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Abstract We consider embedding deterministic Runge-Kutta methods with high or-
der into weak order stochastic Runge-Kutta (SRK) methods for non-commutative
stochastic differential equations (SDEs). As a result, we have obtained weak second
order SRK methods which have good properties with respect to not only practical
errors but also mean square stability. In our stability analysis, as well as a scalar test
equation with complex-valued parameters, we have used a multi-dimensional non-
commutative test SDE. The performance of our new schemes will be shown through
comparisons with an efficient and optimal weak second order scheme proposed by
Debrabant and &3ler (2009).
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1 Introduction

We are concerned with developing and analyzing weak second order explicit stochas-
tic Runge-Kutta (SRK) methods for non-commutative stochastic differential equa-
tions (SDEs). Among such methods, derivative-free methods are especially important
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because they can numerically solve SDEs with less computational effort compared to
other methods which need derivatives.

In fact, weak second order and derivative-free methods have been recently stud-
ied by many researchers. Kloeden and Platen [11, pp. 486—487] have proposed a
derivative-free numerical scheme of weak order two for non-commutatveDEs.
Tocino and Vigo-Aguiar [21] have also proposed it as an example in their SRK fam-
ily. Komori [12] has proposed a different scheme which is for non-commutative
Stratonovich SDEs and which has the advantage that it can reduce the number of
random variables that need to be simulated. This scheme, however, still has the draw-
back that its computational cost for each diffusion coefficient linearly depends on the
dimension of the Wiener processi®er [16] and Debrabant andRler [5] have pro-
posed new schemes which overcome this drawback for StratonovichéaBDEs,
respectively, while keeping the advantage mentioned above.

Komori and Burrage [13] have also proposed an efficient SRK scheme which
overcomes this drawback by improving the scheme in [12]. In addition, they have
indicated that, even in a 10-dimensional Wiener process case, not only the scheme in
[13] but also the other one in [12] can perform much better than an efficient scheme
[16] in terms of computational costs. The classical Runge-Kutta (RK) method is em-
bedded in both methods [12,13]. This fact motivates us.

In the present paper we consider embedding deterministic high order RK methods
into weak second order SRK methods proposed dfgler [17] for non-commutative
Itd SDEs. In stability analysis on numerical methods for SDES, scalar test SDEs were
used very often for about one decade [8,9, 14, 18], but very recently some researchers
have proposed or started to use multi-dimensional test SDEs [2,4,19, 20]. Especially,
Buckwar and Sickenberger [4] have proposed a two-dimensional test stochastic dif-
ferential equation (SDE) with non-commutative noise terms expressed by a few pa-
rameters, and they have given general results for two methods. We use a more gener-
alized test SDE as well as a scalar test SDE, and utilize their general results.

The paper is organized as follows. In Section 2 we will introduce the SRK meth-
ods that we deal with and will solve order conditions for weak order two. In Section 3
we will study mean square stability properties for our new SRK methods. In Section
4 we will investigate their effectiveness in computation by numerical experiments,
comparing them with the DRI1 scheme proposed by Debrabant éRlR5], which
is an efficient weak second order scheme with minimized error constant. Finally, we
will give conclusions.

2 SRK methods for weak approximations

Consider the autonomousdimensional [® SDE
m
dy(t) = go(y(t))dt+ 3 gj(y(t))dwi(t), t>0, Y(0)=xo, 2.1
j=1

whereW;(t) is a scalar Wiener process arglis independent oV, (t) —W;(0) for
t > 0. We assume a global Lipschitz condition is satisfied such that the SDE has ex-
actly one continuous global solution on the entire intef@ad) [1, p. 113]. For a
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given timeTgng, letty be an equidistant grid poimh (n=0,1,...,M) with step size

h d:‘EfTend/M < 1 (M is a natural number) and lgf be a discrete approximation to
the solutiory(tn) of (2.1). In addition, leC5(R?,R) be the family ofL times contin-
uously differentiable real-valued functions Bfi, whose partial derivatives of order
less than or equal tb have polynomial growth. Further, suppose that all moments of

the initial valuexo exist andg; (j =0,1,...,m) are Lipschitz continuous with all their

components belonging @f,(qﬂ)(Rd,R). Then, the definition of weak convergence
of orderqis given as follows [11, p. 327].

