffusion coefficients and the number of generated pseudo random numbers. The
SRKCL scheme shows the best performance for the almost all step sizes.

The second example is the following non-commutative SDE:

dyyy(t) =

[
−273

512 0

− 1
160 −785

512+
√

2
8

]
yyy(t)dt +

[
1
4 0

0 1−2
√

2
4

]
yyy(t)dW1(t)

+
[ 1

16 0
1
10

1
16

]
yyy(t)dW2(t), t > 0, yyy(0) = xxx0,

which was used in [5] to show the supremacy of the DRI1 scheme. Let us seek an

approximation to the second moment of each element,
[
E[(y1(t))2] E[(y2(t))2]

]>
,

whenxxx0 = [1 1]> (w. p. 1). The exact one is given by[
exp(−t)

149
150exp(−5

2t)+ 1
150exp(−t)

]
.

Here, note that if we seekE[(y1(t))2] only, we do not need to solve the whole of the
system [5].

We simulate 1024× 106 independent trajectories for a givenh. The results are
indicated in Fig. 4.2. Because our present target is a vector, the Euclidean norm has
been used. The SRKCL scheme shows the best performance and the SRKF45 scheme
does the second best.
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Fig. 4.2 Relative errors about the second moment att = 10. (Solid: SRKCL, dotted SRKF45, dash: DRI1.)
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Fig. 4.3 Relative errors about the fourth moment att = 1. (Solid: SRKCL, dotted SRKF45, dash: DRI1.)

The third example is the following nonlinear SDE with a 10-dimensional Wiener
process:

dy(t) = y(t)dt +
10

∑
j=1

σ j

√
y(t)+k jdWj(t), t > 0, y(0) = x0,

where

σ1 =
1
10

, σ2 = σ8 =
1
15

, σ3 = σ7 = σ9 =
1
20

, σ4 = σ6 = σ10 =
1
25

,

σ5 =
1
40

, k1 = k6 =
1
2
, k2 = k7 =

1
4
, k3 = k8 =

1
5
, k4 = k9 =

1
10

,

k5 = k10 =
1
20

.

This example was also used to show the supremacy of the DRI1 scheme in [5]. Let
us seek an approximation to the fourth moment of its solution whenx0 = 1 (w. p. 1).
The exact fourth moment is

(74342479604283+1749302625065840exp(t)−24798885546415218exp(2t)
−263952793100784216exp(3t)
+1531088033542529311exp(4t))/

(
124416×1013

)
(see also [13]).

We simulate 256×106 independent trajectories for a givenh. The results are indi-
cated in Fig. 4.3. Similarly to the results in the previous example, the SRKCL scheme
shows the best performance and the SRKF45 scheme does the second best. Since this
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Fig. 4.4 Arithmetic means of‖yyyn‖2 for h = 1/16 (left) andh = 1/32 (right). (Solid: SRKCL, dotted
SRKF45, dash: DRI1.)

SDE has a 10-dimensional Wiener process, the results enhance the supremacy of the
SRKCL scheme over its rivals in terms of computational costs.

The last example is the following nonlinear, non-commutative SDE:

dyyy(t) =
[

λ 0
0 λ

]
yyy(t)dt +

2

∑
j=1

ggg j(yyy(t))dWj(t), t > 0, yyy(0) = xxx0,

where

ggg1(yyy)
def= σ1

 y1(1−y1)
1+y2

1
y2(y2−1)

1+y2
2

 , ggg2(yyy)
def= σ2

 y2(1−y1)
1+y2

1+y2
2

y1(1−y2)
1+y2

1+y2
2

 .

Note that the linearized SDE centered atyyy = 000 for this is equivalent to the non-
commutative test SDE (3.1) with (3.13) in Case 1. Let us seek the arithmetic mean of
‖yyyn‖2 whenxxx0 = [0.1 0.1]> (w. p. 1),λ = −40 andσ1 = σ2 = 6.

We simulate 10000 independent trajectories for a givenh. The results are in-
dicated in Fig. 4.4. In the figure,〈‖yyyn‖2〉 stands for the arithmetic mean of‖yyyn‖2.
Because the present setting satisfies (3.14),〈‖yyyn‖2〉 is expected to go to 0 whentn
becomes large. Forh = 1/16, however, only the numerical solution of the SRKCL
scheme shows it and that of the DRI1 scheme explodes. On the other hand, for
h = 1/32, 〈‖yyyn‖2〉 of the DRI1 scheme keeps fluctuating around 0.1 and that of the
SRKF45 scheme stays around 0.05. Because the result in the SRKCL scheme is very
small, we cannot see it in the figure. Whenh = 1/64, the results of these schemes
numerically converge to 0.

5 Conclusions

By embedding deterministic high order RK methods into weak second order SRK
methods proposed by Rößler [17], we have derived the SRKCL and SRKF45 schemes,
which are of weak order two for non-commutative Itô SDEs. We have investigated
their MS stability properties and shown that they have larger stability domains than
those of the DRI1 scheme, which has the minimized error constant and minimal stage
number for weak order two. In order to see computational efficiency and to check sta-
bility properties, we have performed numerical experiments including three examples
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which were used to show the supremacy of the DRI1 scheme. In all the experiments
our new schemes have shown better performance than the DRI1 scheme. As a re-
sult, we have found that the embedding of the classical RK method leads to a good
performance of explicit SRK methods with respect to not only stability but also com-
putational efficiency.
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