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Abstract

A new explicit stochastic Runge-Kutta scheme of weak order 2 is proposed for
non-commuting stochastic differential equations (SDEs), which is derivative-free
and which attains order 4 for ordinary differential equations. The scheme is di-
rectly applicable to Stratonovich SDEs and uses 2m — 1 random variables in the
m-dimensional Wiener process case. It is compared with other derivative-free and
weak second order schemes in numerical experiments.



1 Introduction

As the importance of stochastic differential equations (SDEs) increases, numerical meth-
ods for SDEs get studied more by many researchers. Especially, many numerical methods
in the weak sense have been recently proposed for multi-dimensional SDEs with multi-
plicative noise in the multi-dimensional Wiener process case, whereas counterparts in the
strong sense have been enormously developed in the last 10 years [3].

Among such weak methods, we are concerned with derivative-free methods. Let us in-
troduce results concerning such methods, which attain weak order 2 at least. Kloeden and
Platen [6, 10] have proposed a derivative-free scheme by replacing necessary derivatives
by finite differences. Tocino and Vigo-Aguiar [15] have also proposed the scheme as an
example in their Runge-Kutta family. Rofler [11, 12] has proposed other derivative-free
schemes by assuming a commutativity condition [1, 13], which means

g Way) =g Wg;v) (WER, 1<jl<m. j#I)

in (2. 1). Here, gﬁl) or gl(l) denotes the derivative of g; or g,, respectively. On the
other hand, Talay and Tubaro [14] have proposed the extrapolation method for SDEs.
This method also makes it possible to obtain an approximate solution without using any
derivative.

Komori [7] has also proposed a new stochastic Runge-Kutta family and developed
Butcher’s rooted tree analysis [4, 5] (which is for ordinary differential equations (ODEs))
to derive weak order conditions transparently for the new family. Then, utilizing the
analysis, he has proposed a new explicit stochastic Runge-Kutta scheme of weak order
2, which is derivative-free and which attains order 4 for ODEs, under the commutativity
condition [8].

In [7, 11, 15], it has been shown that each stochastic Runge-Kutta family includes
the scheme proposed by Platen or its counterpart when the commutativity condition is
not satisfied. It, however, still remains to find a solution of the order conditions in order
to obtain another new scheme. Therefore, we aim at solving the order conditions and
deriving a new explicit Runge-Kutta scheme of weak order 2 for non-commuting SDEs.

The organization of the present paper is as follows. In the next section we will give
a brief introduction of our stochastic Runge-Kutta family as well as the expression of
the order conditions of the family with rooted trees. In Section 3 we will find a solution
of the order conditions after giving simplifying assumptions, and give some numerical
experiments in the non-commutative case. In Section 4 we will give the summary and
remarks. In the appendix, we will show the expectations of elementary numerical weights
for weak order 2.

2 Stochastic Runge-Kutta family

In this section we introduce a stochastic Runge-Kutta family which gives approximate
solutions for SDEs with a multi-dimensional Wiener process. To derive weak order con-
ditions for the family, we utilize the multi-colored rooted tree analysis.



2.1 Weak order

First of all, we introduce the definition of weak (global) order. Let 7,, be an equidistant
grid point nh (n =0,1,..., M) with step size h o Tena/M < 1 (M is a natural number)
and y,, a discrete approximation to the solution y(7,) of the d-dimensional stochastic
integral equation

_m0+/go d3+2/g] ) o dW(s), 0<t< Topa, (2. 1)

where W;(s) is a scalar Wiener process and o means the Stratonovich formulation. The
initial approximate random variable vy, is supposed to have the same probability law with
all moments finite as that of @o. In addition, let C5(R%, R) be the totality of L times
continuously differentiable R-valued functions on R?, all of whose partial derivatives of
order less than or equal to L have polynomial growth. Then, the definition of weak order
is given as follows [2].

Definition 2.1 Suppose that discrete approzimations y,, are given by a scheme. Then,

we say that the scheme is of weak (global) order q if for each G € CH"V(R? R), C > 0
(independent of h) and § > 0 exist such that

|E|G(y(mm)] — E[G(yw)]] < ChY, b € (0,0).

In order to obtain an approximate solution y,,, of the solution y(¢,41) when y,, is
given, we consider the stochastic Runge-Kutta family given by

S m
i) (i
Yy = yn_l_z Z CZ(J ]b)Yi] Jb)’
i=1 ja,jp=0
(Jasin)  _ ~(Jasdv) (Jasdvresd (Jesda)
Yia ’ - 77@(1 ’ g_]b yn_'_ Z Z Oézazbb 2 Yib d) (2 2)
= 1]07]d 0
yn Z Z ~Z(Z;1bjb:]c:]d Y(]cjd)}
iy=1 jc,ja=0
(1 <i, <s,0< jo,j» < m), where the constants 77, (xg‘;l;j"’jc’]d and ”yz(ajjb’]b’h’“) are

defined by the Butcher tableau and where each nlh’]")

of y,, and satisfies

is a random variable independent
W _ [ K (G =0)
E { (Jasb) } _ 1 b )
(i) Kol (jy #0)

for constants K, Ky and k£ = 1,2,.... Note that this formulation includes stochastic
Rosenbrock-Wanner methods [9].

