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Abstract

A new computing method is proposed for the primary relative maximum of the
likelihood function in the three-parameter lognormal distribution. In the method
the distribution is transformed to the extended lognormal distribution, and the
three-parameter estimation problems for the extended distribution are changed to
two-parameter estimation problems, which demand to maximize an object function
of the two parameters. Since the function goes to +oo only if both parameters
simultaneously go to +o0o or —oo, the two-parameter estimation problems can be
expected to avoid computational difficulties caused by the non-regularity of the like-
lihood function in the lognormal distribution. In addition, since the employment of
graphical tools makes it possible to easily find proper initial guesses given to iterative
methods in the two-parameter problem, the combination of the reparameterization
and graphical tools is a simple but highly effective method to cope with cases where
the selection of the initial guess is difficult. In the present article, furthermore,
the analysis of the object function is given, and the properties of the estimator are
investigated in simulations. Some examples are given for illustration.



1 Introduction

The three-parameter lognormal distribution is one of the most important distributions in
biological and sociological fields. With a variable  and three parameters «, 4 and v, the
probability density function is expressed by

o def 1 ox _{ln((ﬂﬁ_a)/’Y)}Z
fla;a, B,7) = Vo — g P 27

, x>« >0, v>0 (1.1)

and the likelihood function is expressed by L(«, 3, 7) def ? o flz o, B,7). Here, x; (1 <
i < n) stand for independent observations. Without loss of generality, we assume z; >
Ty 2" 2 Xp1 > Tpe

Since In(XX — «) obeys a normal distribution if a random variable X obeys a lognormal
distribution, L(«, 3, ) achieves its maximum at a point («y, B(ao),ﬁ(ao)) provided that
« is fixed to «g, where

5 def\l Z{ln — InA(a )}2 and  4(a) iexp[ Zln ]

Consequently, if we want to obtain the maximum likelihood estimate, it suffices to find an
a such that L(a) o L(a, B(e),#(e)) achieves its maximum. However, because that L(c)
— o0 as @ — x, — 0, L(«, ,7) becomes unbounded. Furthermore, the other parameters
then lead to inadmissible values.

Hill (1), using the Bayes theorem, has given a statistical implication of (d&, 3(&), 9(&))
where L(c, 3,7) has its maximum in the region except the singular region; for a small 6 >
0, at @ = & has ﬁ(a) its relative and absolute maximum under the condition z,, — a > ¢.
The point (&, 3(&),#(&)) is used instead of the maximum likelihood estimate, and it is
called the primary relative maximum (PRM) or the local maximum likelihood estimate of
the likelihood function. Displaying L(«) is an effective way for finding &, but the search
might be difficult because that the shape of IA/(a) is complicated in some cases depending
on data sets (1, 2).

For problems to seek &, that is, the one-parameter estimation problems for the log-
normal distribution, Wingo (3-5) has proposed a computing method to avoid the singular
range x, —« < 0 by adopting a penalty function. On the other hand, for problems to
seek simultaneously &, 3 and 4, where (& 3, ) is the PRM, that is, the three-parameter
estimation problems (6) for the distribution, Munro and Wixley (7) has proposed a pa-
rameterization to improve the convergency of an iterative method (8). As seen now, there
are two ways for dealing with the parameter estimation of the distribution for complete
data. Besides these, Giesbrecht (9) has proposed replacing given data with grouped data
to avoid the singularity stated above.

The use of Munro’s parameterization: the substitutions of &« = y — o/A, f = A and
v =o0/A into (1.1) yield

1 ox Aln(o + A& — p)) —Ilno}’
Var{o + Ma— )} 22

This can be extended by allowing x < u — o/, then the generalization permits A to
be negative. In this way, we obtain the density function for the extended lognormal

[l —o/AA0/A) =



distribution permitting that A\ # 0 and ¢ > 0. Let f(z;\, u, o) be this density function
and L(), 1, 0) the likelihood function. Cheng and Iles (10) has showed that as A — 0,
f(x; X, 1, 0) leads to the normal distribution with mean p and variance o2, which is called
the embedded distribution. And they have investigated tests of statistical hypothesis to
see whether the embedded model should be used.

The following is pointed out in (11):

although the use of the extended lognormal distribution may reduce the dif-
ficulty of the parameter estimation accompanying the lognormal distribution,
selecting a proper initial guess remains as a troublesome task because that we
have to finally use an iterative method to complete the estimation.

