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Abstract: Non-deterministic Information Systems (NISs) have been recognized to be the most important framework for handling 
information incompleteness in tables, and several theoretical work has been examined. We follow this robust framework, and we have 
been developing algorithms and tool programs, which can handle the rough sets based concepts in NISs, on computers. We are simply 
calling this work Rough Non-deterministic Information Analysis (RNIA). This paper briefly surveys RNIA, and applies RNIA to class 
evaluation data, which consists of evaluation on 16 questions by 60 students. In this data, Question 16 "(Q16) Rate this class in either 
1,2,3,4 or 5 grade" is the decision attribute, and data dependency and rules in the form of "Condition=>[Q16,5]" are considered. The 
most characteristic point is that [Q16,5] strongly depended upon question "(Q3) Was the teacher polite in every class?". Question (Q3) 
is related to the emotional impression of a teacher, and the evaluation of a half-year class by every student seems to express every 
student's emotional impression of a teacher. 
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1. INTRODUCTION 

 Rough set theory is seen as a mathematical foundation of 

soft computing. This theory usually handles tables with 

deterministic information. Many applications of this theory 

to rule generation, machine learning and knowledge 

discovery have been presented [1-4].  We follow rule 

generation in Deterministic Information Systems (DISs), 
and propose rule generation in NISs. NISs were proposed 

by Pawlak, Orlowska and Lipski in order to handle infor-

mation incompleteness in DISs, like null values, unknown 

values, missing values. From the beginning of the research 

on incomplete information, NISs have been recognized to 

be the most important framework for handling information 

incompleteness [5-8]. Therefore, rule generation in NISs 

will also be an important framework for rule generation in 

incomplete information. However, very few work deals 

with rule generation from incomplete information on 

computers. Lipski showed a question-answering system 

besides the axiomatization of logic [6] . Grzymala-Busse 

developed a system named LERS, which depends upon 

LEM1 and LEM2 algorithms [7] . Kryszkiewicz proposed 

a framework of rules in incomplete information systems 

[8]. As far as authors know, these are the most important 
work for handling incomplete information, especially 

missing values, on computers. 

 In this paper, we briefly survey a framework of Rough 

Non-deterministic Information Analysis (RNIA), and we 

apply RNIA to analyzing class evaluation data, which 

consists of evaluation on 16 questions by 60 students.

2. AN OVERVIEW OF RNIA 

 This section summarizes a framework of RNIA, espe-

cially rule generation in NISs. 

2.1 Basic Definitions 

 A Deterministic Information System (DIS) is a quadru-

plet (OB ,AT, { VALA•b A•¸AT },f) [ 1,3] . Here, OB, AT and 

VALA are finite sets, and we sequentially call every 

element an object, an attribute and an attribute value, and 

f is a mapping f: OBxAT •¨ UA•¸ATVALA. Let us consider 

two sets CON •º AT which we call condition attributes and 

DEC •º AT which we call decision attributes. An object 

x •¸ OB is consistent, if f(x,A) = f(y,A) for every y •¸ OB 

and every A •¸ CON implies f(x,A) = f(y,A) for every A •¸ 

DEC. We call a pair [A,e] for an attribute A •¸ AT and an 

attribute value e •¸ VALA a descriptor. 

 A Non-deterministic Information System (NIS) is also a 

quadruplet (OB,AT, { VALAI A •¸ AT } ,g), where g is a 

mapping g:OB•~AT•¨P(UA•¸ATVALA) (a power set of 

U A•¸ATVALA) [5] . Every set g(x,A) is interpreted there is an 

actual value in this set but this value is not known. 

 For a NIS = (OB,AT, { VALAI A •¸ AT},g) and a set of 

attributes ATR C AT, we name a DIS=(OB,ATR, {VALAI A 

•¸ ATR } ,h), which satisfies h(x,A) •¸ g(x,A) for every x 

and A, a derived DIS from NIS. We suppose that there 

exists a derived DISreal with real information. In order to 

handle information based on DISreal, two modalities the 

certainty and the possibility are usually defined. 