Definition 2.1 Suppose that discrete approximatiopsare given by a numerical
scheme. Then, we say that the scheme is of wgdtbal) orderq if for all G €

Cg(q“)(Rd, R), constant€ > 0 (independent ofi) anddp > 0 exist, such that
[E[G(y(tm)] — E[G(ym)]| <CH,  he (0,&).

On the basis of the SRK framework proposed Lf3Rr [17], we consider the
following SRK method for the approximation of Eq. (2.1):

i—1
HO =yn+ Y Ahgo (Hﬁo)) (1<i<s-2),
k=1
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where the;, B, Al® | andB\® (1< r, < 4 and 0< ry, < 2) denote the parameters
of the method. The random variables involved in the scheme are givé]fﬁilﬂ/d:ef
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Table 2.1 Butcher tableau in general form

Oy D

((?1,1 e ((1)1‘5—2 B(s(i)l.s—Z

g AL, AL B, Bl,

<];)2>1 o A(&l)Z,S—Z

<E)1.1 "' Aéi)l.s—Z Ag?ls—l B(si)l.s—Z

AN, AN, AL e, e

<2—)2,1 (2—)2‘5—2 (3)2.5—1 (3)2,5 B(si)z.s—z Béz—)zs—l Bgz.s

<2—)131 Aéz—)l,s—Z Aéz—)Ls—l A!(i)l.s B(Sz—)l,&Z B(sz—)l,s—l B(Sz—)lﬁs

Aézl) o A(szslz Aézs)—l Aézs) B(s.zs)fz Bézs)—l B(st)

I AR APE-A SO R S G (G
g% 8BS BY |BY, BY Y

(AW))2—h)/(2vh),

= (i) def{ (AW, AW —vhAWg) /(2vh)  (j <),
T T LW AW +vhaw) /2vh) (> 1),

the AW (1 <1 <m-1) are independent two-point distributed random variables
with P(AW, = +v/h) = 1/2 and theAW; (1 < j < m) are independent three-point
distributed random variables witf( AW, = +1/3h) = 1/6 andP(AW, = 0) = 2/3

[11, p. 225]. Here, (2.2) is characterized by the Butcher tableau in Table 2.1.

In addition to the SRK framework, &®ler [17] has given 59 order conditions
for it to achieve weak order two. In order to satisfy the order conditions, we have
to supposes > 3 when we consider explicit SRK methods. In fact, Debrabant and
RoRler [5] have supposext= 3 and given the families of the solutions. Let us utilize
some of their results because (2.2) has the stochastic paits-fer 2,s— 1,sonly.

That is, we assume

rea(el, )’

1 1 1 1
B, = O /. B =pY = ARG
21 (Bs—l,s—2> 4gy (Bs—l,sﬁz)
@) @) @) 1 @3 1 (2.3)
= 0’ - = — = 5 - = — 5
BS—Z Bs 1 BS 28;?17372 Bs 2 281b§,1
@ _pe_ 1 @ _ @ _ @ 1
Bsfl - BS - 4£lb§,l7 thz - 07 Bsfl - BS - 2bs—1
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and
B<s(,)s)71 =0, B&Lz = _B(s£>1,5727 Bélsll =0,
Bgz,s—z = Bgz,s—l = Bgz,s =0, Bgl,s = Bgl,s—lv (2.4)
B<s,zs)72 = _B<53>1,5727 B:g,zs)fl = Bgzs) = _Béz—)l,s—l
E'BP Lt

whenB(sf)Ls_z, 82?175_2 anngz_)l)s_1 are given. Hereg; %11 andos 4
2822_)1’5_1. Similarly, taking their results into account as well as simplicity, we assume

1 1 1 1 1

AQl,k = Aék) (1<k<s-2), Aé—)l,s—l = Aés)—l = A(ss> =0,
2 2 2
A=Al =AY (L<kss),

In the end, because we embed deterministic high order RK methods into our SRK
methods, only the following three order conditions remain to be solved:

s 2 1 < .
1 Z ot (B.(?,z) =5 2. z aiBi(g)fzzzl,

=s-1 i=s—1

s-2
3. i(l) ( Kl)) = ﬁ
) z B 1A|k 2

=s-2 k=

Here, note that each of these corresponds to Conditions 11, 12 and 13 in [5], respec-

tively.
From Conditions 1 and 2, we obtain

_ (Os1/e) £ VW © _ (as/e)F VW (2.5)

