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1 Introduction

Recently, an idea of state-dependent scaling has been introduced into dissipativity-based robust
control for nonlinear systems in [4, 5]. The primitive state-dependent scaling[4, 5, 6] aimed at
nonlinear uncertain systems whose uncertainties were described as L2-gain balls, while the known
part of the system was allowed to have infinite L2-gain. If we have more knowledge on the un-
certainty such as nonlinear gain[12, 9, 13, 8] other than linear gain or if the uncertainty does not
exhibit finite linear-gain properties, design results based on [4, 5, 6] might be too conservative.
As for output feedback control based on state-dependent scaling, the design procedure presented
in [6] did not address the existence of globally stabilizing controllers in the presence of dynamic
uncertainties although the existence was proved for static uncertainties. The problem of distur-
bance attenuation was not addressed either. Although the recursive observer design proposed
in [6] succeeded in extending the output-feedback form defined in [10] to a slightly wide class
of systems, it would be possible to cover a more general class of systems by fully exploiting the
unique nested structure of robust observer design.

In the last decade, L2-gain disturbance attenuation with global internal stabilization using full-
state information has been extensively studied for linear and nonlinear systems(See [2] and ref-
erences therein). In comparison, when only the output feedback is allowed, the problem is less
understood. For essentially nonlinear systems, filtered transformation and backstepping technique
were employed in [11] to solve a problem of output feedback tracking with almost disturbance
decoupling. Another approach proposed in [1] resorts to solutions of Hamilton-Jacobi partial dif-
ferential inequalities and a coupling condition. The recent work [7] has considered a more relaxed
class of nonlinear systems than earlier work, and the plant is allowed to involve unmeasured dy-
namics which is input-to-state stable. The layout of interconnected uncertain systems for which
this paper will give a new characterization of the output feedback disturbance attenuation and
the existence of solutions is broader than setups considered in those earlier papers. This paper
will also allow systems to have both static and dynamic uncertainties including systems which are
not input-to-state stable. Nonlinearities allowed in the plant by this paper is more general than
those in [10, 6, 7].

The purpose of this paper is to develop a new method of state-dependent(SD) scaling design in
order to achieve the output feedback disturbance attenuation with global asymptotic stability
for nonlinear systems described by interconnection of nonlinear-gain bounded systems. Thereby,
the use of linear gain and nonlinear gain is unified. The design becomes a natural extension of
popular techniques in linear robust control to nonlinear systems. The development is considered as
a global robustification of the previous results[6] against dynamic uncertainties and its extension
to L2 disturbance attenuation. Dynamic and static uncertainties are treated in a unified way so
that design formulas for the two types of uncertainties are identical. A difference only appears
in classes from which scaling factors are chosen. The state-dependent scaling characterization
does not require systems to fit in some geometric structure. For interconnected uncertain systems
partially in an extended feedback form, the control laws can be systematically generated by
selecting parameters of the observer and the feedback gain recursively. The recursive procedure
proposed in this paper not only allows us to use nonlinear gains, but also brings in a unique way of
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constructing robust observers which enable the output feedback to make the effect of disturbance
arbitrarily small with respect to generalized equations of controlled output. The new procedure of
observer design proposed in this paper is also unique in that it can be applied to a broader family
of nonlinearities in the plant, compared with previous output feedback results in [10, 6, 7]. The
design equations are obtained as affine algebraic inequalities with respect to the design parameters,
so that the SD scaling approach is advantageous to systematic numerical computation as well as
analytical computation.

2 System description

Consider the uncertain nonlinear system

Σ0 :





ẋ = A(y)x + B(y)w̄ + G(y)u , x(t) ∈ Rn

z̄ = C(y)x , z̄(t), w̄(t) ∈ Rp+q

y = Cyx , y(t) ∈ R
(1)

The matrices A, B, G, and C are assumed to be C0 functions of y, and Cy is a constant row
vector. Scalars u(t) and y(t) are control input and measurement output, respectively. The signals
w̄ and z̄ are partitioned as

w=




w1
w2

wm


 , z=




z1
z2

zm


 ,

wi(t), zi(t) ∈ Rpi

pi ≥ 0
p =

∑m
i=1 pi

r=




r1
r2

rm


 , e=




e1
e2

em


 ,

ri(t), ei(t) ∈ Rqi

qi ≥ 0
q =

∑m
i=1 qi

w̄i =
[
wi
ri

]
, z̄i =

[
zi
ei

]
∈Rpi+qi , w̄=




w̄1
w̄2

w̄m


 , z̄=




z̄1
z̄2

z̄m




Suppose that there is a system Σ∆ described by the following nonlinear mappings between z to
w.

∆i : zi =
[
zis
zid

]
7→ wi =

[
wis
wid

]
, wi =

[
∆is 0
0 ∆id

]
zi . (2)

Here, ∆is and ∆id represent a time-varying static system and a time-varying dynamic system,
respectively. It is unnecessary for ∆i to have the both types. These systems are defined by

∆is : wis = h∆is(zis, t) (3)

∆id :
{

ẋ∆i = f∆id
(x∆i , zid, t)

wid = h∆id
(x∆i , t)

(4)

Assume f∆id
(0, 0, t) = 0, h∆id

(0, t) = 0 and h∆is(0, t) = 0 for all t ≥ 0. Functions f∆id
, h∆i∗ (∗

stands for s or d) are locally Lipschitz in (x∆i , zi∗) on Rn∆i × Rpi∗ , uniformly in t ∈ R. The
state variable of Σ∆ is x∆ = [xT

∆1
, · · · , xT

∆m
]T ∈ Rn∆ . The system Σ∆ represents uncertainty so

that knowledge of f∆id
, h∆id

and h∆is is unnecessary. We only assume that information about
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nonlinear or linear gain is available in the sense described in Section 3. The interconnected system
consisting of Σ0 and Σ∆ is denoted by ΣP .