 (Certainty) If a formula F holds in every derived DIS
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from a NIS, F also holds in  DIS.real In this case, we say F 

certainly holds (in DISreal) 

 (Possibility) If a formula F holds in some derived DISs 

from a NIS, there exists such a possibility that F holds in 

DIS.real In this case, we say F possibly holds (in DISreal) 

 In order to handle these two modalities, we extended 

concepts in DISs to NISs, for example, concepts like the 

definability of a set, the consistency of an object, depen-

dencies among attributes, rules and criteria including 

support, accuracy and coverage, reduction of attributes 

and so on. It is possible to handle most of these concepts 

on computer [9-12] . 

2.2 Equivalence Relations and Data Dependency 

 In rough set theory, the manipulation of equivalence 

relations is very important. Because, most of rough sets 

based concepts can be calculated by using equivalence 

relations. As an example, let us consider data dependency 

between attributes. The degree dep(CON,DEC) of depen-

dency from CON to DEC is a ratio such that (the number 

of consistent objects from CON to DEC)/(the number of 

all objects). This concept is extended to minimum 

dep(CON,DEC) and maximum dep(CON,DEC). In 

Appendix 1, we show the real execution based on equiva-

lence relations in Table 1. There are 768 derived DISs for 

all attributes, and we see there is a derived DISreal in 768 

derived DISs. 

2.3 Background of Rule Generation in NISs 

 For a set ATR= { A1,•c, An) •º AT and every x •¸ OB, let 

PT(x,ATR) denote the Cartesian product g(x,A1)•~ •c

xg(x,An). We name every element a possible tuple of x. 

For every ptup=(e 1,•c , en) •¸ PT(x,ATR), let [ATR,ptup] 

denote a formula •È 1•…i•…n[Ai,ei], and let PI(x,CON,DEC) 

denote a set { [CON,ptup] [DEC,ptup' ]•b ptup e PT(x, 

CON), ptup'•¸ PT(x,DEC) } . We name an element of 

PI(x,CON,DEC) a possible implication (from CON to 

DEC) of x. 

 Now, we define six classes of possible implications, 

certain rules and possible rules. For any pimp •¸ PI(x , 

CON,DEC), let DD(pimp,x,CON,DEC) denote a set {ƒÕ•b

ƒÕ is such a derived DIS for CON U DEC that an implica-

tion from x in ƒÕ is equal to pimp } . 

Table 1 : A non-deterministic information system NIS. Here, 

{' and ` }' are omitted for every singleton set.

 If PI(x,CON,DEC) is a singleton set {pimp}, we say 

pimp (from x) is definite. Otherwise we say pimp (from x) 

is indefinite. If a set {ƒÕ•¸ e DD(pimp,x,CON,DEC)•bx is 

consistent in ƒÕ} is equal to DD(pimp,x,CON,DEC), we 

say pimp is globally consistent (GC). If this set is an empty 

set, we say pimp is globally inconsistent (GI). Otherwise, 

we say pimp is marginal (MA). By combining two cases, 

`D(efinite) or I(ndefinite)' and `GC
, MA or GI', we define 

six classes DGC, DMA, DGI, IGC, IMA, IGI in Table 2, 

for possible implications. 

 A possible implication pimp belonging to DGC class is 

consistent in all derived DISs, and this pimp is not influ-

enced by the information incompleteness, therefore we 

name pimp (a candidate of ) a certain rule. A possible 

implication pimp' (from object x) belonging to either IGC, 

DMA or IMA class is consistent in some ƒÕ•¸

DD(pimp',x,CON, DEC). Therefore, we name pimp' (a 

candidate of) a possible rule. 

   Table 2 : Six classes of possible implications in NISs.

 Now, we give necessary and sufficient conditions for 

characterizing GC and MA classes. For every ptup •¸ 

PT(x,ATR), we define two sets,

In the definition of inf(x,ATR,ptup), we implicitly fix the 

possible implication of x to pimp. Intuitively, inf(x,ATR, 

ptup) implies a set of objects whose tuples are ptup and 

definite. A set sup(x,ATR,ptup) implies a set of objects whose 

tuples may be ptup. In every DIS, [x]ATR (an equivalence class 

for ATR with object x) is equal to both inf(x,ATR,ptup) and 

sup(x,ATR,ptup), however in NISs, {x} •º inf(x,ATR,pimp) 

•º [X]ATR •º sup(x,ATR,pimp) holds. In Table 1, 

inf(1,{W},(m))={ 1,4} and sup(1, {W},(m))={ 1,2,4} hold, 

therefore [1]{W} is either {1,4}  or { 1,2,4 } . This is due to the 

information incompleteness in NISI. 