And it has been shown in simulations that the convergency of the sequence of approximate
solutions by the continuation method is better than those by other competitors. Possible
missing PRMs, however, remains even if the continuation method is used.

In the present article we propose a new computing method for PRMs. It consists of
four factors; that is, an extension of the lognormal distribution, a reparameterization, the
selection of initial values in graphical ways, and the employment of iterative methods.
One merit of the reparameterization is the avoidance of computational difficulties caused
by the non-regularity of the likelihood function in the lognormal distribution. Another
merit is that through graphic tools of computer we can finger the object function to be
maximized. This makes it easier to select proper initial guesses.

In Section 2 we describe the reparameterization and consider the search region for
estimates. In Section 3 we introduce a searching example with the proposed method,
and investigate how the presented reparameterization influences the bias and root mean
squared error (RMSE) in the original parameterization by means of Monte Carlo simula-
tion experiments. In the last of the section we show an example, in which it is difficult
to select a proper initial guess even if the continuation method is chosen as a solver. The
summary and remarks are given in Section 4. Finally, The proof of a lemma stated in the
body of this article are given in Appendix.

2 Two-parameter estimation

In this section we analyze a function maximized to find a PRM. First of all we introduce
the function.
Set 7 =0 — Ay and s = Ino, and define f(z; A, 7,5) < f(z; A, (e — 7) /A, e%):

- def 1 {In(\z +7) — 5}?
f(.Z',)\,T,S) = mexp [— o)\2 y

By arranging In L(\, 7, s) def " In f(xi; A, 7, 5), we obtain

A 0.

2
InL(\,71,5) = 27;\2 {5——Zln )\xz—i-T)} —nlnv2r
1=1

2
1
| ; In(\z; —» In(\z;
+2n)\2{§ n()\ajl+7} 2)\2Z{n)\x +7)})° Zn)\x + 7).

Only the first term depends on s in the right-hand side of the above equation. And this
term has the maximum value 0 when s = (1/n)> 7" In(Az; + 7). Hence it suffices to



maximize the sum of the third, the fourth and the fifth terms in the equation. Expressing
the sum by F(A, 7), let us deal with it:

n

F(Am) Y 2711)\2 {zn;ln()\xi + 7 } - — Z{ln Az + 7)) =Y In(Az; + 7). (2.1)

1=1

2.1 Caseof A >0

First, we observe F' around the boundary of the domain of definition.

The anti-logarithm condition implies Az, +7 > 0. When ) is fixed, we have F'(\,7) —
—o0 as T — —Ax,+0. On the other hand, when A diverges along with some paths, different
situations appear. We can see it in the lemma below whose proof is in Appendix.
Lemma 2.1 We set 7 = —Az,, + 1/g(A), where g(A) > 0 and g(A) — oo (A — 00). As
A — 00,

,7) = —o0 if (g(A) 7" = o(e™) for e > 2,
,7) — 00 if g(A) = CeX ) for C > 0and 0 < £ < 2,
,7) = o0 if g(A) ~ CA* for C' > 0and e >n —1,

,7) — —o0 if g(A) = o(A"71).

On the other hand, as 7 — oo, F'(A,7) — —oo if A is finite.
The analysis of F' around A = 0 is as follows. Rewriting (2.1) into

Z Z {In(Az; + 7) — In(Ax; + 7} — En:ln()\a:i +7), (2.2)

=1 j=i+1 1=1

F(\ 1) =

2n)\2

we obtain

hrn F(\ ) _—lnz:l 2": ( ) ZIHT (2.3)

=1 j=i+1

which achieves the relative maximum —n/2 — nln7* when

o e IJZ 3 (@

=1 j=i+1

In order to narrow the search region for PRMs, we next look into the search interval
in the 7 direction corresponding to some special cases of values of .
From (2.2)

oF n—1 Az + T Aty +7  2n\?
1— In + .