2.2 Weak order conditions by multi-colored rooted trees

In this subsection we express weak order conditions by multi-colored rooted trees (MRTS).
As preliminaries, we introduce several notations and definitions.
First, we introduce the multi-colored rooted tree (MRT) and a function on its set.



Definition 2.2 (Multi-colored rooted tree) A multi-colored rooted tree with a root
@ (colored with a label j from 0 to m) is a tree recursively defined in the following manner:

1) 79 is the primitive tree having only a vertex Q.

2) If ty,. .., 1, are multi-colored trees, then [ty, ..., 1;]Y) is also a multi-colored rooted
tree with the root @.

The totality of MRTs is denoted by T.

Q @ @i
o ¥ ¥

+0) [0, 7)6) [0, [F0])@)6)

Figure 1: Examples of MRT's

Definition 2.3 (Elementary weight ®(¢) on T') An elementary weight of t € T is
given recursively as follows:

o) = | “odWj(s1),

o(t; 5) /H@tz,slodwsl) for t = [t ]9,

n =1

where odW(s1) & ds,.
For ease of notation we will denote ®(¢;7,,11) by ®(t).
Next, we introduce several matrices related to the formula parameters of (2. 2),

the multi-colored rooted tree with labels (MRTL) and a function on its set. Let us adopt
s(adn)  (Jasivsjesja)

(JasJordesid) (0,0,je,ja) def (je,ja)
nominal symbols 7,7, a7 and Y17, and define ag /1% e, fordy > 1
and (0,4,0,5) (m,5,0,5") (0,5,0,5) (m,,0,5") 7]
a1 o Qany Tt Qgqn o Ogh1n
(0,4,m.5") (m,j,m,j") (0,5,m.5") (m,j,m,j")
ay cer Qg Tt Qg1 B O S |
Ag") def : : : :
(0,5,0,5") (m,3,0,5") (0,5,0,3") (m,5,0,5")
g T Qg T Qi E O P
(0,5,m,5") (m,j,m,5") (0,5,m,5") (m,j,m,j")
g T O o Oy HR C PET I
I 0 e 0 e 0 . 0 ]
-/
for azj‘;b’J Je7) ywhere 0 stands for an m + 1-dimensional column vector of 0’s. Similarly,

define the matrix T'U7") for fy(J“’J e and set AU A(] 7) 4+ T6-7) . In addition, define
the (m +1)(s 4+ 1) x (m + 1)(s + 1) diagonal matrix DY) by

i) def ;. ~(0,7 ~(m,j ~(0,7 m,
D(j) = dlag(ng ]),---JI% j)v'”an§+]1)a"'777£+1]))'



In the sequel, let us use a label X0 e {AU) A0} as well as a matrix X0 e
{A(] J) AU )}

Deﬁnltlon 2.4 (Multi-colored rooted tree with labels) A multi-colored rooted tree
with labels, denoted by t ), is one attached by labels according to the following rules:

1) The label of the root is X9,
2) The label of the other vertices is decided by the number of branches and the color of
the parent vertex:
o the label is AY) if the parent vertez has a single branch and it is colored with j,
o the label is AY) if the parent vertex has more than one branch and it is colored
with j.
The totality of MRTL’s whose roots are labeled with X (j), is denoted by 7y(). For
example, some MRTL’s are listed in Fig. 2.
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Figure 2: Examples of trees in 74

Definition 2.5 (Elementary numerical weight ®(¢) on 7)) An elementary numer-
ical weight of t € T () s given recursively as follows:

©))
o X(j))) — 1DV x G,

k .
(t) = ([] @)DV XU for t = [ty,..., 4],

i=1

ol

(0 < 4,7 < m), where 7Y (7)) and [tq,. .. ,tk]g/&) express MRTL’s whose roots are labeled
by X(j). In addition, 1 stands for an (m + 1)(s + 1)-dimensional row vector of 1’s, and

[1¥_, ®(t;) means the elementwise product of row vectors d(t;).

Now, we can give weak order conditions. Let p(t) be the number of vertices of t € T
and r(t) the number of vertices of ¢ with the color 0, and suppose that any component of
g, belongs to C’ (a+1) (R*,R) (0 < j <m) and the regularity of the time discrete approx-
imation are satisfied [6, 7]. If the following are satisfied, the time discrete approximation
Yy, converges to the y(7),) with weak (global) order g as h — 0:

L
H o (m+1) s+1 H (2 3)
for any ¢1,...,t, € Ty (1 < L < 2q) satisfying Z W(p(t;) +7(t;)) < 2q and
E [®(mi1es1(1)] =0 (2. 4)

for any t € Ty satisfying p(t) + r(t) = 2¢ + 1.