 Theorem 1 [9]. For a NIS, let us consider a possible 

implication pimp: [CON,ptup] [DEC,ptup'] e PI(x, 

CON,DEC). Then, the following holds. 

(1) Possible implication pimp belongs to GC class if and 

  only if sup(x,CON,ptup) •º inf(x,DEC,ptup'). 

(2) Possible implication pimp belongs to MA class if and 

  only if inf(x,CON,ptup) •º sup(x,DEC,ptup'). 

 In order to specify object x, which pimp is extracted 

from, we employ pimpx, pimpx1,•c, pimpxn instead of 

pimp, from now on. 

 Proposition 2 [9]. For a NIS, let ATR •º AT be
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 {A1,•c,An} , and let ptup •¸ PT(x,ATR) be (e1,•c,en). Then, 

the following holds. 

(1) inf(x,ATR,ptup) =•¿i inf(x, { Ai } , (ei)) . 

(2) sup(x,ATR,ptup) =•¿, sup(x, { Ai },(ei)). 

Example 1. Let us consider NISI in Table 1. There are 768 

derived DISs for all attributes. For CON= { C,W } and 

DEC={P}, there are 24(=23x3) derived DISs. Here, 

PT(1, { C,W } )= { (g,m),(g,h) } , PT(1, { P } )= { (e) } and PI(1, 

{ C,W } , { P }) consists of two possible implications 

pimp 11 : [C,g] A [W,m] [P,e] and [C,g] A [W,h] [P,e] 

According to Proposition 2, sup(1, { C,W },(g,m))=sup(1, 

{C},(g))•¿sup(1,{W},(m))={ 1,5}•¿{ 1,2,4}={ 1 } holds. 

Since inf(1,{P},(e))={1,5}, sup(1,{C,W},(g,m))•ºinf(1, 

{P},(e)) holds, we know pimp', belongs to IGC class 

according to (1) in Theorem 1. In pimp',, let us remove 

the descriptor [W,m], then we obtain pimp 12: [C,g]•Ë[P,e] . 

This pimp12 also satisfies (1) in Theorem 1, and pimp12 is 

definite, namely pimp12 is a certain rule. 

 Let us consider pimp5l : [C,g]•È[W,h]•Ë[P,e] in NIS1. In 

this case, pimp51 is definite and (1) in Theorem 1 holds. 

Thus, we know pimp51 belongs to DGC class. However, 

we can reduce the descriptor [W,h] from the condition 

part. Namely, pimp52: [C,g][P,e] is also belongs to DGC 

class. The condition part of pimp52 is much simpler than 

that of pimp51, and we call such pimp52 minimal rule. In 

order to obtain minimal possible implications, it is neces-

sary to examine every combination of attributes. The 

number of all combinations is 2•bATR•b (ATR is a set of attri-

butes, which can be conditions in possible implications). 

Therefore, it is necessary to employ another method for 

handling tables with large size of ATR, and we introduce 

discernibility functions [13] into NISs. 

Example 2. Let us consider to pick up minimal certain 

rules, namely, which satisfies (1) in Theorem 1, definite 

and minimal. In object 5, sup(5,{C,W,Sh},(g,h,s))={5} c 

inf(5,{P},(e)) holds, therefore it is possible to obtain 

minimal certain rules from object 5. Let DISC(x,y) denote 

a set { [A,e]•b y is not any element in sup(x, { AI, (e))} . Here, 

the discernibility function DF(5) is DISC(5,2)ADISC(5,3)

[W,h] )= [C,g] •É [W,h] . Therefore, the minimal solutions of 

DF(5) are [C,g] and [W,h], and we obtain minimal certain 

rules pimp52(=pimp 12) : [C,g] [P,e] and [W,h] [P,e] from 

object 5. We show the real execution in Appendix 2. 