ZANN< -
87(’7)_ 2X2(A\xy + 1) AT, + T e, +7 n-—1

Since the term outside brace is negative, we devote our attention to the variation of the
sign of

+()\77_) déf (1_ )\$1+T> In )\JI1+T i 271)\2

) 2.4
ANep + T A, +7 n-—1 (2:4)



This increases monotonously as 7 increases. Hence, if there exists a 7.5 such that ¢™ (), 7.5) =
0, it suffices to search in the interval (—\z,,7.). For instance, setting ¢*(),0) = 0 in the
case that =, > 0, we obtain

e -1
A= \/_” (1 - ﬂ) In =L,
2n T T
Then, the interval is included in (—Az,,0) for A larger than A*. To investigate the search

interval (—Az,,,7.), let us substitute

def )\.Tl +7
AT, + T

into the right-hand side of (2.4) and set

2n\?
n J—
In addition, denote by X, the solution of CT()\, X) = 0 for given n and \. Since the
first term in the right-hand side of (2.5) is a monotonously decreasing function of X, X/,
is necessarily large if ) is large. This implies that 7.5 should be close to —Az,, because
Mz — xp)
Ay + 75

CtAX)E (1-X)InX + (X >1). (2.5)

Xbo=1+ (2.6)
Therefore, as A\ becomes much larger, the search interval (—\z,,7.;) becomes narrower,
and it will be included in the interval where F'(\, 7) is of singularity as stated in Lemma
2.1.

Incidentally, 7.5 approaches —\z,, not quickly but slowly. From (2.6) and the definition
of X, we can see that the distance between 7.7 and —\x,, is given as

—1)In X/,
d+ — — Z, (n CO'
(o= )\l 2n(X§o — 1)

For instance, when X}, = 290,

In X/,
dt ~ %%0.1, A = 29.
2(Xdp— 1)

Next, let us consider the opposite case, where )\ is small. Then, 7., might be very
large from (2.4). Suppose that A is so small that the following relations hold:

Mxy — 2,
Amax(|zy], |z,]) < 7 and % < 1. (2.7)
Then, because that
moritr o L Ao )
)\xj+7' )\Z‘j + 7
2
= Awi — ;) _ L {)\(Ii_xj)} (here, 0 <6 < 1)
Axj+ T a2 AT ’
! 2{1+97)‘("T‘ x”)} !
Axj+T
A — xj)

&Q

(from (2.7))



for 7 > 7% and j > i, F(\, 7) is approximately equal to the right-hand side of (2.3). Thus,
since the point 7y satisfying %—f()\, 7) = 0 is around 7 = 7%, it would be sufficient to search

the 7y just beyond 7* in the 7-direction.

2.2 Caseof A <0

First, we observe F' around the boundary of the domain of definition.

The anti-logarithm condition implies Azy +7 > 0. When A is fixed, we have F(\,7) —
—o0 as T — —Ax; + 0. On the other hand, when A goes to the infinity, the following
lemma holds.

Lemma 2.2 We set 7 = —Az; + 1/g(\), where g(A\) > 0 and g(\) = 0o (A = —o0). As
A — —00,

|
Proof. The proof is similar to that of Lemma 2.1. a
As T — 00, F(A, 7) — —o0 if A is finite.
Since limy_,_o F'(A, 7) has the same expression as the right-hand side of (2.3), thus it
achieves the relative maximum —n/2 —nln7* at 7 = 7%,
As in the case of A > 0, we next look into the search interval in the 7 direction.
From (2.2)

OF n—1 {(1 )\xn+7>l e, + T 2n)\2}

Iy W O L _
87(’7)_ 2X2(A\xy, +7) AT+ T n)\aj1+7+n—1

We set

2
O )déf (1_)\xn+7>l A, +7  2nA (2.8)

n .
AT+ T Axy+7 n-—1

If there exists a 7, such that ¢~ (A, 7,9) = 0, it suffices to search in the interval (—Axq, 7).
To investigate the search interval (—A\xy, 7,), let us substitute

def )\xn+7'
AL 4T

into the right-hand side of (2.8) and set

2n\?
n J—

COVE 1 -Y)hnYy + Y > 1).
In addition, denote by Y, the solution of C~(A,Y) = 0 for given n and A. The equation
above has the same form as that of (2.5). Consequently, as |A| becomes much larger,
the search interval (—Azy,7,) becomes narrower, and it will be included in the interval
where F'(\,7) is of singularity as stated in Lemma 2.2. Incidently, 7, approaches —\x;
not quickly but slowly.



On the other hand, suppose that |A| is so small that the following relations hold:

Az — )
A “and | ——= 1.
|A| max(|x1|, |z,|) < 7° an ‘ Ny <
Then, since the point 7y satisfying %—f()\,T) = 0 is around 7 = 7*, it would be sufficient

to search the 7y just beyond 7* in the 7-direction.