5O _
57572 205(0571 + as)

s-ls-2™ 205 1(0s-1+ ds) ’

(double sign in same order)dfs_; # 0, as # 0, as_1 # —as and

Vl d:Efc{s,las(—l—l—Z(asf1+as)) Z O (26)

B andp? (i=s-2,s—1,5) are

Taking into account thaB@l_’sfz, Bgfz,
multiplied byAVVj (1< j<m)in(2.2), inthe sequel we supposge= 1 without loss

of generality. Because of our assumptionkﬁf‘?, Condition 3 automatically holds if
s—2 s-2
W _vao _1
k;p%—z,k = kZIAs—l,k =% (2.7)

or we haveB(s?l&2 = £,/¥ from Condition 3 if

1o & (SfAS) *sfﬁé“ ) / (12sz§” )>o. 2.8)
2 1k 2 — 2.k & —2 k



6 Yoshio Komori, Evelyn Buckwar

As an example, we can choose the coefficients of the classical RK scheme for
Afg) anda;, and can set

Aél—)z,k = Aél—)l,k = Ag)z,k (s=4and 1<k<s-2),

which satisfies (2.7) and leads to the same deterministic pbiéﬂipandHi(j> (s—2<
i <sand 1< j <m). We will call it the SRKCL method. As another example, we

can choose the coefficients of the Fehlberg 4(5) scheme [6, p. 171&1?0and ai,
and can set

A@Z,k = A(z?llv AV = Aéoi (s=6and 1<k<s-2),

which satisfies (2.8) and leads to the same deterministic pahll(zq)nand Hé’fz or

in H<30> andHi(j) (i=s—1sand 1< j < m). We will call it the SRKF45 method.
Of course, the SRKCL and SRKF45 methods are of order four and five for ordinary
differential equations (ODES), respectively.

3 Mean square (MS) stability analysis
3.1 Concepts for MS stability

Before our analysis, we introduce some definitions for linear stability analysis in
general form. When we substitute

go(y)=Fy, gj(y)=Gjy (1<j<m)

into (2.1), we have
dy(t) = Fy()dt+ 5 Gjy(t)awj(t),  t>0,  y(0)=xo, 3.1)
=1

whereF andGj (1 < j < m) are real-valued square matrices of sizeThis has
the zero solutiory(t) = 0 whenxg = 0 with probability one (w. p. 1). We call it the
equilibrium position. Now, we can have the following concepts [1, 10].

Definition 3.1 In (3.1), the equilibrium position is said to be MS stable if, for each
€ > 0, there exists @ > 0 such that

Eflyt)|*] <& t>0

wheneveiE [[xo]2] < 8. Here,|ly| %' (yTy)"/?. Further if

lim E [ly(t)|7] =0

wheneverE [on||2] < 9, the equilibrium position is said to be asymptotically MS
stable.



Stochastic Runge-Kutta methods with deterministic high order for ODEs 7

When we apply (2.2) to (3.1), it has the equilibrium posityar= 0 with xo =0
(w. p. 1). Thus, we can have the following similar concepts [3,4,8,9].

Definition 3.2 Assume that a numerical method such as (2.2) is applied to (3.1) for a
givenh > 0. Then, the equilibrium position is said to be MS stable if, for eachO,
there exists & > 0 such that

E[lynl?] <& n>0
wheneveiE [|[xo||?] < 8. Further if

lim E [|yn]|?] =

wheneverE [on||2] < 0, the equilibrium position is said to be asymptotically MS
stable.

3.2 For a scalar test SDE with amdimensional Wiener process

In order to study stability properties, let us start with the following scalar test SDE
GO =AYOd T oYUM, >0 YO =x (32

whereA andgj (1 < j <m) are complex values. By applying (2.2) to (3.2), we have

Y1 = (h)\ {AWJ}j 1’{A\M}I =1 ’{GJ}] 1)yn (3'3)

Here,byusingBS(ﬂ:BS()Bs( ZZBI _[3 2—B<)1—B()1—B() =0
(s—2<k<ys), BS(E)l = —[35<2) and[:ls(fs)1 = *55(4) from (2.3), we obtain
(hA {3y {2 (o))
—c+ZAW,d,+Zn“\fv“+zz (D vhyy, (3.4)