2.4 Criteria Support, Accuracy and Coverage 

 For an implication imp in a DIS, criteria support(imp), 

accuracy(imp) and coverage(imp) may be applied to 

defining rules. In NISs, they are extended to minimum and 

maximum cases for every possible implication pimp, like 

minimum support minsupp(pimp) and maximum support 

maxsupp(pimp). These criteria depend upon all derived

DISs, however it is possible to calculate them by using 

inf() and sup() information. 

Theorem 3 [9]. For a NIS, let us consider pimp: [CON, 

ptup]=[DEC,ptup'] EPI(x,CON,DEC). Let INACC 

denote a set [sup(x,CON,ptup) - inf(x,CON,ptup)] •¿ sup( 

x,DEC,ptup'), and let OUTACC denote a set [sup(x, 

CON,ptup) - inf(x,CON,ptup)] - inf(x,DEC,ptup'). Then, 

the following holds. 

(1)

(2)

(3)

(4)

 As for mincov() and maxcov(), it is possible to conclude 

the same formulas as (3) and (4) in Theorem 3. 

Example 3. Now, let us consider criterion values of 

pimp4, : [W,m][P,e]. minsupp(pimp4,)=(linf(4, { W } ,(m))
and

maxsupp(pimp4,) = (Isup(4, { W },(m))f sup(4, { P },(e))I) /5 

= (I{ 1,2,4 }•¿ { 1,4,5 }0/5=0.4 holds. Now, let us consider 

accuracy(). OUTACC=[{ 1,2,4} - {4}] - {1,4,5}={2} 

holds, so it is possible to extract a possible implication, 

whose condition part is [W,m] and the decision part is 

different from [P,e], from object 2. Such implication is 

counted in the denominator, and is not counted in the 

numerator. In this way, minacc(pimp4,)=(I { 4} •b)/(•b { 4}•b 

+•b{2}•b)=0.5. Since INACC=[{ 1,2,4} - {4}] •¿ {1,4,5}= 

{ 1} holds, it is possible to extract pimp4, from object 1, 

and maxacc(pimp41)=(•b { 4 } •b+•b { 1 }•b)/(•b{4}•b+•b{ 1}•b)=1.0. 

3. CLASS EVALUATION DATA BY STUDENTS 

 In order to know students' opinions for a half-year class, 

we asked 60 students to answer 16 questions at the last 

class. We see every question is an attribute, and the attri-

bute values to every question are 1,2,3,4,5. The value 5 is 

the most positive, and the value 1 is the most negative. 

The value 3 is mean. Let us enumerate some questions. 

(Q1) Did the teacher have enough classes for students? 

(Q3) Was the teacher polite in every class? 

(Q4) Was the notation on the blackboard good? 

(Q5) Could you hear the teacher's explanation well? 

(Q6) Was the short survey at the beginning of every 

     class good? 

(Q11) Suppose you had enough credits for your promo-

     tion. Then, did you have this class? 

(Q15) Was this class meaningful for you?

27



Kansei Engineering International Vol.6 No.3

(Q16) Rate this class in either 1,2,3,4 or 5. 

 In 16 questions, we intentionally put some uncomfort-

able questions for students, which some students may not 

answer to, like  Q11. However, for such uncomfortable 

questions, we agreed to use not only an attribute value but 

also a set of attribute values. Namely, students may answer 

{ 3,4,5 } instead of 3. If the attribute value is either 1,2,3,4 

or 5, we say this attribute value is deterministic to this 

attribute. If the attribute value is a set of values, we say 

this attribute value is non-deterministic to this attribute. In 

this way, we obtained a table, which consists of 60 objects 

and 16 attributes. In reality, 15 students answered non-

deterministic values to some questions. We name this data 

class evaluation data by students. 

4. AN APPLICATION OF RNIA TO CLASS EVALU-

  ATION DATA 

 As for teachers, the most important attribute is Q16, and 

the implications like [CON,ptup]•Ë[Q 16,5] and 

[CON,ptupl•Ë[Q 16,1 ] give us some remarks in the next 

half-year class. According to this consideration, we cope 

with the issue in the following. 