3 Computational experience

3.1 Searching examples with graphs

In this subsection we show an example, where we select an initial guess by employing a
graphic tool. The data from Smith and Naylor (12) are used here. The functions F'(\, 1)
for A > 0 and A < 0 are displayed on Fig. 1 and Fig. 2, respectively. On both figures, the
right graphs are the magnifications of the left ones around A = 0. The left graph on Fig.

2 shows F'(\,7) up to 9.98 in the 7 direction, which is the value of 7, for A = —6. In

addition, we have set F'(\, 1) 30 at (A, 7) not satisfying the anti-logarithm condition.

These graphs imply that the PRM is near (0,7%). So, carrying out Newton iteration
from the initial guess (—0.001, 0.27) since 7% =~ 0.27, we get (A, 7) = (—0.295268, 0.598082).
On the basis of this, (A, u,0) = (—0.295268,1.16810, 0.253179) is obtained.

(A, 7) € [A*,10] x [~10z,, + 0.001, 0] (A, 7) € [0.001, \*] X [=A*2, + 0.001, 27%]

Figure 1: F(A,7) for A > 0

3.2 Monte Carlo studies

By means of Monte Carlo simulation we confirm that, in the same way as Subsection 3.1,
we can select initial guesses such that the sequence of the approximations generated by
an iterative method converges in more general data. In addition, we numerically evaluate
the biases and RMSEs of the estimators for the extended lognormal distribution in the
case that the estimation is carried out through the proposed reparameterization.
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(A, 7) € [=6,0.001] x [0.001z; + 0.001,9.98] (X, 7) € [—0.8, —0.001] x [0.001z; + 0.001, 2]

Figure 2: F(A,7) for A <0

3.2.1 Simulation conditions

The sample number n is set at 100, 50, 20 or 10. The parameter A is set at 0.01, 0.2,
0.4, 0.6 or 0.8, whereas the other parameters ¢ and p are fixed at 1 and 0, respectively.
For each combination of values of n and A, 1000 independent pseudo-random samples are
considered.

To imitate the process that we display graphs and select an initial guess, we adopt the
following strategy: 1) scatter many mesh points on the A\-7 plane; 2) choose as an initial
guess the point at which F'(\, 7) has the largest value among the values that F'(\, 7) have
on mesh points. We put mesh points as follows:

i) In the A direction.
The interval (0, 10] and the interval [—6,0) are divided into 100 equal parts by the
mesh points.

ii) In the 7 direction.
Two intervals are set corresponding to the values (10 or —6) of the end points in
the A coordinate. And both intervals are divided into 200 equal parts by the mesh
points.

3.2.2 Simulation results

We obtained the result in Tab. 1 by using Newton’s method as the iterative method. It
indicates the numbers of cases, say m, when PRMs have been gotten and the numbers
(showed in parentheses) of cases when the A is positively estimated. From this we can see
that the iterative method is not always given the initial guesses such that the sequence of
the approximations converges. Although the result for m is worse than that for “ng.;s in
Tab. 4in (11)”, which is the number of successful cases for the three-parameter estimation
with the continuation method, the difference is small. Thus, at worst the estimation as
in Section 3.1 can be expected to work better than the three-parameter estimation with
other competitors in the table. In the next section we will once again deal with the data
that the convergent sequence was not obtained here.

Next, we investigate the influence of the two-stage process on the RMSEs and biases
of the estimator of (A, i, 0), in which we estimate (A, 7) and then evaluate (A, i, o) on the



base of the estimate. The evaluated RMSEs and biases are showed in Tab. 2 and Tab. 3.
The comparisons between these tables and the results (Tab. 5, 6) in the article indicates
that our reparameterization does not influence the RMSEs and biases of (A, u, o).

Table 1: Successful numbers in finding PRMs

n
100 50 20 10
0.01 | 1000 ( 527) 1000 ( 529) 1000 (507) 972 (478)
0.2 | 1000 ( 986) 1000 ( 939) 1000 (795) 968 (656)
A 0.4 | 1000 (1000) 1000 ( 997) 999 (947) 958 (781)
0.6 | 1000 (1000) 1000 (1000) 998 (991) 924 (823)
0.8 | 1000 (1000) 1000 (1000) 996 (993) 884 (839)