2.3 Expectations of elementary weights

We show a way of seeking the expectation in the right-hand side of (2. 3) with the
help of MRTs. In the multiple Stratonovich integrals, the usual chain rule holds as in
the deterministic case. Hence, we can rewrite the product of elementary weights or the
composition of subtrees in a elementary weight by the following rules:

e The product of elementary weights of two MRTs 1, t5 can be expressed by the sum
of elementary weights of an MRT generated by grafting t; to the root of ¢t and an
MRT generated by grafting ¢, to the root of ¢;.

e The elementary weight of an MRT having subtrees ¢;, to can be expressed by the
sum of elementary weights of an MRT generated by grafting ¢; to t3’s own root and
an MRT generated by grafting ¢, to t;’s own root.

For example, we have

O, @ @ ©
® @®
CID(@)CI><>:<I><>+®< ):cI><>+<I><>+cI><>.
© © @ ©
In addition, by utilizing the relationship between multiple Stratonovich integrals and

multiple It6 integrals ([6], p. 173), we can rewrite the expectations of the elementary
weights of MRT's whose each vertex has no more than one branch as follows:

e The expectation of an elementary weight vanishes unless the even number of vertices
are of colors different from 0 and each of these vertices has a parent or child vertex
with the same color.

e Trace vertices in the direction from the root to upper vertices. Then, the expectation
of an elementary weight of an MRT in which a vertex colored by 7 # 0 has a child
vertex with the same color is equal to a half of that of another MRT given by
replacing the two vertices with one vertex with the color 0. For example,

s[o(3)] - 32 [+ (©)] - 32 ©)

Note that there is no longer need of the expectation in the right-hand side.

3 Solution of order conditions

In the previous section we have shown the order conditions with MRTL’s, and demon-
strated the calculation of the expectations of elementary weights and elementary numerical
weights appearing in the order conditions. In this section we will find a solution of the
conditions for weak order 2 in the non-commutative case.

3.1 Simplifying assumption

As seen in (2. 3) and (2. 4), the conditions for weak order are generally given in the form
of expectations. By replacing expectations with monomials for trees which have only a
few vertices, however, we can reduce the number of the order conditions. In relation to



0 j ) 16 ) 1(0 0 ! !
71(4(2)), Tf(;j(zna [T,(g]<)j>](j()0>a [T,(g]<)c>>](A()o>> [ ,(4;8)](]())7 [ 1(4()])](]()0 and [Tj ]() (j < 1), let us assume

that the following equations hold (simplifying assumptions)

S el =,

chljnzflj _AVV]a (3 1)
Zch J)nzflj Ef;; I J)ngéyj) _ (AI;VJ')Q’

3 (10 2(1.0) 5 (10,355 - 5.3) _ hAW;

11 i1 1112 12 2 )

3 (1) 1) £ 1.5:33:0) £55.0) _ hAW;

11 11 1112 19 9 )
n AWH(AW, + AW, 4
S i st — BWEWME AN 5y g g
. AW (AW, — AW, )
S IO gL ) i 21 ) (G <), (3. 3)

where AW,’s (j = 1,...,m) and AW’s (I = 2,...,m) are mutually independent random
variables satisfying

0 (k=1,3,5), 0 (k=1,3),
E[(AW))"] =< (k= D2 (k=2,4),  E[(AW)*] =4 h (k=2), (3.4)
O(h?) (k> 6), O(h?) (k> 4).

Note that the expressions in the right-hand side of (3. 2) and (3. 3) come from the
approximation

AW (AW, + AW)

(G <1,
)~ st —an
AW (AW; — AW;) .
5 (j>1).
Then, the next order conditions are satisfied:

E [Bninen @) = b B [{Bninen @))] = 12

= k2

- - 2
E q)(m-i-l)s-i-l (©A(O)) {q)(m-i-l)s-i-l (@A(O))}
M= 2 - 4
E {q)(m-l-l)s-‘rl (@A(O))} } = h, E [{q)(mﬂ)sﬂ (@A((’))} } = 3n?,

= k2

E :{q)(m-i-l)s-l-l (@A(O))} {(T)<m+1)5+1 (@A“’))}z
E :<I>(m+1)8+1 (fiﬁ)] :g E

E :{ci)(erl)erl <2E2;>}2] = 37112’

B [Bnsnen (320) Bonsnen (B20)] = 2

& Qi [z 2] 3h2
E\®ani1)s+1 (2(0)) {q)(erl)erl (@A“’))} } = <

5 HAD . h2
(I)(m+1)5+1 (jw)) CI)(m-l—l)s-i—l (@A( )>] = 7,




A(J) 2

2 h
A<‘”) B 1ys1 (D) } } 2

E q)(m-l—l)s—l—l 9 5

2

©) h
E q)(m+1)8+1 (2(0)) (m+1)s+1 (@A(O)):| = ?,
@

AW 2

K q)(m+1)3+1 A(U)) (m+1)s+1 (@A(O)):| = ?,

_ W\ ) 2 h? .
E {@(mﬂ)sﬂ <%2<0>>} ] =5 (J#1), (3. 5)
M ADN = AW .
E CI)(m-i—l)s-i-l (gA(O)) (I)(m—l—l)s—I—l (%A(O))} =0 (] 7£ l>7 (3 6)
2

[— A\ = = h .
E | ®ni1)st1 (%2«») D(mi1)st1 (@49) Pinp1ysyr (040)| = 5 (G#10). (3.7)

Because (3. 5), (3. 6) and (3. 7) cause difficulties in the construction of weak second order
schemes for non-commutative SDEs, it is remarkable that the virtue of the simplifying
assumptions (3. 2) and (3. 3) ensures that the equations hold.