;e
where

S
c®y zlaih)\Qi,l(hA),

d; 81,0785 2(MA) + 28,085 1(MA) + 811A ;G5 a(A)

+ A 1B ¢ 5(M1)20Qs o(hN),
2B§3>15§91.s_202©$2(m) (j=),

ZBs 1( s>1s 20,0|Qs_ (h)‘)‘*‘ZBé >1s 1UJUIQs— (h)\)) (J#1),

def
Vi =

def df
0= = as—lBgls 2+(3(ng5) 25 QO( ) =
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def def

Qi(2) —1+zzA+lek 12, Q@) —1+zzA Q1@ (=)

By noting that

E :(ﬁu,nﬂ _E (,~,<m)2] _h

E :,7<j,|a>,7<j,lb>} —E ﬁ(la,j)ﬁab,n} _

(Ia # lp andlg,lp > j),

E [74)f )] = (la#lp andla, I > )

and the expectation of the other terms concerrijfig) vanishes when we take the
expectation ofR|?, we have

=1=1
1]

Further, by substituting (2.3), (2.4) and (2.5) into this, we obtain the stability function
for (2.2) as follows:

E[|IR?] =|c/*+ mh|d-2 LSy peis s 3.5
RRPALREI LIS B LUTNCS
1= I=

Q(DleaQZ»- . 7Qm)
2 m

+ 3 qj

=1

B(l)l)z (Qs—l(p) - Qs—z(p))

2( s—1,5-2

+ <1+ p+ SAS”S 105 1i\F)lo ) Qs-2(p)

= |1+ piaiQi_l(p)

2

2ds 1(0s-_1+ Os)

1o A 2
+5 > & |Qs2(p)|
=1
. R 2
128 Béz—)l,s—zQ%Z(P)+2522_)1.s_1Q371(p)
+52 2 did @ @ ’ (3.6)
I=11=1 Bsfl,sﬁ2+ZBsfl,sfl
I#]
3 def def def 2 .
whereR(p, 01,0, .-.,0m) = E[|R[?], p = hA, andq; = h|gj|. The following are
remarkable.

e When fourth order RK methods with four stages are embedded in our SRK meth-
ods, the first term is exactly the same in the right-hand side of (3.6) because of
explicit methods [7, p. 17].

e On the other hand, when fifth order RK methods are embedded, the term in gen-
eral differs, depending on each method, and their stability properties can be better
than those of SRK methods in which fourth order RK methods are embedded if
the noise terms are very small. However, note that the methods must satisfy the
critical restriction (2.6).
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Table 3.1 Butcher tableau of the SRKCL method

e ——
2
1
0 3
0 0 1 1 0
I 0
boooo | s
1 0o o of -BY 0
2 A2 2
AL AR AR ARl o 0 0
(2) (2) (2) (2) (2) (2) (2)
A An A 4 B3z Bz Bss
@ 2 2 A 2 2) 2
AZ AR AZ AR | -BR B -BY
R NEE s aes S LI T
2(85)° 4(e%)" 4(e%) 8y 28y
T T T T T
T ow @ |0 A
Table 3.2 Butcher tableau of the SRKF45 method
1
1
3 9
32 32
1932 7200 7296 T T - T- T T T 0T T T T
2107 2197 2197
43 _g 3680 _ 845 K
216 513 7104 F1
8 3544 1859 1 +
2t 2 T565 a0 40 Ke2 0
T
T 0 0
3 ) 1
3 35 0 0 0 3
3 9 1
3 2 o o o o -1 0
2 2 2 2 2 2
N AT Al A AT AIl o o o
(2 2) 2 (2 2) (2 2)
AD AL AT A AR AT B 0 0
2 2 2 2 2 2 2
M2 A2 A2 A2 A2 AZ| B2 o o
16 6656 28561 I
135 0 12825 56430 50 55 _]1' } :lL 8 } _%
2(3(5?)2 4(5@)2 4(5(5?)2 2y 28

2 .
e The sum of the last two terms in (3.6) is equal§(€zrj“=1qj) \Qs_z(p)\z if

Qs_2(p) = Qs_1(p) or Bglﬁsfl = 0, and therR simply becomes a function qf

andq‘d:Efz?Ll gj- The SRKCL method satisfies the former equality.

For the SRKF45 method, let us s&é@l&l at 0. After all, the Butcher tableaux
of the SRKCL method and the SRKF45 method are given in Tables 3.1 and 3.2. In
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the SRKF45 method fd€Z; andKd, the SRKCL method

the DRI1 scheme

Fig. 3.1 MS stability domains of SRK methods

Table 3.2,

K def 5(—165+ 211770
Fl 237 ’

(double sign in same order).

If and only if R < 1, the equilibrium position of (3.3) is asymptotically MS stable
[8]. Let us plot the MS stability domains of our methods, thafig])(p), 0(p),q) |
R< 1}. They are given with colored parts in Fig. 3.1. The parts enclosed by mesh
indicate the domain in which the equilibrium position of (3.2) is asymptotically
MS stable [8]. On the other hand, because the DRI1 scheme in [5] neither satisfies
Qs_2(p) = Qs_1(p) nor Béz_)lﬁ_l = 0, its stability function cannot be expressed with
p andd. For this, under the assumptiom= 1 the MS stability domain of the scheme
is given in Fig. 3.1. We can see that the SRKF45 and SRKCL methods are better than
the DRI1 scheme in terms of the MS stability domain. In the figure, the following are
also remarkable:

e The stability functiorR does not depend aqpvihenO (p)=—2andO(p)=0in
the SRKCL method sinc®s_1(p) = Qs 2(p) = 1+ p/2.

e The profile of MS stability domains far= 0 orqg; = 0 shows (ordinary) stability
regions for RK methods which are applied to ODEs.

. def 11(—50+3y/1770)
Ke2 = 158
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3.3 For multi-dimensional non-commutative test SDEs

By applying (2.2) to (3.1), we have

Yni1= (hF (AW AW (G 1)yn7 3.7)
where
R(nE ()T (AW (01))
d_efC—&-ZAVVJD +ZFI“\[V“+ZZ’7JI\[VJI (3.8)
S0
and

c® +20!thQi—1(hF)7
D; 2'B{%,GiQs_»(hF) + 28, G;Qs_1 (hF) + &hF G Qs_o(hF)

+ GSAgs—lBs—l,s—z(hF)sz QS*Z(hF)»

ZBS(E):LBg;)l s—2GZQs— (hF) (=0,
d )
T | 28 (BL. 26iGiQs o (hF) + 287 1GiGIQs 1(WF)) (1 1),
Q2 %, Q@) “—efl+zzm1kok 1(2) (=),
Q2 d—EfIJrZZAI Q1(2) (i>1).

Here and in the sequdl,stands for thel-dimensional identity matrix. In addition,
remember thad; was defined in Subsection 3.2

In order to analyze stability properties of numerical methods for (3.1), Buckwar
and Sickenberger [4] have introduced the MS stability matrix of numerical methods:
E[R®R]. Here,® stands for the Kronecker product. Concerning this, in a similar way
to that in which we got (3.5), we obtain

3
|_\

HMB

E[R®R = (C®C)+ S h(D;@D;)+
1

2, h (Vij @Vij)

m

| =

+ h2 VJ| ®Vj|) . (3.9

]:

o

*IM 3
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For our SRK methods, let us se€kDj, Vj; andVj concretely. In the SRKCL
method we have

—I+hF+( F)2+ ( F)3+ 4N F)4,

(1+5re)
L ey ( + 3F). (3.10)

Go+ = GZhF (i=0),
Vj|=

GiGI+ GiGIF (j #1).

1
Dj =G+ 5GjhF + 5 hFG

r\m—\ m‘,_\

whereas in the SRKF45 method we have

C=I+hF+2 (hF)

1
+ 358017

1 9 , 1 1
Dj = Gj+ 5GjhF + £;G;j(hF)? + ShF G <I+4hF>
1

1
100KFl(hF)2GJ (I - 4hF>

(hF)3 (hF) + —(hF)

6 24 120

(3.11)

GJZ+ZGJZhF (j=1),
Vj| =

1 :
GG + ZGjGIhF (j#1).

Incidentally, in the DRI1 scheme
C=l+hF+Z (hF) %(hF)g’,

D =G+ }Gth—i- -hFG; +KD(hF)ZGJ7
5 > (3.12)

Gj (i
Vi = 1 .
GG+ 3GiGhF (j #1),
def

whereKp = (6—1/6)/30.
For a non-commutative test SDE which comes from (3.1), we use

_ A]_O |01 0 - 0 o»
[59] ws[22] w-[29] @13

for d = m= 2 and real valued;, A2, 01 andg». This leads to a more generalized
version of the test SDE that Buckwar and Sickenberger [4] have proposed.
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In order to analyze stability properties of the linekdimensional SDE (3.1),
Buckwar and Sickenberger [4] have introduced the MS stability m&toik(3.1):

def dl
S=(1oF)+ Z Gj®Gj).

