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Abstract

We have investigated reflection properties of light-matter strong coupling in a planar metal-mirror microcavity with highly

concentrated PIC J-aggregates. Large vacuum Rabi-splitting ranging from 100 to 250 meV is obtained depending on the

concentration of the J-aggregates. The factors for providing these large Rabi-splitting will be discussed based on its concentration

dependence. We also present our recent study focused on microscopic reflection properties of the microcavity. We have

improved microscope optics which enables us to measure local reflection spectra within 0.3- m-diameter area. Observation of

incident-light-angle dependence becomes possible. We found existence of micrometer-scale inhomogeneity in the Rabi-splitting

(e.g. ±10% in a 17 m × 17 m region), which will be interpreted mainly by the spatial distribution of J’s in the active layer.
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1. Introduction

In the last decade, strong light-matter coupling in semiconductor microcavities has been studied extensively not

only due to fundamental interest in science [1] but also to its potential applications, e.g. for zero-threshold lasers [2],

light-emitting diodes (LEDs) [3] and for generator of correlated photon-pairs [4,5], as well. Among various kinds of

microcavities, planar microcavities with organic semiconductors [6-8] have received considerable attention because

strong coupling regime can be achieved even at room temperature. This is surely attributable to large oscillator

strength of Frenkel excitons in organic materials.

Hobson et al. [9] reported that Rabi-splitting, which is an indicator of coupling strength between photon and

exciton states, in a metal-metal mirror microcavity with organic materials is larger by a factor of 2.3 than that of a

metal-DBR (distributed Bragg reflector) hybrid microcavity. The enhanced Rabi-splitting arises from a strong

confinement effect of light by metallic mirrors [9], some of which is also discussed in the following. Large Rabi-
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splitting in the metal-mirror microcavities is quite fascinating for developing polariton devices such as LEDs and

photon generators, even though they seems to be unsuitable for laser applications.

We have been fabricating metal-mirror microcavity structures with J-aggregates in their active layers and

investigating the features on the strong light-matter coupling [10]. Recently, large Rabi-splitting up to 250 meV has

been attained with highly concentrated J-aggregates. In this paper, we present at first some of the fabrication of

microcavity structures and then characterize its reflection properties. Rabi-splitting depends strongly on J’s

concentration. We will describe the concentration dependence of Rabi-splitting a bit in detail.

To get further insight into J’s optical properties due to strong coupling, we also have been investigating

microscopic reflection properties. We have improved the illumination optics for the microscopic observations and

some distinctive results are obtained, which will also be introduced briefly.

2. Samples and Experiments

We use J-aggregates of pseudoisocyanine dyes (PIC, Hayashibara Biochemical Laboratories Inc.) as an active

medium in the organic microcavity. The chemical structure of PIC dye is shown in the inset of Fig. 1(a). PIC dye is

one of the most well-known species for its remarkable formation of J-aggregates. Broken and solid lines in Fig. 1(a)

show absorption spectra of PIC monomers and its J-aggregates, respectively, in methanol solutions. There appears a

strong and narrow band (J-band) at 2.16eV due to the formation of J-aggregates; which can be understood with a

linear Frenkel exciton picture [11-13].

Fig. 1(b) shows a schematic diagram of the microcavity structure used in this study. The cavity length is designed

for /2 mode. Its fabrication procedure is as follows. First, aqueous solution of potassium polyvinyl sulfate (PVS) is

prepared by dissolving PVS into distilled water at 90 °C. Separately, PIC dye is dissolved in methanol. Then, the

PIC methanol solution is injected into the PVS aqueous solution kept at 90 °C. The resulting solution is spin-coated

onto a silver evaporated silica glass substrate surface. To form a flat layer, the substrate is placed at off-centered

position from rotation axis, and the spin-coating is performed by using a two-step process. Rotational speeds of the

two steps are 600 rpm for 5 s and 3000 rpm for 30 s, respectively. Finally, a second silver layer is deposited onto the

J-doped polymer layer by thermal evaporation.

We prepared three kinds of sample with different concentration of the J-aggregates. PIC concentrations ([M]PIC)

of the spin-casting solutions were 0.36, 0.54 and 0.72 mg/mL, respectively. PVS concentrations ([M]PVS) of the

corresponding solutions were 22, 26 and 26 mg/mL, respectively. It is noted that methanol solution turns into a gel if

PIC concentration is over ca. 0.5 mg/mL, so we must optimize PVS concentrations for each PIC concentration to get

the appropriate layer thickness. In order to estimate the optical density of each active layer, we prepared reference

samples on the glass substrates simultaneously by using the same spin-coat solutions. The thickness of the reference

layers were confirmed almost equal to that of the active layers of the corresponding microcavities, which ensures

that the optical density of the active layers can be monitored by that of the reference samples.

Fig. 1. (a) Absorption spectra of PIC dye monomers (dotted line) and PIC J-aggregates (solid line)

dispersed in methanol at room temperature. The inset shows the chemical structure of the PIC dye

molecule. (b) Schematic diagram of the -microcavity structure. The thicknesses of each layer were

measured with a mechanical profilemeter (Veeco; Dectak II). Thickness and diameter of the silica glass

substrate is 1 mm and 15 mm, respectively.
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To measure angle-resolved reflection spectra, we prepared two optical systems, one for macroscopic and the other

for microscopic observation. Figure 2(a) shows a schematic diagram of the system for the macro-observation

(spatial res.; 800 m). Light from a tungsten lamp is illuminated onto the microcavity through our fiber optics.

Surface of the microcavity is sufficiently flat, so that the most of the illuminated light is reflected with the angle

according to the reflection principle. The reflected light from the active medium should be again collected by the

fiber optics and detected with CCD spectroscopic detector (PI Inc.; LN/CCD) through the monochromator (ARC;

SP 300-i).

Figures 2(b) and (c) show illumination and imaging optics, respectively, which are realized by our improved total

internal reflection fluorescence optics combined with ordinary microscope (Nikon; TE-2000U). Spatial resolution of

this system is about 0.3 m in diameter. We describe operating principle of the microscope briefly. Monochromatic

light is introduced into the microscope as incident light. To provide collimated incident light at the sample, the beam

is once focused on the back focal plane (broken line B in Fig. 2(b)) of the objective lens. Incident angle is a

function of the distance from the focus spot to the optic axis of the microscope. Thus by tuning a position of the

focus spot on the back focal plane we can scan the incident-angle at the sample surface. Each reflection image of

specified wavelength is acquired with a 2D-CCD detector (RS; Cascade-512B) placed on the imaging plane.

As shown by grey lines in Fig. 2(c), emitted light from one local point on the sample surface is collimated by the

objective and focused by the imaging lens as an imaging spot at optically corresponding location on the CCD plane.

Illuminated light on the sample with incident angle is basically reflected with reflection angle , and can be

focused as imaging spot at CCD surface. The scattered light through active sample spot, which behaves as point

source of resolution size, can arrive at and be detected as the data acquisition spot at the CCD surface. Thus we can

obtain local pseudo-reflection by the acquisition of photon counts within the local reflection spot (0.3 m ) in the

image.

Local reflection spectra are reconstructed from a series of images by plotting the reflected light intensities at

specific locations as a function of the wavelength. All measurements were performed at room temperature.

Fig. 2. (a) Optical system to measure angle-resolved reflection spectra (Spatial Res; 800 m). By using a

polarizer, linearly-polarized light perpendicular to the incident plane, i.e. s-polarized (TE) light, is

illuminated to the sample. (b) and (c) show illumination and imaging optics of modified total internal

reflection fluorescence microscope (Spatial Res; 0.3 m), respectively. Likewise, s-polarized light is used

for the measurements.

3. Results and Discussion

First, we characterize macroscopic reflection properties of strong light-matter coupling in the metal-mirror

microcavity with high concentrated J-aggregates. Figure 3(a) shows angle-resolved reflection spectra of the sample

prepared from [M]PIC = 0.54 mg/ml solution. The spectra were measured with the macroscopic system shown in Fig.
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2(a). The vertical broken line indicates the energy of Frenkel exciton of the PIC J-aggregates. Two distinctive dips

ascribed as lower and upper polaritons are clearly observed in the spectra. Circles in Fig. 3(b) are the dip energies of

the reflection spectra, which provides dispersion relation of cavity-polaritons in the PIC-J aggregates. Rabi-splitting

of 188 meV was obtained from the best fit to the data as shown by solid lines in Fig 3(b) with an equation which

derived from a coupled oscillator model [1] (see figure caption). Based on this fitting analysis, effective cavity

length (L) and refractive index (n) were determined as Lfit = 225 3 nm and nfit = 1.42 ± 0.01 precisely.
The obtained value of Lfit was much larger than that of the actual thickness of the active layer (Lactive ; 128 ± 24

nm). In order to understand this discrepancy, we evaluated at first a penetration depth of light into a metallic mirror

as follows [10]. When light is reflected by a silver mirror, there appears a phase lag from in the ideal case.

Thus a virtual round trip distance for the light propagation inside the mirror is /2 . It is noted that the is a

function of an angle cav from the normal line of the sample surface (Fig 1(b)). The penetration depth is then

estimated as cos cav /4 . Effective cavity length Leff ( Lactive + (penetration depth of two mirrors at the
resonant angle)) is estimated as 196 nm ± 36 nm and it is basically equal to Lfit within the error range. It is also noted
that the penetration depth of silver mirrors (e.g. 68 nm; a summation of that for two mirrors) is much shorter than

that of DBR mirrors (e.g. several hundreds of nanometers [1]), which is due to difference of their reflection

mechanisms.

Next, we consider the nfit. Experimental determination of nfit can contains large ambiguity in the order of ±0.1
easily even if the samples are fabricated under same condition simultaneously. So we consider here the average

values of nfit(ave) for each of the concentrations. The estimated average values nfit(ave) were as 1.47 ± 0.1, 1.51 ± 0.1,
1.68 ± 0.1 for the samples prepared by using [M]PIC = 0.36, 0.54 and 0.72 mg/ml solutions, respectively. At low

concentrations, the nfit(ave) was almost equal to that of PVS matrix polymer (nPVS = 1.49) of the active layer. Almost
similar results are already reported in our previous study [10]. At higher concentration the value increases as the

concentration increases. It suggests that the refractive index of the active layer is affected by the increased refractive

index of PIC J-aggregates in the vicinity of the J band peak.

Thirdly, we think about the value of vacuum Rabi-splitting ( ) using a model for planar microcavities containing

quantum wells placed close to an antinode of photon electric field [14]. The model predicts that the value of is

Fig. 3. (a) Reflectivity of the microcavity as a function of viewing angle for s-polarized incident light at

room temperature. Viewing angles corresponding to the individual spectra are indicated on the right

side. (b) Angular dependent energy dispersion of the upper and lower cavity polariton branches. The

solid lines are the best fittings to the data using an equation based on a coupled oscillator model [1].

The equation is given by El,u( ) = (1/2)(Eph( )+Eex) ± (1/2)[(Eph( ) Eex)2+ 2
)]
1/2
, where Eex (= 2.16 eV)

is the exciton energy, Eph( )=E0 ×[1 (sin /n)2 ] 1/2 is the energy of photon mode in the planar -

microcavity and E0 is the one at = 0 (normal incidence). (c) The value of as a function of

[ Lactive/neff2Leff]1/2. PIC concentration associated with each point is indicated.
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proportional to a factor of (F/n2L)1/2, where F is oscillator strength per unit area of the quantum wells. In the case of
the organic microcavity, F can be replaced by a product of oscillator strength of Frenkel exciton in PIC J-aggregates
and effective concentration of the J-aggregates in unit area. It is noted that the product is proportional to optical

density ( Lactive, where is absorption coefficient) of the active layer, and can be evaluated experimentally. The

is therefore expected to be proportional to ( Lactive/neff2Leff)1/2, where neff is effective refractive index in the active
layer. Crosses in Fig. 3(c) show experimentally obtained as a function of ( Lactive/neff2Leff)1/2. In these plots, we
used nfit instead of neff. The data can be fitted quite well as a linear function, which suggests that the model is also
applicable to the organic microcavity. Large Rabi-splitting ranging from 100 meV to 250 meV is obtained in the

microcavity as shown in Fig 3 (c). The larger value is probably attributed to the larger oscillator strength of PIC-J

excitons and actually also to high concentration of the J-aggregates. It should be noted that the shorter penetration

depth of the metallic mirrors and hence smaller Leff also contributes to the large Rabi-splitting [9].

To get further insight into these peculiar optical properties due to light-matter strong coupling in the microcavity,

we also have been trying to extend our observations toward local regions with microscopic system shown in Figs. 2

(b) and (c), which enables us to get angle-resolved micro reflection spectra. As far as we know, this is the first report

on local reflection properties in organic microcavities though it is still in its preliminary stage.

Figure 4(a) shows a microscopic reflection image of the microcavity. The sample is the same one used in the

measurement shown in Fig. 3(a). This image was obtained under the condition that photon energy of the illuminated

light and incident-light-angle were 2.05 eV and 18°, respectively. This, in other words, corresponds to a point on the

lower polariton branch shown in Fig. 3(b). If the sample is homogenous, reflectance should be constant over the

image and should be stay at low bottom intensity due to the formation of lower-polaritons. As clearly seen in the

image, however, it reveals the existence of a distinctive micro-size inhomogeneity overall the image.

Figures 4(b) -A, -B and -C show angle-resolved reflection spectra, respectively, obtained at the locations

indicated by squares A, B and C in Fig. 4(a). Two distinctive dips due to cavity polaritons are observed in each

spectrum. It is also made clear that these dips in the microscopic spectra are narrower and deeper by a factor of 2

than those in the macroscopic spectra as shown in Fig. 4(c). Sharpening of the microscopic spectra indicates that

Fig. 4. (a) Microscopic reflection image of the organic microcavity at a 17 m × 17 m region (512 ×

512 pixels). (b) Reflectivity of the microcavity at 0.8 m × 0.8 m areas (30 × 30 pixels) indicated by

squares A, B and C in Fig. 4(a) as a function of viewing angle for s-polarized incident light. Viewing

angles corresponding to the individual spectra are indicated on the right side. (c) Typical reflection

spectra measured with microscopic and macroscopic systems. (d) Angular dependent energy dispersion

of the upper and lower cavity polariton branches. The solid lines are the best fittings to the data.
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some kind of inhomogeneous broadening in the macroscopic spectra is removed.

Circles in Figs. 4(d) -A, -B and -C show the dip energies in the corresponding spectra in Fig. 4(b) and solid lines

are their fitted curves. The values of at each location were evaluated as 171, 183 and 179 meV, respectively.

Average value over the 17 m × 17 m image region (Fig 4(a)) was 180 meV, slightly less than 188 meV obtained

by the macroscopic observation. It is, however, within the deviation of , being estimated as ± 10 %.
Possible origins of the micrometer-scale spatial inhomogeneity in are as follows. As discussed above, the value

of is determined by the factor of ( Lactive/neff2Leff)1/2. As for Lactive and Leff , they are basically similar quantities and
resemble each other. So their size distributions should also resemble each other. Thus, as is indicated by the

expression of the factor, contributions of their fluctuations would cancel each other. Furthermore, the amount of

deviations of Lactive and Leff should become smaller in microscopic region (ca. ± 5 ). This may convince us that the

parameters Lactive and Leff are less effective to the inhomogeneity of . Remaining parameters and neff are
determined by J’s local concentration in the active layer. They appear in the numerator and denominator in the

factor, respectively, but they do in different orders. In addition, is basically proportional to the J’s concentration,

and neff depends only slightly on the that as discussed in Fig. 3. So the contributions from their density fluctuations
can not be cancelled out. Thus we conclude for the moment that the micrometer-scale inhomogeneity in is mainly

due to the spatial distribution of J’s concentration in the film.

As for the micrometer-scale inhomogeneity in a reflectance image observed at a specific incident-light-angle (e.g.

Fig. 4(a)), it is associated with not only the local distribution of J’s concentration but also that of Lactive. This is
because the local fluctuation of Lactive leads to that of the local resonance angle in our sample. Likewise, we consider
the inhomogeneous broadening of the macro-spectra arise from both of the local distributions.

In summary, we fabricated planar metal-mirror microcavity containing high concentration PIC J-aggregates and

characterized its specific optical properties. Large Rabi-splitting from 100 to 250 meV was obtained depending on

the concentration of the PIC J-aggregates. It is presented that the Rabi-splitting is proportional to the factor of

( Lactive/neff2Leff)1/2. We also presented microscopic reflection properties of the microcavities with our improved
microscope. We found there is a micrometer-scale spatial inhomogeneity in the Rabi-splitting. One possible origin

of this inhomogeneity is a spatial distribution of J’s concentration in the active layer.
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