3.2 Explicit stochastic Runge-Kutta methods

We consider the explicit stochastic Runge-Kutta methods and show how to solve the order
conditions.
First of all, we set

0.0) _ Gogn) _ | AW, (Jy > Ja > 0),
Next, let us set ¢ =0 (j, # 0), a7 = 0 (ju # j ov jo # ), i =0

o # 005 go # 3), a3 0 Gy £ or jo £ 0), a0 =0 (G, £ 0 or jo #0)
and ozja“cl) =0if j, = je or jo,Je # j,l when | > j > 0, or if j, # j,l or j. # | when
j > 1> 0. These settings, (3. 1) and (3. 4) imply that the following statement holds as
far as concerning weak order 2:

The expectation of the ((m + 1)s + 1)-st element of an elementary numerical
weight or the product of those is equal to 0 if the odd number of vertices are
of the same color j(# 0).

As we have seen in Subsection 2.3, the expectation of an elementary weight or the product
of those vanishes if the odd number of vertices are of the same color j(# 0). The above
statement ensures that (2. 3) holds for such MRTL’s and (2. 4) holds.

Then, let us introduce

ia—1
(4) def (4.5) (4.4") def _ (45.4.3",3") (4,5") def (4,47 o
G =6, azazb o) ) ApT = Z Ay (4, > 0),
ip=1
(l"l)dfiail (1.4,3.) ('z")dfi‘f1 (1,35
7]7.]7 E .].7 .]7 7.77.] £ ]7 7.]7.7 ;
Aia - Z &Zazb ’ Aia - Z Oéiaib (l > ‘7 > O>
ip=1 ip=1

for ease of notation.



From (3. 8) we obtain

chlj)mflj) ch AW, + Z cj“] AW + Z CJIJ)AW

i1
J1>J J1<3

Hence, if

S -1 S0 G< S —0 (<,

then, (3. 1) holds.
When j < [, we also obtain

Zchd (41:4) (lejug, (ng Z C(] AW a(Jl AW, + Z CZJ)AW a(l,JJl)AW

1122 11172 1112
11,82 11,82

Hence, (3. 2) is equivalent to

G) 4G _ 1 (1,7) 4 (L4.5,0)
chi Ali — 5, ZC J A I+
~(Jasivsjesda) _

for j < I. Here, note that 7,7’ 0 (Via, @b, Ja, Jbs Jes Ja) because we consider explicit
stochastic Runge-Kutta methods. Similarly, (3. 3) is equivalent to

1

1
ZC(I)AU’] _ 5 ZC(JI A(JZJJ ot

for j < L.

As we have seen, each of (3. 1), (3. 2) and (3. 3) yields at least two algebraic
equations as a sufficient or equivalent condition. In analogy, each of the following two
order conditions also yields two algebraic equations. The order condition

= ! N0 16 ‘
K [cD(mH)sH ([7}(;()]')7 [7',(4]()0]54)(]')](2()0))} =0 U #
yields

ZCJ)AJl) Jl)AlJ) 0 (j#l), ch(i,j)Al(i,j,j,l lJ,JlA(JlJ,J 0 (] <l),

Z112 Z1'52

and the order condition

_ NN . h?
l ! .
E [(I)(erl)erl ([Tﬁl()ﬂ,ﬂ?j)]fj?m) D (mt1)s+1 (7}(1](2)))} Y (J#1)

yields
S (A9 =5 G#D LA (A =0 (<)

On the other hand, the other order conditions yield just one algebraic equation, respec-
tively.

Ultimately, in order to find a solution that satisfies the simplifying conditions and the
order conditions, all we have to do is to solve the following equations (Appendix). In the



sequel, we suppose j,1 # 0 and omit to write j # [ as far as it does not cause a confusion.