Issue. Let attribute Q16 be the decision attribute, and 

examine which attributes influence attribute Q16 , and 

obtain implications which reflect the character of data in 

the following two cases. 

(Case 1) We handle 45 students' data Table45, which 

consists of only deterministic attribute values. We may see 

Table45 is a deterministic information system. 

(Case 2) We handle 60 students' data Table60, which 

consists of both deterministic and non-deterministic attri-

bute values. We may see Table60 is a non-deterministic 

information system. 

5. ANALYSIS ON TABLE45 

 This section applies tool programs for RNIA to Table45 

with deterministic information. 

5.1 An Application of Regression Analysis to Table45 

 It is possible to apply multivariate analysis to Table45, 

and we easily obtained a regression line by using Micro-

soft Excel.

However, it seems difficult to know the character and the 

tendency of data from this regression line. 

5.2 Data Dependency between Attributes in Table45 

 In this subsection, let us consider data dependency 

between attributes. We have applied tool programs to 

Table45, and examined 256(=16•~16) combinations of

attributes for 16 attributes. In most of combinations, the 

degrees of the dependency were 0. This seems reasonable. 

Because, every student selects either 1,2,3,4 or 5, and 45 

students are divided into 5 groups according to the selec-

tion. Every group may consist of more than 7 or 8 students. 

For keeping the consistency, such 7 or 8 students must 

select the same value in the decision attribute. This seems 

rare, therefore the degree of the dependency will be 0 in 

every combination. 

 In this situation, we revised data dependency to a ratio 

such that dep' (CON,DEC)=(•b { x•b accuracy ratio of object x 

from CON to DEC is more than val1 } •b)/(the number of all 

objects) for a threshold value val1 (0<val1 •… 1.0). If 

val1=1.0, this equals to the original definition. By means 

of controlling val1, we may find data dependencies. In 

reality, we employed val 1=0.7, and obtained Table 3 in 

Appendix 3. In Table 3, dep(Q3,Q16)=0.04 for val1=1.0, 

however dep' (Q3,Q16)=0.36 for val1=0.7. In this way, we 

may find weak data dependencies. 

5.3 Minimal Rules in Table45 with Consistency 

 Now, let us consider minimal consistent implications 

[CON,tup] [Q 16,5 ]. We can apply tool programs for 

RNIA to both tables with deterministic information and 

tables with non-deterministic information. In programs, 

Theorem 1 and Proposition 2 are employed, and a discern-

ibility function is generated. A minimal solution, which is 

a set of descriptors, of this function becomes the condition 

part of a minimal rule with consistency. In order to assure 

the minimality of a solution, every subset of this solution 

is examined. The most characteristic implications are the 

following. We remark that we employ a term `rule' for 

simplicity, however a term `candidate of a rule' is more 

correct in every case.

(Rule 1) 

(Rule 2)

 The list [0.11,1.0] implies that the support value is 0.11 

and the accuracy value is 1.0. Because, we handled 

consistent implications, the accuracy must be 1.0. These 

two implications are minimal, namely the condition part 

is simplest for concluding [Q16,5]. 

5.4 Rules in Table45 without Consistency and Apriori 

   Algorithm 

 In the previous section, we obtained two characteristic 

rules, however the support value 0.11 seems to be low for 

the accuracy value 1.0. In this subsection, we consider 

implications whose decision attribute is Q16, and these 

implications may not be consistent. We characterize rules 

by means of support and accuracy values. Namely, we 

handle the problem in the following. 

Problem: Pick up every implication imp such that accu-
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racy is maximum under the condition  support(imp)  >_  val2 

for a threshold value val2 (0 < val2_1.0). 

 For handling such implications, the simple method is to 

examine support and accuracy values in every implication 

sequentially. However in Table45, the number of condition 

attributes is 15, therefore there are 215-1 implications for 

an object. In reality, we executed this simple method on a 

computer. However, this execution was so time-consum-

ing that we ceased to do it. 

 In this situation, we employed Apriori algorithm [14]. 

The total number of descriptors is much smaller than 215-1. 