Table 2: Evaluated RMSEs for (A, i, 0)

n
100 50 20 10
0.01 | (.090, .111, .069) (.137, .155, .103) (.258, .248, .176) (.529, .373, .262)
0.2 | (.090, .111, .071) (.139, .155, .107) (.261, .247, .181) (.530, .370, .266)
A 04 ](.092, 111, .077) (.146, .154, .117) (.271, .246, .195) (.544, .369, .283)
0.6 | (.096, .111, .088) (.155, .153, .132) (.289, .245, .218) (.539, .366, .308)
0.8 | (.102, .110, .102) (.167, .151,.150) (.313, .243, .247) (.547, .359, .346)
Table 3: Evaluated biases for (A, p, 0)
n
100 20 20 10
0.01 | (—.04, .15, —.04) (-.02, .14, —.19) (-.07, .18, —.63) (—.31, .26, —1.40)
0.2 | ( .00,.14, —.02) ( .06,.12, —.17) ( .10, .12, —.60) (-—.01, .19, —1.36)
A 04 |( .05.13, .01) ( .14,.09, —.13) ( .28, .05, —.55) ( .23,.12, —1.31)
06 | ( .09,.12, .05) ( .23,.07,—.09) ( .46, —.00, —.48) ( .30, .15, —1.20)
0.8 | ( .14,.11, .08) ( .31,.05, —.04) ( .67, —.05, —.40) ( .27,.20, —1.07)
Here, evaluated biases x 10 are showed for saving space.

3.3 Difficult examples

Concerned with finding PRMs, the estimation results in Subsection 3.2 were slightly
inferior to that by the continuation method in the article. In some of the data sets
judged as “not converged” in the subsection, however, we might have obtained the PRMs
successfully if we had actually displayed F’s and had given initial guesses sufficiently close
to the PRMs. Now, we introduce such a data example. And we show that the selection
of an initial guess is difficult in case that we try to solve the three-parameter estimation
problem with regard to the data by the continuation method.



First, we introduce the continuation method. Assume that A, ; and o are the functions
of ¢, and set that 6(¢) & (A\(¢), u(t), o(t)7,

M(O(1)) & ( 2BE@0), u(t), 0(1)), 2BE(A(), (), 0 (), ZREO(), ult),0(1) )
and
h(t,0(t)) © tM(0(1)) + (1 — t) {M(8(t)) — M(6(0))}.

If the curve {6(¢) : 0 < ¢t < 1]h(t,0(t)) = 0} is continuous, its tracing starting from 6(0)
can lead to finding a stationary point @(1) of In L(A, i, 0). Assuming that h(t,0(t)) is
continuously differentiable, we numerically solve
de(t
OO _ s eume)  0<i<), (5.)
which is obtained by differentiating h(t,0(t)) = 0 with respect to t. Here,

0?2 an()\(t)7 ,u(t), O’(t)) o lnz()\(t), ,u(t), O'(t)) a;glgf ()‘(t)a :u(t)v U(t))

J(O(1) € | TEe(A0), u(0), o(1)) 6§;g%<A<t>,u<t>,o<t>> e (D), (1), o(1))
T (A0, (1), 0(t) FEEN), (1), 0(t) TGP, u(t), o ()

and it is supposed that |J(6(t))| £ 0 (0 < ¢ < 1). Set that 8y & 6(0) and At ¥ 1/N (N
is a natural number). Then, the application of Euler method to (3.1) yields

01'_1_1 == 01 - AtJfl(OZ)M(BO) (Z == 0, .. .,N - 1)

0, stands for the approximation of @(iAt). @y may be obtained by this recurrence formula.

If In L(\, yt, 0) has a maximal value at (\, i, 0) = @(1), it is necessary that [J(0(t))| <
0 (0 <t<1)since |J(@(1))] < 0. Thus, we have to select an initial guess 6, satisfying
[J(6o)] < 0.

We give two examples, which show the regions where |J((\, iz, 0)T)| < 0 is unsatisfied.
Fig. 3 and Fig. 4, respectively, represent the case from Smith and Naylor and the
case of Tab. 4. On both figures, the black points in the centers stand for the PRMs,
whose coordinates are (—0.295268, 1.16810, 0.253179) and (2.21152, —0.505806, 0.903114),
respectively. The colored parts stand for the region where the inequality is unsatisfied.
Incidentally, the data in Tab. 4 are those given from one of the cases that were judged
as “not converged” in the simulation when n = 20 and A = 0.4 in Subsection 3.2. And
we obtained the PRM with respect to the data by drawing the graphs of F(A,7) and
selecting a more proper initial guess.