0 g, (3. 9)
Zc(j) =1, (3 10)
1
ZC(] A(]J) = (3. 11)
; 1
0409 _ 3 (3. 12)
1
ZC(J A(JO =2 (3. 13)
1
0) 4(0,0
ZC§1)A§1 ) _ 5 (3. 14)
1
ZC Efzjg A(J 0 _ = (3. 15)
1
> ol Al = 1. (3. 16)
ZC z(fzg 12 = O’ (3 17)
1
> (Aif]) Y (3. 18)
1
ZC(] A(] O)A(] 7 _ = (3. 19)
1
> clafilal AL = —. (8- 20)
G) (4G0)2 _ L
>alaly (427) = 15 S
1
ZC(J A(JJ Zm AgJ) 2 (3. 22)
: - 1
ch) (AZ(Z,J)) =7 (3. 23)
1
ZC gZJQ)A(J J) _ == (3. 24)
: - 1
(4) GIN° _ =+
> (Ail ) — 3 (3. 29)
1
ZC(] A(Jl =5 (3. 26)
G (4u0)2 _ 1
> (Ail ) — (3. 27)
1
ZC(] A(JJ)AJl) T (3. 28)
. 1
ZC(J 5{@]2 A(Jl T (3. 29)
Yol AL =0, (3. 30)
1
> el ALY = =7 (3. 31)
1
5 Aa0ag0 - L, o
> e A0 AL 0 3. 3)



1
ZC(J A(J] 2112 Agil) ga (3 34)
> clall A ALY =0, (3. 35)
G ny?_ 1
> cDaly) (A0 =7 (3. 36)
1
() A(]J) @b 2 3 37
I (3. 37)
> el alilagl AT =0, (3. 38)
> calilallAl =, (3. 39)
j 1
ZC(] gZJQ) gzlsA(l V= gv (3 40)
>y = (<), (3. 41)
S =0 (i<, (3. 42)
1
Zc“] AL — AL (3. 43)
1
Zc(”A”“” iiﬂA(”“ 0 (<D, (3. 15)
Sl (Al =0 (<), (3. 46)
Note that ozzjljb) =0 (ig < i, Vy,7') and %(Zfb]” derdd) 0 (Yia, b, Ja» Jb, Jes Ja) because we

consider explicit stochastic Runge-Kutta methods.

The system of the conditions (3. 10), (3. 11), (3. 20), (3. 21), (3. 22), (3. 23), (3. 24)
and (3. 25) has the same algebraic structure as that of the order conditions for ordinary
Runge-Kutta methods to attain order 4 for ODEs ([4], pp. 90-91). Hence, because the
stage number s has to be at least 4, let us suppose s = 4 in the sequel.

For stochastic Runge-Kutta schemes, RoBler ([11], p. 99) has proposed taking account
of not only weak order but also order for ODEs. Now, for s = 4, we can let (2. 2) attain
order 4 for ODEs. For this, we add the following six conditions:

(0.0) ,(0.0) 4(0.0) _ 1
Zczl 1112 1213 Alg ﬁa (3 47)
(0) ,(0.0) ( 4(0.0) 1
ZC 1122 (A ) - 12 (3 48)
1
> ALYl ALY = o (3. 49)
O (400 2 3. 50
ZC ( ) 4’ (3. 50)
1
0,0) 4(0,0)
ZC“ &5112 A( 67 (3 51)
1
0 0,0
S0 (AL0) = 5 (3. 52)
. (0 0 0) 1(0) 1(0 0 0) 1(0) 1(0
which come from [HTA(2)>]A() )]g(o)]A() 0y [[Tf(‘(%),fg(%)]g()o)];()o), [7'1(4(2)), [Tf(i(?))](A()o)];()o),
0 0 0) 1(0 0 0
[751(2)>77£1(2J>7751(2J>]E4<)0>7 [[Tf(,()ﬂ;()m]( )o and [ 03 T,Euz))];()m

To find a solution, we first simplify the equations from (3. 26) to (3. 40). By noting
that we can suppose ag]é) = ozglj), we have afljg’l)A(j D = 0 from (3. 38) and (3. 40). If

10



A(zj’l) = 0, by noting that we can suppose Aﬁj’” = Agl’j) for any i, we have oz(j Y =0 from
(3. 29) and (3. 30). Similarly, if aB? =0, we have A8 = 0 from (3. 31) and (3. 35).
Hence, OQ(é’Z) = AYY = 0. Then, A jl) = AP = 1 holds from (3. 29), (3. 32) and (3. 36).
Consequently, we have

hH_ Agj’l) =0, Agj’l) _ Az(ljl) -1

By substituting these into the equations from (3. 26) to (3. 40) and rewriting them, we
obtain

&) 4 ) = % (3. 53)
(D AGD) 4 o 4G _ i’ (3. 54)
Do) i) (3. 55)
U ALD _ % (3. 56)
) = U, (3. 57)

As we have mentioned, the system of the conditions (3. 10), (3. 11), (3. 20), (3.
21), (3. 22), (3. 23), (3. 24) and (3. 25) has the same algebraic structure as that of
the order conditions for ordinary Runge-Kutta methods of order 4. Hence, we can utilize
the results known in the deterministic case to solve the system of the order conditions.
The following five special cases where a solution surely exists are known for ordinary
Runge-Kutta methods of order 4 with 4 stages ([4], pp. 164-165):