Since the state variable x is supposed to be unmeasurable, we employ the following observer to
control the uncertain system ΣP .

{ ˙̂x = A(y)x̂ + Y (y, x̂)(y − ŷ) + G(y)u , x̂(t) ∈ Rn

ŷ = Cyx̂ , ŷ(t) ∈ R (5)

In this paper, given an arbitrary number τ > 0, we seek the output feedback control consisting of
(5) and

u = K(y, x̂)x̂ . (6)

which

• globally uniformly asymptotically stabilizes ΣP when r ≡ 0

• makes the mapping between r and e have L2-gain less than or equal to τ

The state variables x and x∆ are not measured for the feedback control. Functions Y and K are
C0 functions which have yet to be determined. The system ΣP is said to be globally uniformly
asymptotically stabilized if the equilibrium xcl = [xT , xT

∆, x̂T ]T = 0 is globally uniformly asymp-
totically stable. In this paper, the system ΣP is said to have L2-gain less than or equal to τ if
there exists a storage function V (xcl) which is positive definite and radially unbounded such that
for all initial states xcl(0) ∈ R2n+n∆ , and all r ∈ L2[0, T ], the inequality

V (xcl(T )) ≤ V (xcl(0)) +
∫ T

0
(τ2‖r‖2 − ‖e‖2)dt

holds for all T ≥ 0.

3 Nonlinearly bounded uncertainty

In this paper, the uncertainty Σ∆ is supposed to belong to the following class of nonlinearly
bounded systems.

Assumption 1 For each i = 1, 2, . . . , m, the uncertain system Σ∆ satisfies the following.

(a) There exists a C0 function ψis : [0,∞) → [0,∞) such that

‖wis‖2 ≤ ψis(‖zis‖)‖zis‖2 (7)

holds for all t ∈ [0,∞).

(b) There exists a C0 function ψid : [0,∞) → [0,∞) and a C1 function W∆i : [0,∞)×Rn∆i →R
such that

β
i
(‖x∆i‖) ≤ W∆i(t, x∆i) ≤ β̄i(‖x∆i‖) (8)

∂W∆i

∂t
+

∂W∆i

∂x∆i

f∆id
≤−βi(x∆i)−‖wid‖2+ψid(‖zid‖)‖zid‖2

(9)
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hold for all (t, x∆i , zid) ∈ [0,∞)×Rn∆i ×Rpid, where β
i
and β̄i are class K∞ functions, and

βi is a positive definite C0 function of x∆i.

A system Σ∆ is said to be admissible if Assumption 1 is true. The assumption does not require
uncertain systems to have finite L2-gain. Instead, they are supposed to have finite nonlinear-gain.
When ∆is (∆id) exhibits finite L2-gain, the parameter ψis (ψid, respectively) reduces to a positive
constant. In such a case, we obtain ψis = γ2

is and ψid = γ2
id, where γis and γid are L2-gain. The

new class of uncertain systems is broad and it includes input-to-state stable(ISS) systems[12] in
the following sense.

Lemma 1 (a) Suppose that a static system ∆is admits class K∞ functions αi and σi such that

αi(‖wis‖) ≤ σi(‖zis‖) (10)

holds for all t ∈ [0,∞) and

lim
s→0+

σi(s)
αi(s)

< +∞ (11)

holds. Then, there exists a C0 function ψis such that (7) holds for all t ∈ [0,∞).

(b) Suppose that a dynamic system ∆id admits a C1 function V∆i : [0,∞)×Rn∆i → R such that

αi(‖x∆i‖) ≤ V∆i(t, x∆i) ≤ ᾱi(‖x∆i‖) (12)
∂V∆i

∂t
+

∂V∆i

∂x∆i

f∆id
≤ −αi(‖x∆i‖) + σi(‖zid‖) (13)

are satisfied for all (t, x∆i , zid) ∈ [0,∞) × Rn∆i × Rpid where αi, ᾱi and αi are class K∞
functions and σi is a class K function and they satisfy

lim
‖x∆i

‖→0

‖wid‖2

αi(‖x∆i‖)
<+∞, lim

‖zid‖→0

σi(‖zid‖)
‖zid‖2

<+∞ (14)

uniformly in t. Then, there exists a C0 function ψid, a C1 function W∆i, class K∞ functions
β

i
and β̄i and a positive definite C0 function βi such that (8) and (9) hold for all (t, x∆i , zid) ∈

[0,∞)×Rn∆i ×Rpid.

The functions ψis and ψid are obtained easily from αi, σi αi and ᾱi [3]. Note that βi(x∆i) can
be always chosen as a class K∞ function of ‖x∆i‖ for ISS systems defined in Lemma 1(b). It
is emphasized that Assumption 1 admits systems which are not ISS. An example of nonlinearly
bounded static mappings which violate (11) is wis = h∆is(zis) =

√‖zis‖ which is not Lipschitz at
zis = 0. Indeed, if h∆is(zis, t) is Lipschitz at zis = 0 uniformly in t as assumed in Section 2, there
always exists a class K∞ pair of {α(s), σ(s)} satisfying (11) and (10). As for a dynamic nonlinear
mapping ∆id : zid 7→ wid, the condition (14) together with (13) is common in asymptotic analysis
based on the nonlinear small-gain technique[7, 8, 9]. It is known that (14) is always satisfied for
appropriate functions αi ∈ K∞ and σi ∈ K if the Jacobian linearization of ∆id at x∆i = 0 is
uniformly asymptotically stable.