Table 4: failed data from Subsection 3.2
2.325620 —0.836045 5.663170 —0.905886 4.333967

—0.912527 —0.382619 0.326860 0.030242 —0.319501
—0.116709 0.583490 —0.745602 0.591303 —0.564003
0.214998 —0.665881 0.696181 —0.909085 0.630385
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Figure 3: The region where Figure 4: The region where
|T((\, p,0)T)] < 0 is unsatis- |J((\, i, 0)T)| < 0 is unsatis-
fied (Smith & Naylor data) fied (the data in Tab. 4)

Noting that the embedded distribution is the normal distribution, let us consider
the selection of the initial guess by (A, p,0) = (0.005, i, {1 X0 (z; — f)?}/?), where
il o %2?21 2;. Then, the initial guesses with regard to data on Fig. 3 and Fig. 4 are
(0.005,1.13,0.268) and (0.005,0.452,1.71), respectively. In cases like as in Fig. 3, the
homotopy curves are probably continuous from the starting points (initial guesses) to the
end points (PRMs) since the colorless regions are sufficiently wide for the curves to pass.
Thus, the combination of such a selection of the initial guess and the continuation method
would work well in the cases. However, it is not the case like as Fig. 4, for there the PRM
is far from the initial guess but is located nearby as well as surrounded by the boundary of
the region that may cut off the homotopy curve. In fact, the initial guess on Fig. 4 does
not satisfy even |J(()\, p,0)")| < 0. Besides, it should be noted that the continuation
method may not successfully give PRMs even if a point is selected as the initial guess
from the colorless region. The data on Fig. 4 is also such a case, and the colorless region
includes many points such that the continuation method does not give the PRM when

those points are selected as the initial guesses.

4 Summary and remarks

We proposed a computing method for PRMs on the base of the extended lognormal
distribution. In the method we change the three-parameter estimation problems to the
two-parameter estimation problems, select initial guesses with the help of graphic tools,
and find PRMs by iterative methods. The features are as follows:

i) The singular region associated with the non-regularity of the likelihood function
in the lognormal distribution is in the region where both new parameters simul-
taneously go to oo or —oo. Hence, the difficulty of the estimation caused by the

non-regularity is removed.

ii) By displaying the function defined on the two-parameter plane, the selection of the
initial guess becomes easier. This makes it possible to cope with data cases such

10



that the estimation by the other computing methods is difficult.

iii) The indirect estimation through the proposed reparameterization does not influence
the RMSEs and biases of the estimators in the extended lognormal distribution.

We introduced the continuation method and used |J(6(t))] < 0 (0 <t < 1) to get
the condition |[J(8y)| < 0. Incidentally, there is the more sophisticated continuation
method except the method introduced in the present article, and it does not always
impose |J(6(t))| < 0 (0 <t < 1) on the paths that lead to PRMs. Even the sophisticated
method, however, requires the condition |J(6y)| < 0. A detailed explanation for this is
given in (13, p. 48).
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Appendix

Proof of Lemma 2.1: Substituting 7 = —Az,, + 1/¢()\) into (2.1) and rewriting the result
by
In(A(z; —z,) +1/g(A)) ~In A (A — o0)

for1 <i<n-—1, we get

F\ =Azn +1/g(\) ~ 12_71" <lngA“)> Flng\) — (n—1)In) (A —o0). (A1)

First of all, let us consider the case i). Since ! < g(x) for a sufficiently large A,
In A In A Ing(A) _ A°
O<lng()\)§)\€ —0 (A= 00), 2 Zﬁ—>oo (A — 00).

From these and (A.1), we can obtain the conclusion.
In the case ii), (A.1) becomes

]_ —
A2 (A > o)

F(\, =Xz, +1/g(\)) ~ 5

since In g(A) ~ A* (A = o0). From the above, we can get the conclusion.
In the case iii), (A.1) becomes

F\, =Xz, +1/g(A)) ~elnA—(n—1)InA (A — o0)

since Ing(A) ~ eln A (A — 00). Thus we get the conclusion.
In the case iv), (A.1) becomes

F\ =Xz, +1/g(A\) ~Ing(A) —(n—=1)InA (A — o0)
since In g(A) = O(In \) (A — o0). Here,

9())

Ing(A\)—(n—1)InA =1In 1

— —o0 (A = 00).

Consequently, our proof has completed.
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