Case I AGD ¢ (0,1 L Y3 1y AP =1 — AP
Case II gj) =0, AV? £ 0 Agj’j) =1

Case III 0, A( 53) _ =1 A6 —

Case IV &0, A( i), A = L

Case V 2o, afD = ag Ly

In Cases I and V, for example, the solutions are given by the following Butcher tableaux

AUD ‘ [089]

talh

@)

respectively:
Case [

0
do do
4G9 Agj’])51 Agj’j)
’ - 20 - 269 ,
1 2(AGD) — 24 (A9D) 41745 4 pG, 5

28002 28002 9o

124575, 12475, 124576, 124775,

11



where dg def g A:(g“), 01 def g 2A§j’]) and 0, def 6A;(3“) —-1-6 (Ag]’j)) , and

Case V
0
1
2 2
11 1 1
212 ¢ Agm) 6 Agm)
1 0 13497 3497
1 2 . N1
p 3 _Aéjd) Agj’]) .

The solutions in Cases 11, III, IV and V, however, do not satisfy (3. 53) and (3. 55),
simultaneously. Hence, the following are the steps we should carry out to find a solution
of all the conditions:

Step 1) Select the solution in Case I as that of the system (3. 10), (3. 11), (3. 20), (3. 21),
(3. 22), (3. 23), (3. 24) and (3. 25), substitute it into (3. 53), (3. 54), (3. 55), (3.
56) and (3. 57), and solve them.

Step 2) Select one among the five cases above and adopt its solution as that of the system
(3.9), (3. 14), (3. 47), (3. 48), (3. 49), (3. 50), (3. 51) and (3. 52) since those are
exactly the conditions for ordinary Runge-Kutta methods of order 4 with 4 stages.

Step 3) Substitute the solution in Step 1) into (3. 13), (3. 15) and (3. 19), and seek Agj’o),
Agj’o) or Aff’o). Here, note that the equations are not linearly independent with
respect to the parameters.

Step 4) Substitute the solution in Step 2) into (3. 12) and (3. 18), and seek A7 A7) or
Aio’] ), Here, it is remarkable that the equations are equivalent when the parameters
are 0 or 1 except AéO’J) = AgO’J) = Aflo’]) = 0.

Step 5) Substitute the results in Steps 1) and 4) into (3. 17), and seek a3, a%? or a0,
Here, it is remarkable that the equation has the trivial solution agé’o) = ozfé’o) =
(4,0)

Step 6) Substitute the results in Steps 2) and 4) into (3. 16), and seek alo? oS or a3

Step 7) Solve (3. 41), (3. 43) and (3. 46) for three parameters among cgl’j) (1<i<4)and
AP (9 < < 4),

Step 8) Solve (3. 42), (3. 44) and (3. 45) for three parameters among cl(j’l) (1 <i <4,
Agj,l,m) (2<i<4), ozglé”’l), afllg’j’]’l) and Oél(lléjdal)'

By following the steps, let us find a solution of all the conditions. In Step 1), from the
solution in Case I and (3. 55) we have AY?) = 5. Then, (3. 53) and (3. 54) hold since

cgj) =2 and cz(lj) = 1. From (3. 56) and (3. 57), ozgé’l) = ozfé’l) = 2. We chose the solution

g.
of Case V in Step 2). We obtain

AFY = 2479 v 2, APY =3470 2
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in Step 3). Let us set AP = 40 ) =1 and A;(go’j) =0in Step 4). This makes (3. 12) and

(3. 18) equivalent and means cg +cy ) = % Hence, cgo) = 5 in the present case. In Step
5) let us set all” = al” = aZ” = 0. In Step 6) we set a(y” = a{3” = 0 and obtain
alod) = 2. In Step 7), when we set A = (B = 0 for § < 1, we obtain
. . . 1 L 1 . Ligid)
AT = AP = e ) = e (<L AP £ 0)
4145} IVEVE) ) 4145} IVEVE] )

from (3. 41), (3. 43) and (3. 46). In Step 8) let us set c D= cfﬁl A(zj’l’j’j) = 0 for
j < l. Then, (3. 45) holds automatically, and we obtain

0 = s Gy _ ___1__ : ARE)
cy = QAgj,l,j,j)a cg’l = 2A§j’l’j’j) (7 <1, Ajs £0)

from (3. 42) and (3. 44).
We finally obtain

0
: 2= 2
1 .]7
(4,0 0 3 0{301 0
&0 | )] 0 01 [38Y-200
(4,9) (4,0
|: Za'lbi| |: Za'lbi| |: 'la'lbi| = 1 2 O )
T 3
(0) ‘ )
(& c 9 9 1 1 1 3
@rTer Ly | d o b
5 1 1 3
1 0 0 -7 7 2 710
1 11 1 1 3 3 1
6 3 3 & B 8§ 8 8
@] e
iafdp _ A:(SJJ,J,J)_angJ,J,J) agjzlj’]) G <)
GOY T (5:1:3:3) (5.1:3:3) (51:3,9) ’
& 2251 o) O3
0 2A§7%l’j’j) _QA:(SJ}L]',]') 0
15,5,
[ Ml} 1’_'11)4:(3“(;“1) RN
S APl el (<
(c( J)) &4£J7]7 42,J J a4?;J7J7
0 —_ 1 L __ 0

(1,5,5,1) (1,5,5,1)
4A, 4A,

as a solution of all the order conditions. As we can see from the process of calculations for
c(j )’s ozz( Zb) s and ozzj Zlb)’s, the set of coefficients for them in the right-hand side is unique
when we consider Cases [ to V.

3.3 Numerical experiments

We show the results of numerical experiments to confirm that the explicit scheme in the

_ _ : S e o e
previous subsection attains weak order 2 when a{}” = o) = i/ = o, AYH) = 1
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A(l“l) = 1/2 and oz4jlbl“) ol — (1 <i, <3) for j < and to compare it with

4y,
Platen’s scheme or a scheme for commuting SDEs, which is obtained by setting all C(J g
(G # 1), a9 and o995 (j < 1) at 0 in our scheme.

ZaZb 1alp

The following two SDEs are considered. The first one is

dy(t) (R——ZB2) dt+ZBy JodW,(t), 0<t<I, (3. 58)

7=1
y(O) = Zo-

This is non-commutative if B;B; # B;B; (j # ). The second one is

£ a3 ])o

J

ay(t) = (Ry@) -

+/Qy(1)>_

2
1

l Zj; ] odWj(t), 0<t<1, (3. 59)
J

y(0) = =z,
where Q(y) is a non-negative function. This is non-commutative if by1bgg # b12bo .
In (3. 58), we set m = 2,
0
]|
T4

o[ 2 4], o ] =-[3] oo

Then, we sought y,, by means of the schemes, and calculated the arithmetic vari-
ances (yi;;) — (yarq)® of the ith element of y,, and (ya,1yam2) as approximate val-
ues of variances V[y;(1)] (: = 1,2) and E[yi(1)y2(1)], respectively. The notation (-)
stands for an arithmetic mean. On the other hand, their exact values were sought from

Ely(t)]/dt = RE[y()] and

(@) NI
= O

Elyi(t)] o2 4 Elyi(1)]
a Elpt)y@)] | =] -3 —& 1 Elyi(t)ya(t)]
Ely3(t)] % —6 —% Ely3(t)]

In (3. 59), we set by; = 1/2, bjg = bgy = 1/4, boy = —1,

0 1 o
R:[_g _2], Q(y)d:fy%—ylyzﬂ%/%‘i‘la onlO] (w.p.1).

The solution satisfies dE[y(t)]/dt = RE[y(t)] and

[ B % 1% E[y3(t)] T
& Ey(y®)] |=| -% —-% Elyi()y(8)] | +| — 3
E[y2(t)] Io_u3 g E[y3(t)] 1

In both experiments, 1 x 10° sets of independent trajectories were simulated for each
step. The results are indicated in Figures 3 and 4. The solid, dash or dotted line means
our scheme, the scheme for commutating SDEs or Platen’s scheme, respectively. The
scheme for commuting SDEs is useful to see the influence of non-commutativity of SDEs.
The figures illustrate that our scheme is of weak order 2. We can see the influence of
non-commutativity in the relative errors of the approximations to Ely;(1)y2(1)].
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2

D (Vv =y, ) +Hyai)?)? [y1(Dy2 (D] —(ynr,1) (yar.2)

Ely1(1)y2(1)]

log, E

% log,

S (VIm(D))?

Figure 3: Relative errors in (3. 58)

S ViD= (2, ua,)?)?
S (VIy()?

‘ Ely1(Wy2 (D] —(yar,1) (yar,2)

log, Bl (Dy (1)

% log,

Figure 4: Relative errors in (3. 59)

4 Summary and remarks

First, we have introduced our stochastic Runge-Kutta family and the way of seeking order
conditions for it with MRTs. Second, after introducing the ingenious simplifying condi-
tions for the non-commutative case, we have found a solution of all the order conditions.
Third, we have performed the numerical experiments and shown the explicit stochastic
Runge-Kutta scheme with 4 stages is of weak order 2.

The scheme has the following three features.

e It needs random variables less than Platen’s scheme does because it has only m — 1
random variables (AW;’s) except AW;’s.

e It is of order 4 for ODEs. For this, it can be expected to show better performance
in the case of small noise.

e [t is directly applicable to non-commuting Stratonovich SDEs, whereas Platen’s
scheme is for non-commuting 1t6 SDEs.
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Appendix

Expectations of elementary numerical weights

Noting the statement in Subsection 3.2, we show only the expectations that do not vanish,
of elementary numerical weights or the products of them for weak order 2. These are
obtained directly from a diagrams for MRTL’s. (See [7] for details.) For ease of notation,
we omit all indices and the range of values of all indices in all summations.