Since the attribute value is either 1,2,3,4 or 5 for every 

attribute, there are 80(=16x5) distinct descriptors, like 

[Q1,1],•c,[Q2,1],•c,[Q16,5]. We first fix a value val2, and 

pick up candidates of descriptors. Since support(imp)=(the 

number of imp)/(the number of total objects), if support 

value is more than 0.5, the number of imp (=I [x]CONn [x]DECI 

for every object x) must be more than the half number of 

total objects. Then, we generate conjunctions of candi-

dates of descriptors. Since accuracy(imp)=(the number of 

imp)/(the number of condition part in imp), accuracy 

value increases for every generated conjunction. However, 

support value decreases for every generated conjunction. 

In this way, we have realized tool programs in C. The 

following is the characteristic implications for val2=0.2. 

(Rule 3) [Q3,4]•Ë[Q 16,4], [0.33,0.71 ] 

(Rule 4) [Q4,4]•Ë[Q 16,4], [0.24,0.64] 

(Rule 5) [Q5,5]•Ë[Q16,4], [0.22,0.47] 

(Rule 6) [Q 15,4]•Ë[Q 16,4], [0.28,0.72] 

(Rule 7) [Q3,4]•È[Q 15,4]•Ë[Q 16,4], [0.20,0.81] 

5.5 Rules with Intervals in Table45 

 In the previous subsection, we generated conjunctions 

of descriptors. As we have shown, support value decreases 

for every generated conjunction. In reality, the maximum 

of support values is 0.33 in Table45. 

 In order to obtain implications with higher support 

values, we handle intervals for attribute values. Namely, 

we handle descriptors like [Q1,3#5](=[Q1,3]•¾ [Q1,4]U 

[Q1,5]), which we name interval descriptor. We first fix 

the threshold value val2, then we pick up candidates of 

descriptors. For higher threshold value, fewer descriptors 

may become candidates. In this case, we employ interval 

descriptors. For example, if [Q1,1] can not be a candidate, 

we sequentially examine [Q1,1#2], [Q1,1#3], [Q1,1#4] 

and [Q1,1#5]. In this way, we obtain candidate of descrip-

tors. For these descriptors, we generate conjunctions of 

descriptors, and apply Apriori based algorithm. We have 

also realized such tool programs in C. The following is the 

characteristic implications for val2= 0.5. 

(Rule 8) [Q1,5]•Ë[Q16,4#5], [0.51,0.74] 

(Rule 9) [Q3,4#5]•Ë[Q16,4#5], [0.55,0.86]

(Rule 10) [Q5,4#5]•Ë[Q16,4#5], [0.55,0.73] 

(Rule 11) [Q6,4#5 ]•Ë[Q 16,4#5], [0.60,0.71] 

(Rule 12) [Q3,4#5]•È[Q6,4#5]•Ë[Q16,4#5], [0.53,0.88] 

(Rule 13) [Q5,4#5]•È[Q6,4#5]•Ë[Q16,4#5], [0.53,0.77] 

6. ANALYSIS ON TABLE60 

 In this section, we cope with data analysis on Table60 

with non-deterministic information. 

6.1 Minimal Certain Rules in Table60 

 Now, let us consider minimal certain rules, which belong 

to DGC class and the condition part is minimal, like 

pimp52: [C,g] [P,e] in Table 1. The algorithm for rule 

generation is the same as the algorithm in section 5.3. The 

following is the characteristic minimal certain rules 

obtained. 

(Rule 14) [Q2,5]•È[Q3,5]•Ë[Q16,5], 

  [4608/4608:DGC], [ 14,33,34,37,46,49], 

[(0.1,0.1),(1.0,1.0),(0.42,0.54)] 

(Rule 15) [Q2,5]•È[Q4,5]•Ë[Q16,5], 

[6144/6144:DGC], [14,33,34,37,46,49], 

[(0.1,0.1), (1.0,1.0), (0.42,0.54)] 

(Rule 16) [Q3,5]•È[Q10,1]•Ë[Q16,5], 

[331776/331776:DGC], [ 14,33,40,50], 

[(0.06,0.06),(1.0,1.0), (0.28,0.36)] 

 The result in Rule 14 implies that there exist 4608 

derived DISs for a set { Q2,Q3,Q 16 } of attributes, and this 

is consistent in every derived DISs, furthermore this is 

minimal. