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Abstract
In this study, for the matrix / fiber interface strength is investigated in the fatigue experiment for the glass-fiber reinforcing

polycarbonate (GFPC). Here the effect of modified PC resin is discussed when Epoxy (EP) or Polydimethylsiloxane (PDMYS)
are blended into PC. The microscopic damage process and fracture surface is examined through the optical microscope and
the scanning eectron microscope. The EP and PDMS are found to improve the matrix / fiber interface strength since they
may control crack propagation aong the fiber. Tensle testing al so shows that in modified PC the critical fiber length is quite
shorter than the one in standard GFPC. Although the interface strength is improved, the fatigue lifetime of PC-PDMS is
found to decrease because many crack tend to initiate and propagate around the fiber ends.
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Table 1 Material composition and Mechanical properties.
PC GF EP PDMS | Stressat siff Strain at Notched 1zod Fatigue crack propagation
iffness
material content | content | content | content break E GPa break impact strength rate, Fig. 12 AK=1
Wt% W% W% wi% | o MPa & % ky/m’ m/cycle
PC 100 0 0 0 73 23 m 84.7 3x 10°
PC-PDMS 95 0 0 5 65 21 109 90.1 7x 10°
GFPC 70 30 0 0 129 7.3 26 14 -
GFPC-EP 68 30 2 0 144 7.6 28 10.9 -
GFPC-PDMS 66.5 30 0 35 126 71 28 16.0 -
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internal damage of the test specimen is
visudized as ablack shadow by transmitted
illumination.

Fig. 2 Shape of specimen for fatigue crack
propagation rate test.
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Fig.4 SN curvesof fatiguetest at stress rate R=0 and frequency f=5Hz. The results for GFPC, GFPC-EP and
GFPC-PDMS are plotted with the square (blue), triangle (red) and circle (green), respectively. Fatigue

lifetime increasesin GFPC-EP, but decreasesin GFPC-PDM S compared with GFPC.
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Fig.5 Microscope micrographs of fracture surfaces of fatigue test. (6, = 7OMPa). Although GFPC forms
theflat fracture surface, GFPC-EP and GFPC-PDMS have large irregul arity.
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Fig.6 SEM micrographs of fracture surfaces of fatigue test.( o, = 70MP8). In GFPC, GF exposed
from PC isobserved al the area of the fracture surface. Space is formed between PC at the
bottom of exposed GF. In PC-EP and PC-PDMS, thereis no exposed GF and most GFs are
fractured. Theinterface is not debonded in most cases under high stress amplitude.

Fig. 7 SEM micrographs of GFPC fracture surface of fatigue test.( o, =40MP3). The
fracture surface is nearly the same as that of GFPC-EP under low stress amplitude.
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Fig.8 The damage process of fatigue test. In GFPC, debonding is observed in the fiber edge a n/Ni=0.02. Then, debonding length
increases with increasiy the number of fatigue loads. At n/N; =0.8, debonding length reaches up to several 100 um(s). In
GFPC-EP and GFPC-PDMS, debonding is observed at the fiber edge a n/N; =0.02. However, the debonding does not
increases with increasiy the number of fatigue loads. Load axis
<
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Fig.9 Optica microscope micrographs of the fiber fracture state after tensile test. The breaking fiber is denoted by arrowsin
thefigure. In GFPC, GF is debonded but not fractured. In GFPC-EP and GFPC-PDMS, most GFs orientated to the
load direction are fractured.
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Table 2 Critica fiber length and interfacial shear strength estimated by formulas (5) and (6).
Criticd fiber length | Interfacial shear strength
pum MPa
GFPC* 590 324 | * Expected datafrom reference
Ave. 223 914
GEPC.EP Tanaka, and Ikuta, 1999
SD. 54 25.6
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Fig. 10 Stffnessratios of fatigue test at stress rate R=0 and frequency f=3Hz. The resultsfor ,,,,=70, 60, 50 and 40M Pa are plotted
with the diamond-shaped (blue), square (red) triangle (green) and circle (purple), respectively. In GFPC and GFPC-PDMS,
stiffness ratios decrease with increasiy the number of fatigue loads. fatigue loads. However, in GFPC-ER, it does not decrease.

X 100% 100 7cyr1. #0: - 0mn” A
(a) GFPC-EP (b) GFPC-PDMS

Fig. 11 SEM wide area observation images of the fracture surfaces of fatigue test. (6,,=70MPa) In GFPC-ER,
the cracksinitiate at several fiber ends. In GFPC-PDMS, cracks initiate at amost all fiber ends.
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Fig. 12 Fatigue crack propagation rate of PC and PC-PDM S matrix as afunction of stress intensity factor range.
The resultsfor GFPC and PC-PDM S matrix are plotted with the square (blue) and circle (green),
respectively. Fatigue crack propagation rate of PC-PDMS matrix is faster as compared with PC matrix.
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Fig. 13 Fatigue damage models at high stress amplitude of GFPC, GFPC-EP and GFPC-PDMS. In GFPC the
interface is debonding. Both for GFPC-EP and GFPC-PDMS cracks initiate at fiber ends, but
GFPDM S-PC cracks propagate and connect early.
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