Table 1: Expectations of elementary numerical weights or the products of them

(a) For t € T, such that p(f) +r(t) = 4

¢ E[‘i’(m+1)s+1(t)/] ]
[r A@]A(o) Sal a0V [ ag Y
HT,%) ] ())] ()0) chl J)al(ﬁg,] Jo J)(Xg%;J,Jé,O)E _~Z(fiaj)~z(;éaj)~z(;§,0):
([T E{L%]g&ﬁf?m 5 L0 GULO3D g Ub14) py [0 505 0
2 1%, 5 g0 00 000
[T,Elj(?))a A(O)]A(o) ZCJI, Oézle;0jé7j)agfgéo’jé7j)E 771(517 )775;27])775;3’])
, B )
0, i 2, 5 a0 s p 0
[[[T/({&>]X<)J>](J3]>]if()o> 20(11 ) ~ z(le;] Jhs J)Oégféj,jg,j) ~g%;j,jfpj)E '~Z(f{,j) ~Z(i'§,j) ~g§,j) ~Z(Z£pj)
N
N S e el e
(D) 00,10, 505005 300505050
L R e
[ 710, 5 89 Q0 i 165965050
S N el S s
[Tf(‘j&)’ h}(@j()j)](j()j)](j(o) 3 C(]1 j)O[z(f'i;j’jé’j)az('f%;j’jéd) ~Z(223;j,j£1,j)E ~(]17])772(§27J)nz(§3 J) 2(14 J)
B e e
B S el L
B N el el (R
B N el S
il Gy Pl 0 p [0 60
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(b) For t € Ty

(Continuation of Table 1)

such that p(f) + () = 3

t e €] E[(i)(m+1)§+(1 (t))q)(mtl)sj;l((tl)]) (43.3)
0 ] , 7750 '/7' _ -/7. ~ ./70 " .,7.

[Tﬁ;&)](j?m ,(4]<)o> ZC]N zfi;b eV E zflj ijQ Z-i“

. 7 0.4, 7 N L)

PO SRl 05000
HTQ())](Q'())](J'()O) T(j(%) ZC(JPJ 5 1532:9) 5, (G2:0, 1373) Uad) 77(]173)77(1273)77(337])77(340)

AWITAGIIA A ’5112 1213 i1 19 i3 i4
[[TG())](j())](j()O) (l()o) Zc(h 9) 5 G1:5:92:0) 5 U:d:dih) (i) o [5001:0) 502:0) 5 03,0 - (a:d)

NIAGTA A 21 1112 1213 11 12 13 14

HT(}()”]({)( )](j()o) (J()O) >l (1:9) 5, 1:ddrl) 5 Gaebdsd) (Gnd) pp [ 5(01:0) 5 (G2:0) = (G5.0) (0.9
ADTAGIA A 1112 1213 i1 19 i3 i |
[[T;](z)](f)( )](j()()) (l()()) Z C .717.] a(]lv]v]gvl)a(]Qvlngv.]) (]Zpl)E ,’7(]17]) (Jévl) ~(Jé7]) "‘(jz/pl)_
AWITAGITA A 1112 1213 i1 2 i3 i4
j ) 10 (41> J%s ; ) (G4:3) 1 [ =(51:9) ~(55:9) )
T 8 S ol 0
l : . 7 gl it 7 7 7 7 )T
[ IE‘J()])’ ,5;2])]54()0) IE‘()O) Zc(h ])O‘z;zl‘gj 35 ]) O‘(zlegj J5 )C(J4 )E 77?51 3)771(52 ]) 77233 )n(ij4 |
@ @ 1G) ( ) (319,95 e ~ D) ~(G5:3)]
[ A(J)’ A(J)]X(O) A]()O) Zciil ’ aiizléj I azi;; s ]4j E ifl ’ 1;2 i3j,3 ii4j
(c) For t € Ty such that p(f) +r(f) = 2
t €] )E([’q)'(rgf;)ﬂl(f')/] ) ~(55:9)
7)o St azi;;]’m E [i i
(O) (]17 (Ji?o)
T 40 Yo E ng l

j t j €] E[q)(mﬁl)ﬁ(l (t))q)(mtl)sj;l((tl)]) (43,0)
[7'(”]2]')](2()0) T40 ZCJPJ 2‘17;27]7-727] 50 [%fw Miy 2 77@3{37
N e
O ol el Gioan p b

. . , (9) ~ G1didsd) () ~ Grdiiol) o T Ud) = Gd) =) = i)
0 15 S AR GO [0 05
[7.(}) ](J() ) [ (l)( ) Z C jl?] (]1 j:]g:l)c(]37l) (jg: 7]47])E -"(ji:]) (]27l)77(]3 ) (jz/p]):|

AG) 1A A0 1112 13 1314 i1 i3 14
Téo(z)) 4(0) ZC(JP ]27 )E [772(517 )711(527 )W
1 lo E[q)(erl)erl(t)q)(erl)erl(tl)é(m+1)s+1(t2)]
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) 10 ! (415 Js 7)('7)( ) ( J) =(35:3) =(d5:0) =(d4:0)
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