Denote byS; 13 the MS stability matrix when we use (3.13). By standard cal-
culations, we can see that the eigenvalues(g){3> areA; + A — 012 + 022 andAi +

Ao+ 012 +4/(A1—A2)2+ Gg‘. Thus, all eigenvalues are real values and the maximum

eigenvalue i\ + Az + 012 +4/(A1—2A2)2+ aﬁ. After all, if and only if

MA+A2+ 07+ 1/ (A —A2)2+ 05 <0,

the equilibrium position of the test SDE is asymptotically MS stable [4]. Here, note
that the inequality is rewritten as follows:

PL+ P2+ +1/ (PL—p2)2+05 <0, (3.14)
wherep; def hA;.
Now, let us consider the MS stability matrices of our methods when we apply
them to the test SDE. The matrices can be written as a functipg, qf, q; andqp,

say,R(p1, Pz, d1.62) £ ER@R). )
From (3.9) and (3.13) as well as (3.10), (3.11) or (3.12), the eigenvallR foof
the methods are given in the following form:

V(()1> VE,Z) +Vi— CI1V(11) V(lz) +QoVa,
2
(VAR NRVIC S \/ (VY =) "+ v,

(3.15)

where the notations are defined depending on each method. For the SRKCL method,

def 1
vy e1+p.+ p.+ p. 24I04
()def(lJr p|> <1+pi+pi2)’ (2>d_ef1+ 5P
1
v (ql+Q2) v (2% Vo BT —ag Y (s

F @) (W)
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For the SRKF45 method,

def
vy s p. +2 p. pi + 120p. + 2080p.

(i) def E,& > Ka s (i)def, 1
Vi l+|0'+<64 100 b= 4oop" V2 TP
def ! def L
v ety 2 5(PLt p2)+ 3 gPP2t 52 pw = T
def 1
v = 2 (0f +05) Vs )V(z g G40
def
Vo 2 (k2 V) (K ) — P
mdefl o 1o iVl 2l 2y (i)
WIS 0) g () + g ) (%)
2
VAV (v(ll)vgz) +\/(12)\,(21)) .
For the DRI1 scheme,
vé)d—ef1+p|+ PP+ = p., V<1>d—ef1+p'+KDp~
def d f 1 def
V(Z)_eK P2, V(s)_81+3p- Vlzé(ch‘f'%)v
def 1 (1> (2) 2 l (1) (2) ) (2>
(o0 ) 08 -
() def ) 5 (). o

Ve d_ef{ L) -2 )] e (v<;>)2}
» { HUST DR U (vg2>)2}.

We have obtained these results with the help of a symbolic computing paskatie,
ematica

In order to plot the MS stability domains of our methods and the DRI1 scheme,
let us consider the two restricted casps= p2; g1 = 0. Note that each of them was
considered in [4] and [20], respectively.

Case 1(p=p2)
Whenp; = p,, the eigenvalues d&® for the SRKCL method are
1 2 1 1 2 1 2
(6") +5@za? (W) ~(@mze? (W)

()" + Jlansar () + @2 ()’
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01

the SRKCL method

the DRI1 scheme

Fig. 3.2 MS stability domains of SRK methods when = p;

(double sign in same order) from (3.15) and (3.16). Thus, the spectral radRjs of

say,p(R) is
<V81)> 2 N %(ql +p)? (V(21>>

Similarly, from (3.15) and (3.17p(R) is

) (W)

2 1 2 2
(%)) +5@+@? (W) +(@+a) (W)
for the SRKF45 method, whereas from (3.15) and (3.,])8%) is

(%) “r %(q% +68) + (@ + ) (Vi) Cra (%) 2

for the DRI1 scheme.

If and only if p(ﬁ) < 1, the equilibrium position of (3.7) is asymptotically MS
stable [4]. Let us plot the MS stability domains of our methods and the DRI1 scheme,
that is,{(p17q1,q2)|p(f§) < 1} in Case 1. They are given with colored parts in Fig.
3.2. The parts enclosed by mesh indicate the domain in which (3.14) is satisfied when
p1 = p2. We can see that the SRKF45 and SRKCL methods are better than the DRI1

scheme in terms of the MS stability domain.
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Case 2 (g=0)

Wheng; = 0, from (3.15) and (3.16) we obtain

1
vf)1> vf)z) + éqgvgl) v<22> + qzv(ll) v(lz) ,

V§1)+V3§2)i\/(Vél)—v3fz))2+q§ (v(ll))z(v(lz))z

as well as 1 2 1 )
(i _ (i) 2 ()
W =3(w) 38 (%)"
Now, let us denote byimin and imaxthe minimum eigenvalue and the maximum
eigenvalue oR for a method, respectively. Because

() - { ) e () ()}
S T (Y

thus, for the SRKCL method we obtain

1,2

Hmin = Vol V02 v

1
+ §q§v<21>v(22) — ’vll vy ‘ .
On the other hand, for the method we can clearly see

=5 8 () () (7).

Similarly, from (3.15) and (3.17) we have

1
Hmin = Vél) VE)Z) + quv(zl) V(22) — 02|V,

2
Hma= Vg + V42 + \/ (VY =) "+ (cBva)?,
Vi (K — ) (k22 )
M _ 1?1 o )2
Vs _2("0) +4qz("2)

for the SRKF45 method, whereas from (3.15) and (3.18) we have

1
Hmin = V(()DVE)Z) + éq% —02|V2l,

2
b=V 2 () v

Vy— {; (V(ll) +v(12>)}2_ {; (\él) _V(zz))}27 V3(i) _ % (Vg))2+%q§
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P2

2 -3 4

[ ——

the SRKCL method

the DRI1 scheme

Fig. 3.3 MS stability domains of SRK methods whgn= 0

for the DRI1 scheme.

Noting thatp(R) = max(| Umin|, Umax), et us plot the MS stability domains of our
methods and the DRI1 scheme, that{i§1, p2,d2) | o(R) < 1} in Case 2. They are
given with colored parts in Fig. 3.3. The parts enclosed by mesh indicate the domain
in which (3.14) is satisfied wheqy = 0. We can see that the SRKF45 and SRKCL

methods are better than the DRI1 scheme in terms of the MS stability domain.

4 Numerical experiments

In order to investigate computational efficiency and to check MS stability proper-

. . . . 0

ties, we perform numerical experiments. Let us subsm@iék = (7% (1<k<s)

into both methods to have the same deterministic pafl(;)ﬁ andl:li(” (s—2<i<

sand 1< j < m). In addition, for simplicity, we seB(3’1% = Bé.,z% =1land Bff; =0

in the SRKCL method anB(Szz)1 = 1 in the SRKF45 method. Then, we compare the
numerical schemes with the DRI1 scheme in four numerical examples. As we have
mentioned in Section 1, remember that the DRI1 scheme is an efficient weak second
order scheme with minimized error constant.
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Fig. 4.1 Absolute errors abouE[f (In(y(t) + +/(y(t))2+1)] att = 2. (Solid: SRKCL, dotted SRKF45,
dash: DRI1.)

The first three examples come from [5]. The first example is the following non-
linear SDE:

ayt) = ( 00+ /)24 1) et )+ 1080, £>0. y(0 =0

Let us seek an approximation to the expectatiorf @f(y(t) + /(y(t))2+ 1) when
X0 = 0 (W. p. 1), wheref (x) £'x@ — 6x2 + 8x. The exact one is given hij — 3t2+ 2t.

In this example, using the Mersenne twister [15] we simulate 4096° inde-
pendent trajectories for a givdmn The results are indicated in Fig. 4.1. In the figure,
the solid, dotted or dash lines denote the SRKCL, SRKF45 or DRI1 scheme, respec-
tively. In addition,S; stands for the sum of the number of evaluations on the drift
or diffusion coefficients and the number of generated pseudo random numbers. The
SRKCL scheme shows the best performance for the almost all step sizes.