Example 1 An example of admissible uncertain dynamics zid 7→ wid is
{

ẋ∆i = −x∆i(1− zρ
id)

wid = sat(x∆i)
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with ρ ≥ 2. Indeed, it satisfies (9) for ψid = 2.2|zid|ρ−2 and

W∆i =
∫ x2

∆i

0

1.1
s

ds, βi =
x2

∆i

5(x2
∆i

+ 1)

Clearly, the system is not input-to-state stable although it is globally asymptotically stable when
zid ≡ 0.

Example 2 The following input-to-state stable system
{

ẋ∆i = −x3
∆i

+ z2
id

wid = xρ
∆i

which is used in [7] with ρ ≥ 2 is also an admissible dynamic system. The functions ψid and βi

are obtained as

ψid = τπρ/2−13ρ/22−2ρ/3|zid|4ρ/3−2

βi = (1− τ−1 − π−1)τ |x∆i |2ρ

for any τ > 1 and π > τ/(τ − 1).

4 SD scaling characterization

This section derives a characterization of global robustness properties of the output feedback
system described in Section 2 via a new concept of state-dependent (SD) scaling which incorporates
the nonlinear gain.

First, a set of scaling factors associated with static uncertain components ∆is is defined by

Φis =
{

Φis(y, x̂)=φis(y, x̂)I : φis(·)∈C0

φis(y, x̂)>0, ∀(y, x̂)∈Rn+1

}
(15)

The identity matrix I is compatible in size with zis. The scaling factors are functions of the output
and the state estimate. For dynamic uncertain components ∆id, a set of scaling factors is defined
by

Φid =
{

Φid =φd

[
φ̌idI 0
0 I

]
: φd, φ̌id >0

}
(16)

The block partition of Φid is compatible in size with that of [zT
id, e

T
i ]T . All sets Φid, i = 1, 2, . . . ,m

are defined with a common constant φd. For i = 1, 2, . . . , m, define Φi(x) as

Φi =
{

Φi(y, x̂)=
[

Φis(y, x̂) 0
0 Φid

]
: Φis ∈ Φis

Φid ∈ Φid

}

Using C0 functions ψid, ψis : [0,∞) → [0,∞) in Assumption 1, define Ψ̄(x) as

Ψ̄(x) =
m

block-diag
i=1

Ψ̄i(x) (17)

Ψ̄i(x) =




ψis(‖zis‖)1/2I 0 0
0 ψid(‖zid‖)1/2I 0
0 0 τ−1I


 (18)
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The block diagonal structure of Ψ̄i is conformable in size to the partition z̄i = [zT
is, z

T
id, e

T
i ]T . The

scalar τ is a positive number to describe the level of disturbance attenuation. We are now ready
to define three sets of SD scaling matrices by

Φ =
{

Φ(y, x̂) =
m

block-diag
i=1

Φi(y, x̂), Φi ∈ Φi

}
(19)

Θ =
{

Θ(y, x̂) : R
n+1 →R(p+q)×(p+q), Θ(·)∈C0

Θ(y, x̂) > 0 ∀(y, x̂)∈Rn+1

}
(20)

Ψ =
{

Ψ(x, x̂) : R
2n →R(p+q)×(p+q), Ψ(·)∈C0

Ψ(x, x̂) ≥ 0 ∀(x, x̂)∈R2n

}
(21)

All scaling matrices Φ, Θ and Ψ are ‘state-dependent’.

Based on the triplet of these scaling matrices, we shall characterize stability and L2 distur-
bance attenuation of ΣP . Consider a global diffeomorphism between [x̂T , x̂T − xT ]T ∈ R2n and
[χ̂T , ηT ]T ∈ R2n as follows:

[
χ̂
η

]
=

[
S(y, x̂) 0

0 W

] [
x̂

x̂− x

]
(22)

where W is a constant matrix. The time-derivative of χ̂ is obtained as

˙̂χ =
∂S

∂y
x̂Cyẋ +

[
∂S

∂x̂1
x̂,

∂S

∂x̂2
x̂, ,

∂S

∂x̂n
x̂

]
˙̂x + S(y, x̂) ˙̂x

= X(y, x̂)ẋ + T (y, x̂) ˙̂x

Define

Ā=
[
CT

y AT
]
, Ŵ =

[−Y T W T

W T

]
, Ŝ =

[
S−1

KS−1

]
, Â=[A G]

Then, we obtain the following theorem.

Theorem 1 If there exist P > 0, P̃ > 0 and scaling matrices Φ ∈ Φ, Θ ∈ Θ, Ψ ∈ Ψ such that

M(y, x̂) =




ŜT ÂT (X + T )T P + P (X + T )ÂŜ PXB
BT XT P −Θ
ΦΨCS−1 0

−W−T (XA + TY Cy)T P −P̃WB

S−T CT ΨΦ −P (XA + TY Cy)W−1

0 −BT W T P̃
−Φ −ΦΨCW−1

−W−T CT ΨΦ W−T ĀŴ P̃ + P̃ Ŵ T ĀT W−1


< 0 (23)

Θ ≤ Φ (24)

Ψ̄ ≤ Ψ (25)

hold for all (x, x̂) ∈ R2n, the output-feedback law (5-6) globally uniformly asymptotically stabilizes
ΣP for all admissible uncertainties and ΣP has L2-gain less than or equal to τ .

In the case of {q = 0, φd = 1, Θ = Φ, Ψ = I}, Theorem 1 reduces to the primitive result[6].
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5 Recursive design

This section defines a class of systems ΣP and presents a recursive procedure of the output feedback
control design for this class. Suppose that Σ0 is in the following triangular structure.

y = x1, Cy =[ 1 0 0 ] (26)

A(y)=




a11 a12 0 0
a21 a22 a23 0 0

0
an−1,1 an−1,2 an−1,n
an1 an2 ann




, G(y)=




0

0
an,n+1




(27)

ai,i+1(y) 6= 0, 1 ≤ i ≤ n, ∀y ∈ R (28)

B(y)=

[
B11

Bn1

]
, C(y)=[ C11 0 0 ] (29)

where Bi1(y) ∈ R1×(p1+q1), C11(y) ∈ R(p1+q1)×1, m = 2n, p1 = p, q1 = q. In addition, we assume
that

sup
y∈R

∣∣∣∣∣
a2

ij(y)
ak−1,k(y)al,l+1(y)

∣∣∣∣∣ < +∞,
2 ≤ k ≤ n− 1
k ≤ l ≤ n− 1
k ≤ i ≤ n, k ≤ j ≤ n

(30)

sup
y∈R

ann(y)
|an−1,n(y)| < +∞ (31)

The conditions (30) and (31) will be used for ensuring the existence of global solutions to the
observer design problem described later. In this paper, a system ΣP consisting of Σ0 and Σ∆

which fulfill these structural assumptions (26-31) and Assumption 1, respectively, is said to be
in the generalized robust output-feedback form. Compared with a standard output-feedback
form defined in [10], the generalized robust output-feedback form not only allows for disturbance
signals and dynamic uncertain components which unnecessarily have finite linear-gain, but also
nonlinearity is not restricted to A(y)x = A0x + A1(y) where A0 is a constant matrix. The class
of generalized robust output-feedback form is also broader than an extended class considered in
[6]. When the nonlinearity is limited to A(y)x = A0x + A1(y) + A2(y)x2 with a constant matrix
A0, the conditions (30) and (31) reduces to

sup
y∈R

∣∣∣a2
i2(y)/a12(y))

∣∣∣ < +∞, 2 ≤ i ≤ n

inf
y∈R

|a12(y)| 6= 0

which are assumptions employed in [6].

In order to solve the disturbance attenuation problem with robust stability for the above class of
systems, we first pick any constant matrices P and P̃ of the form

P =
n

diag
i=1

Pi > 0, P̃ =
n

diag
i=1

P̃i > 0 (32)

Define

S−1(x1, x̂[n−2]) =




1 0 0 0
s1 1 0 0
0 s2 1 0

0 0 sn−1 1


 (33)
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u = sn(x1, x̂[n−1])χ̂n (34)

Here, s1(x1), s2(x1, x̂1), ..., sn(x1, x̂[n−1]) are smooth functions to be determined. The notation

x̂[k] = [ x̂1 x̂2 · · · x̂k ]T

is used. Let W be

W =




1 0 0 0
w2 1 0 0
0 w3 1 0

0 0 wn 1


 (35)

whose components wi for 2 ≤ i ≤ n are constant. Let the observer gain Y be of the form

Y (x1) = −W−1
[

w1(x1)
0

]
(36)

where w1 is a smooth scalar function of x1. The parameters w1, · · · , wn have yet to be determined.
Candidates of state-dependent scaling matrices are parameterized as follows:

Φ={Φ=φ1(x1)Ip+q : φ1(x1) > 0, ∀x1∈R} (37)

Θ={Θ=φ1(x1)Ip+q : φ1(x1) > 0, ∀x1∈R} (38)

The scalar function φ1 has yet to be determined. Choose a matrix Ψ from Ψ so that (25) holds
and Ψ depends only on x1. Such a SD scaling matrix Ψ exists due to the definition of C. A simple
choice is Ψ = Ψ̄. Extract M[k] from M as

M[k] =
[
QT

k 0
0 In

]
M

[
Qk 0
0 In

]
=

[
M[k]11 M[k]12
M[k]21 H

]

H = W−T ĀŴ P̃ + P̃ Ŵ T ĀT W−1

Qk =



Ik 0 0
0 0 0
0 Ip+q 0
0 0 Ip+q


 , Qn = In+2(p+q)

where Ik is a k × k identity matrix. This matrix M[k] has the following properties.

(a-i) M[k] is independent of {x̂k, x̂k+1, · · · , x̂n}.
(a-ii) M[k] does not include {sk+1, · · ·, sn−1, sn}.
(a-iii) M[k] < 0 implies M[k−1] < 0.

(a-iv) M[n] = M

(a-v) M[1] is jointly affine in {s1, φ1}. For k ≥ 2, M[k] is affine in sk.

(a-vi) M[k] < 0 implies H < 0.

For achieving M < 0, the properties suggests a recursive procedure in which

M[k](x1, x̂[k−1]) < 0, ∀(x1, x̂[k−1]) ∈ R×Rk−1 (39)

is solved for sk, and φ1(when k = 1), recursively from k = 1 through k = n. The property (a-vi)
claims that H < 0 should be secured beforehand. In order to obtain H < 0, employing an idea
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which is analogus to recursive design of robust observers [6], the parameters {w1(x1), w2, . . ., wn}
are selected by solving

H〈k〉(x1) < −Γk(x1)−1, ∀x1 ∈ R (40)

for wk recursively from k = n down to k = 1. The notation H〈k〉 is defined as

H〈k〉 =
[

Hk,k Hk,∗
H∗,k H〈k+1〉

]
, H〈n〉 = Hn,n

The next section shows how to determine appropriate matrices Γk(x1) > 0 of C0 functions which
guarantee the existence of solutions to (39) for all k = 1, 2, . . . , n. The matrix H〈k〉 also satisfies
the following.

(b-i) H〈k〉 does not include {wk−1, · · ·, w2, w1}.
(b-ii) H〈k〉 < −Γ−1

k implies H〈k+1〉 < −[Γ−1
k ]〈k+1〉

(b-iii) H〈1〉 = H

(b-iv) H〈k〉 is affine in wk.

The properties (a-v) and (b-iv) are advantageous to numerical computation of (39) and (40).

6 Existence of solution

Let [H−1]11 denote the (1, 1)-component of the matrix H−1. The following can be obtained by
modifying a result in [6] properly.

Lemma 2 Suppose that H(x1) < 0 is satisfied for all x1 ∈ R.
(i) Case k = 1 : There exist smooth functions {s1(x1), φ1(x1)} such that (39) is satisfied if

−[H−1]11λmax

(
−BTW TP̃H−1P̃WB

)
λmax

(
ΨC11C

T
11Ψ

)
<

1
4

(41)

holds for all x1 ∈ R.
(ii) Case k ≥ 2 : Assume that M[k−1] < 0 holds for all (x1, x̂[k−2]) ∈ R × Rk−2. Then, there
exists a smooth function sk(x1, x̂[k−1]) such that (39) is satisfied.

Here, λmax(·) denotes the maximum eigenvalue of a matrix. The inequality (39) is solvable
recursively from k = 1 through k = n if H(x1) < 0 and (41) are satisfied for all x1. Let

Γk =
[

γk 0
0 νkΓk+1

]
, k = 1, 2, . . . , n− 1, Γn = γn

where γi, i = 1, 2, . . . , n and νi, i = 1, 2, . . . , n−1 are real scalars. In order to achieve (40) and (41)
simultaneously, the following lemma is useful, which successfully extends the previous result of
the robust observer design [6] to much more general systems defined with the relaxed assumptions
(30-31).
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Lemma 3 Let {γ1(x1), γ2(x1), . . ., γn(x1)} be any C0 functions satisfying

0 < γi(x1), ∀x1 ∈ R, i = 1, 2, . . . , n (42)

0 < inf
x1∈R

{γi(x1)|ai−1,i(x1)|} , i = 2, 3, . . . , n (43)

sup
x1∈R

{γi(x1)|ai−1,i(x1)|} < +∞, i = 3, 4, . . . , n (44)

Let {ν1, ν2, . . ., νn−1} be any constants satisfying

ν1 ≥ 1, νi > 1, i = 2, 3, . . . , n− 1 (45)

Then, there exist a smooth function w1(x1) and constants w2, w3, . . ., wn which solve (40) se-
quentially in descending order of k, where the existence of wk is independent of {γ1, γ2, . . ., γk−1}
and {w1, w2, . . ., wk−1}.
Pick a C0 function γ1(x1) such that

γ1λmax

(
BTW TP̃Γ1P̃WB

)
λmax

(
ΨC11C

T
11Ψ

)
<

1
4

(46)

If −H−1 < Γ1 is achieved, this inequality implies (41). Thus, if we select γ1, . . ., γn as (46),
(42-44), Lemma 2 proves that sk and φ1 solving M < 0 can be constructed recursively from k = 1
up to k = n.

According to the proof of Lemma 2, any C0 function satisfying

ē− < φ1(x1) < ē+, x1 ∈ R (47)

is a solution of M[1] < 0. The real numbers ē− and ē+ are given by

ē± =
1 + āc̄− b̄±

√
(1 + āc̄− b̄)2 − 4āc̄

2c̄
(48)

where

ā = λmax

(
−BTW TP̃H−1P̃WB

)

b̄ = λmax(ZT
b Zb), Zb = −BTW TP̃H−1CT Ψ

c̄ = λmax(−ΨC11[H−1]11C
T
11Ψ)

Set φ1s = φ1. Then, according to Theorem 1, we achieve the condition (23) for global asymptotic
stability when ΣP has neither dynamic uncertain components nor exogenous disturbances. How-
ever, Theorem 1 requires a constant φ1 when either dynamic uncertain components or exogenous
disturbances is involved. Lemma 2 does not guarantee that the set (ē−, ē+) admits a constant
solution φ1 globally in x1. The following new result is the key to the existence of constant φ1.

Lemma 4 Let {ν1, ν2, . . ., νn−1} be any positive real constants. Suppose that {γ1, γ2, . . ., γn}
satisfy (42) and

sup
x1∈R

{γi(x1)|ai−1,i(x1)|} < +∞, i = 2, 3, . . . , n (49)
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(a) If B(x) satisfies

sup
x1∈R

λmax(Bi1(x1)BT
i1(x1))

|ai,i+1(x1)| < +∞, i = 1, 2, ..., n−1 (50)

sup
x1∈R

λmax(Bn1(x1)BT
n1(x1))

|an−1,n(x1)| < +∞ (51)

then, there exists a C0 function γ1(x1) such that (42) and

λmax

(
BTW TP̃Γ1P̃WB

)
≤ α, ∀x1 ∈ R (52)

γ1λmax

(
ΨC11C

T
11Ψ

)
<

1
4α

, ∀x1 ∈ R (53)

hold for a finite constant α > 0.

(b) If γ1(x1) satisfies (42), (52) and (53) and H < −Γ−1
1 holds, there exists a positive constant

φ1 such that (47) holds.

According to the proof, a constant solution φ1 fulfilling (47) for ‘all’ x1 ∈ R is any real number
belonging to (ê−, ê+), where constants ê− and ê+ are given by

ê± =
1 + âĉ− b̂±

√
(1 + âĉ− b̂)2 − 4âĉ

2ĉ
(54)

â = sup
x1∈R

ā(x1), b̂ = sup
x1∈R

b̄(x1), ĉ = sup
x1∈R

c̄(x1)

Here, â, b̂ and ĉ are guaranteed to exist. Thanks to Lemma 4, the recursive design of output
feedback controllers which accommodate nonlinear dynamic uncertainties proceeds as follows.

1) solve (40) for wk recursively in descending order of k with γn, . . ., γ2, γ1 given in (49) (43),
(42), (52), (53) and (45).

2) solve (39) for sk and a constant φ1(when k = 1) recursively in ascending order of k.

Using Schur complements formula, design equations (39) and (40) in each step k reduce to scalar
inequalities which are affine in the decision variables. We thereby arrive at the main result by
setting φ1s = φd = φ1 and φ̌1d = 1.

Theorem 2 Suppose that the system ΣP is in the generalized robust output-feedback form and
satisfies (50-51). Then, the system ΣP can be globally uniformly asymptotically stabilized, and the
L2-gain from r to e can be rendered less than or equal to τ for all admissible uncertainties Σ∆ by
the output-feedback law (5-6).

It is emphasized that the disturbance attenuation level τ can be made arbitrarily small. The
scaling factor φ1 can be chosen as either a constant or a function of x1. The uncertainty Σ∆ is
not allowed to be dynamic unless φ1 is a constant. Non-constant φ1 may often lead us to a less
complicated feedback gain whose growth order and local gain are not very large.

It is worth noting that Theorem 2 does not restrict Σ∆ to ISS dynamic systems. When we restrict
Σ∆ to ISS dynamics considered in [7], the outcome of Theorem 2 is similar to Corollary 1 of [7].
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However, it is emphasized that this paper allows more general equations of the regulated output
e(t) than [7] as well as matrices A, B and G. This successful generalization of the functions C

and B is mainly due to the unique idea of robust observers employed in this paper. Indeed, it is
observed from (53), (52) and (40). Robust observers are systematically constructed in a recursive
manner. The result of this paper is also applicable to Σ0 whose parameter B(y) is replaced by
B(t, x∆, y) if B(t, x∆, y) is uniformly bounded in t and x∆. In addition, under the assumption
(7) of [7], the methodology proposed in this paper can lead us to a result corresponding to
Theorem 1 of [7] with ‘nonlinear gain’ disturbance attenuation. In contrast to other constructive
nonlinear design techniques in the literature, this paper does not rely on completion of the squares.
Instead, this paper employs Schur complements formula and scaling functions which not only
provide us with appropriate measures for robustification against static and dynamic uncertainties,
but also incorporates nonlinear gains in the design. Schur complements formula is usually less
conservative than completion of the squares when they are applied to vectors[6]. Combination of
Schur complements formula and state-dependent scaling also allows the nonlinear design to locally
fall in with LMI-based designs for robust linear control[3].

7 An example

This subsection presents an example to illustrate the output-feedback design proposed in this
paper briefly. Consider the system Σ0 given by

ẋ1 = (1 + x2
1)x2

ẋ2 = −x1x2 + (1 + |x1|)x3 − x1w

ẋ3 = x3 − 2x1w + r + u

z = x1, e = x1, y = x1

and the uncertain system Σ∆ between z and w in the form of

ẋ∆ = f∆(x∆, z, t), w = h∆(x∆, t)

This uncertain component is supposed to be admissible in the sense of Assumption 1 with

ψd = 2.2z2

Thus, the system Σ∆ has zero L2-gain locally although it is globally bounded only in nonlinear
gain. The objective is to find an output-feedback controller which globally uniformly asymptoti-
cally stabilizes ΣP and achieves the level τ = 0.5 of disturbance attenuation between r and e. An
observer gain we can obtain using formulas of the recursive design procedure is

Y = [−w1 w1w2 −w1w2w3 ]T

where calculated parameters are

w1 = −15− 12x2
1, w2 = −13, w3 = −2

P̃ =

[ 80 0 0
0 1 0
0 0 1

]
, Γ1 =




18x2
1 + 33 0 0
0 1 + x2

1 0
0 0 (1 + |x1|)/2



−1
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Figure 1: State transition of output feedback control.

The scaling factor and the feedback gain are obtained as

φ1 = 1

u = s3 [ s2s1 −s1 1 ] x

s1 = −3, s2 = −4
√

x2
1 + 1

s3 = −12(x1 − 0.2)4 − 95− 16x2
1(0.3x2

1 + 2)(3x̂1 + x̂2)2

x2
1 + 1

where

P =

[ 1 0 0
0 0.2 0
0 0 0.02

]

is used. One of admissible uncertain components z 7→ w is
{

ẋ∆ = −x∆(1− z4)
w = sat(x∆) (55)

It satisfies (9) for ψd = 2.2z2 as described in Section 3. The system (55) is not input-to-state
stable although it is globally asymptotically stable when z3 ≡ 0. Figure 1 shows state transition
of Σ0 in the presence of (55) and the disturbance

r(t) =
{

5 , 1 ≤ t < 2
0 , otherwise

for the initial condition x(0) = [1,−1, 2]T , x∆(0) = 1 and x̂(0) = 0. The damped response x1(t)
shown by the solid line demonstrates clearly that the output-feedback controller attenuate the
effect of the disturbance on e = x1 substantially.

Acknowledgments. The author is grateful to Z.P. Jiang for discussions about output feedback and
nonlinear gain and comments on improving the quality of the paper.
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Appendix

Proof of Theorem 1
Let xcl denote xcl = [xT , x̂T , xT

∆]T . Define

V (t, xcl) = χ̂T Pχ̂ + ηT P̃ η +
m∑

i=1

φ̌idW∆i(t, x∆i)
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which is a C1 function of (t, xcl), and there exist class K∞ functions αcl and ᾱcl such that

αcl(‖xcl‖) ≤ V (t, xcl) ≤ ᾱcl(‖xcl‖)

The time-derivative of V along the trajectories of the output feedback system satisfies

d

dt
V ≤

[
χ̂
w
η

]T

Q

[
χ̂
w
η

]
+ rT r − τ−2eT e−

m∑

i=1

φ̌idβi(x∆i) (56)

Here, (24), (25) and

0 ≤
[

wis
zis

]T [−Φis 0
0 ψisΦis

] [
wis
zis

]

are used. The matrix Q(x, x̂) is obtained as

Q=




(
ŜT ÂT (X + T )T P+

P (X + T )ÂŜ

)
PXB −P (XA + TY Cy)W−1

BT XT P −Θ −BT W T P̃

−W−T (XA + TY Cy)T P −P̃WB

(
W−T ĀŴ P̃+
P̃ Ŵ T ĀT W−1

)




+




S−T CT ΨΦ
0

−W−T CT ΨΦ


 Φ−1 [

ΦΨCS−1 0 −ΦΨCW−1
]

The inequality (23) is equivalent to the pair of Q < 0 and Φ > 0. Thus, under the condition
(23), the global uniform asymptotic stability of the output-feedback system follows from (56)
with r ≡ 0. Finally, integrating (56) from t = 0 to t = T > 0, we obtain

V (t, xcl(T ))− V (t, xcl(0)) ≤
∫ T

0

(
rT r − τ−2eT e

)
dt

This proves that ΣP has L2-gain less than or equal to τ .

Proof of Lemma 2:
Define the following matrix.

M̄[k] = M[k]11 −M[k]12H
−1M[k]21

Let this matrix be partitioned as
[

Jk Ek

ET
k Fk

]
= Q̄T

k M̄[k]Q̄k

Q̄k =




0 Ik−1 0
1 0 0
0 0 I2(p+q)


 ∈ R[k+2(p+q)]×[k+2(p+q)]

The scalar Jk and the matrix Fk is given by

Jk = 2Pkak,k+1sk + J̃k

F1 =
[−Φ 0

0 −Φ

]
+

[
I 0
0 Φ

]
Z0

[
I 0
0 Φ

]

Fk = M̄[k−1], for 2 ≤ k ≤ n
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where J̃k, Ek and Fk are independent of {sk, sk+1, . . ., sn}. The matrix Z0 is obtained as

Z0 = −
[

BTW TP̃
ΨC

]
H−1

[
P̃WB CT Ψ

]

The assumption H < 0 implies Z0 ≥ 0. Let Z̄0 be defined by

Z̄0 =
[

āIp+q Zb

ZT
b c̄Ip+q

]

From Z̄0 ≥ Z0 ≥ 0 we obtain 0 ≤ b̄ ≤ āc̄.
(i) Due to Z̄0 ≥ Z0, F1 < 0 is achieved if Φ = φ1I satisfies

[−Φ 0
0 −Φ

]
+

[
I 0
0 Φ

]
Z̄0

[
I 0
0 Φ

]
< 0

which is equivalent to

φ1 > ā (57)

c̄φ2
1 + (b̄− āc̄− 1)φ1 + ā < 0 (58)

Under the assumption that H < 0, the inequality (41) implies 4āc̄ < 1. From b̄ ≤ āc̄ we obtain
1+ āc̄− b̄ > 2

√
āc̄. Thus, the quadratic inequality (58) admits real solutions φ1, and the solutions

are given by (ē−, ē+) defined with (48). Here, ē± are real numbers satisfying ē− < ē+. From
b̄ ≤ āc̄ and 4āc̄ < 1 it follows that 1− 3āc̄− b̄ > 0. Then, it is seen that

2c̄(ē− − ā) = 1− āc̄− b̄−
√

(1 + āc̄− b̄)2 − 4āc̄

=
√

(1− āc̄− b̄)2 −
√

(1 + āc̄− b̄)2 − 4āc̄

> 0

The last inequality implies 0 ≤ ā ≤ ē−. Therefore, any real number φ1 belonging to (ē−, ē+)
fulfills (57) automatically. Hence, there exist smooth functions φ1(x1) > 0 satisfying F1(x1) < 0
for all x1 ∈ R. Now, suppose that F1 < 0 has been achieved by a function φ1. According to Schur
complements formula, M̄[1] < 0 is equivalent to a scalar inequality J1 −E1F

−1
1 ET

1 < 0. Since the
left hand side is affine in s1, the assumption (28) assures the existence of a smooth function s1(x1)
which fulfills M̄[1] < 0. Applying Schur complements formula to M[1] < 0, the condition M̄[1] < 0
is equivalent to M[1] < 0 on the assumption of H < 0.
(ii) Since M[k−1] < 0 and H < 0 are assumed, the application of Schur complements formula leads
us to M̄[k−1] < 0. Since Jk − EkF

−1
k ET

k < 0 is affine in sk, the assumption (28) guarantees the
existence of a smooth function sk(x1, x̂[k−1]) solving M̄[k] < 0 which is identical with M[k] < 0.

Proof of Lemma 3:
Define the following set of integers.

Ω =
{

(i, j, ρ, ι) : k ≤ i ≤ n, k ≤ j ≤ n
ρ = i, i + 1 < n, k ≤ ι ≤ n

}

The assumption (30) implies

sup
y∈R

∣∣∣∣∣
aijaρι

ak−1,k(y)al,l+1(y)

∣∣∣∣∣ < +∞,
2 ≤ k ≤ n− 1
k ≤ l ≤ n− 1
(i, j, ρ, ι) ∈ Ω

(59)
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sup
y∈R

∣∣∣∣∣
ak,k(y)

ak−1,k(y)

∣∣∣∣∣ < +∞, 2 ≤ k ≤ n− 1 (60)

sup
y∈R

∣∣∣∣∣
ak,k+1(y)
ak−1,k(y)

∣∣∣∣∣ < +∞, 2 ≤ k ≤ n− 1 (61)

For systems satisfying (26-27) and (32), (35) and (36), the inequality (40) is equivalent to

H〈k+1〉 < −Γ−1
k+1 (62)

2P̃kak−1,kwk < −2P̃kak,k + 2P̃kak,k+1wk+1 − γ−1
k +

eT
k

(
H〈k+1〉 + ν−1

k Γ−1
k+1

)−1
ek (63)

in the case of 1 ≤ k ≤ n− 1. where a0,1 = 1. For K = n, the above two inequalities are replaced
by a single inequality

2P̃nan−1,nwn < −2P̃nan,n − γ−1
n (64)

Here, ek is a vector satisfying

eT
k ek ≤

∑

(i,j,ρ,ι)∈Ω

ck(i, j, ρ, ι)|aijaρι|, 1 ≤ k ≤ n− 1 (65)

for some finite non-negative constants ck(·, ·, ·, ·) since w2, w3, . . ., wn are constants. Here,
ck(·, ·, ·, ·) are independent of {γ1, γ2, . . ., γn} and {w1, w2, . . ., wk}. Combining (65) and (44),
we obtain

eT
k ekγl+1

|ak−1,k| ≤

∑

(i,j,ρ,ι)∈Ω

dk(i, j, ρ, ι)|aijaρι|

|ak−1,kal,l+1| ,
2 ≤ k ≤ n− 1
k ≤ l ≤ n− 1

for some finite non-negative constants dk(·, ·, ·, ·). Thus,

sup
y∈R

eT
k ekγl+1

|ak−1,k| < +∞, 2 ≤ k ≤ n− 1, k ≤ l ≤ n− 1 (66)

follows from (59). Now, we choose wk from k = n down to k = 1 recursively as follows.
(i) Case k = n : Let γn(x1) be a C0 function fulfilling (42-44). Due to (43), (31) and (28), there
exists a constant wn such that (64) is satisfied for all x1 ∈ R. Then, the inequality (40) is achieved
for k = n. This process does not involve {γ1, γ2, . . ., γn−1} and {w1, w2, . . ., wn−1}.
(ii) Case 2 ≤ k ≤ n− 1 : Suppose that the set of constants {wk+1, wk+2, . . ., wn} satisfying (62)
are given. Let a constant νk be chosen as (45). It is verified that

−
(
H〈k+1〉 + ν−1

k Γ−1
k+1

)−1
<

νk

νk − 1
Γk+1 (67)

Let γk(x1) be a C0 function which fulfills (42-44). Due to (43), (60), (61) (66), (67) and (28), there
exists a constant wk such that (63) is satisfied for all x1 ∈ R. Again, this selection of wk does not
depends on {γ1, γ2, . . ., γk−1} and {w1, w2, . . ., wk−1}. The inequality (40) is achieved for k.
(iii) Case k = 1 : Suppose that a given set of constants {w2, w3, . . ., wn} satisfies (62) with
k = 1. Pick a constant ν1 as (45). Let γ1(x1) be any C0 fuction fulfilling (42). Due to (28), there
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exists a smooth funciton w1(x1) such that (63) with k = 1 is satisfied for all x1 ∈ R. Hence, the
inequality (40) is achieved for k = 1.

Proof of Lemma 4:
(a) Let B〈k〉 denote

B〈k〉=

[
Bk1

Bn1

]

The following holds.

BT
〈k〉W

T
〈k〉P̃〈k〉Γ1〈k〉P̃〈k〉W〈k〉B〈k〉 =




k−1∏

j=1

νj


 γkP̃

2
k BT

k1Bk1 +




k∏

j=1

νj


 γk+1wk+1P̃

2
k+1

(
wk+1B

T
k1Bk1 + BT

〈k+1〉Bk1 + BT
k1B〈k+1〉

)
+

BT
〈k+1〉W

T
〈k+1〉P̃〈k+1〉Γ1〈k+1〉P̃〈k+1〉W〈k+1〉B〈k+1〉

for 1 ≤ k ≤ n− 1. In the case of k = n,

BT
〈n〉W

T
〈n〉P̃〈n〉Γ1〈n〉P̃〈n〉W〈n〉B〈n〉 =




n−1∏

j=1

νj


 γnP̃ 2

nBT
n1Bn1

Thus, under the assumption of (49), there exist a C0 function γ1(x1) and a constant α > 0 such
that (42), (52) and (53) hold if (50) and

sup
x1∈R

λmax(Bi+1,1(x1)BT
i+1,1(x1))

|ai,i+1(x1)| < +∞, i = 1, 2, ..., n−1 (68)

Since (61) follows from (30), (68) is equivalent to (51).
(b) The inequality (52-53) imply 4âĉ < 1 due to the assumption that 0 < −H−1 < Γ1. The
assumptions (52) and (53) also guarantee boundedness of â and ĉ. Recall that H < 0 implies
b̄ ≤ āc̄ for all x1 ∈ R. It is obvious that b̂ ≤ âĉ holds and b̂ is bounded. Let Ẑ0 be defined by

Ẑ0 =
[

âIp+q Zb

ZT
b ĉIp+q

]

Since Ẑ0 ≥ Z0 ≥ 0 holds for all x1 ∈ R, F1 < 0 is implied for all x1 ∈ R by
[−Φ 0

0 −Φ

]
+

[
I 0
0 Φ

]
Ẑ0

[
I 0
0 Φ

]
< 0 (69)

Using the same argument as the proof of Lemma 2, it is shown that the inequality (69) is achieved
by any real constant φ1 belonging to (ê−, ê+) defined with (54).
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