The second example is the following non-commutative SDE:

)= | 52 0y |1, 0 lyoama
_ 1 785, v2|Y 0 1-2v2 [ YO
160 512 8 4

% 0

+8 2 [yoawn. >0 yo—x.
10 16

which was used in [5] to show the supremacy of the DRI1 scheme. Let us seek an

approximation to the second moment of each elemiiy.(t))? E[(yz(t))z]f,
whenxo = [1 1] " (w. p. 1). The exact one is given by

[ exp(—t)

149 5 1 :
150 €XP(—3t) + 75gexp(—t)

Here, note that if we seek](y1(t))?] only, we do not need to solve the whole of the
system [5].

We simulate 1024 10° independent trajectories for a givén The results are
indicated in Fig. 4.2. Because our present target is a vector, the Euclidean norm has
been used. The SRKCL scheme shows the best performance and the SRKF45 scheme
does the second best.
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Fig. 4.2 Relative errors about the second momentatl0. (Solid: SRKCL, dotted SRKF45, dash: DRI1.)
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Fig. 4.3 Relative errors about the fourth moment at 1. (Solid: SRKCL, dotted SRKF45, dash: DRI1.)

The third example is the following nonlinear SDE with a 10-dimensional Wiener
process:

10
dy(t) =y(t)dt+ 3 oj/y(t) +kjdWj(t),  t>0,  y(0) =xo,
=1

where
aiGUiU*UU*iO‘fo‘gi
1= 1y 2=08= 1g 3=07=09= 55 4=06=010= op;
Os %’ kl:k6:é7 kz_k7:Z> K?: :ga k4:k9:Ea
1
ks = kig= —.
5 =Ko = 54

This example was also used to show the supremacy of the DRI1 scheme in [5]. Let
us seek an approximation to the fourth moment of its solution whenl (w. p. 1).
The exact fourth moment is

(74342479604283 1749302625065840 ef) — 24798885546415218 efd)
— 263952793100784216 esG1)
+1531088033542529311 b)) / (124416 103

(see also [13]).

We simulate 256 10° independent trajectories for a givenThe results are indi-
cated in Fig. 4.3. Similarly to the results in the previous example, the SRKCL scheme
shows the best performance and the SRKF45 scheme does the second best. Since this
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Fig. 4.4 Arithmetic means of|y,||? for h = 1/16 (left) andh = 1/32 (right). (Solid: SRKCL, dotted
SRKF45, dash: DRI1.)

SDE has a 10-dimensional Wiener process, the results enhance the supremacy of the
SRKCL scheme over its rivals in terms of computational costs.
The last example is the following nonlinear, non-commutative SDE:

A0 2
0= |55 ]ya+ S gpwamn. =0 yo)-x,
=
where
o YIil;gl) o )1/2(12*)’12
e
)= 01| iy [+ W) = 02| iy

Note that the linearized SDE centeredyat O for this is equivalent to the non-
commutative test SDE (3.1) with (3.13) in Case 1. Let us seek the arithmetic mean of
[lyn]|? whenxo = [0.1 0.1] T (w. p. 1),A = —40 ando; = 0, = 6.

We simulate 10000 independent trajectories for a gikeithe results are in-
dicated in Fig. 4.4. In the figurd]|yn||?) stands for the arithmetic mean [, ||>.
Because the present setting satisfies (3.0#4|%) is expected to go to 0 whep
becomes large. Fdr= 1/16, however, only the numerical solution of the SRKCL
scheme shows it and that of the DRI1 scheme explodes. On the other hand, for
h=1/32, (|lyn||?) of the DRI1 scheme keeps fluctuating arountl &nd that of the
SRKF45 scheme stays aroun@®®. Because the result in the SRKCL scheme is very
small, we cannot see it in the figure. Whien= 1/64, the results of these schemes
numerically converge to 0.

5 Conclusions

By embedding deterministic high order RK methods into weak second order SRK
methods proposed byiRler [17], we have derived the SRKCL and SRKF45 schemes,
which are of weak order two for non-commutativé BDEs. We have investigated
their MS stability properties and shown that they have larger stability domains than
those of the DRI1 scheme, which has the minimized error constant and minimal stage
number for weak order two. In order to see computational efficiency and to check sta-
bility properties, we have performed numerical experiments including three examples
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which were used to show the supremacy of the DRI1 scheme. In all the experiments
our new schemes have shown better performance than the DRI1 scheme. As a re-
sult, we have found that the embedding of the classical RK method leads to a good
performance of explicit SRK methods with respect to not only stability but also com-
putational efficiency.
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which helped them to improve the earlier versions of this paper.
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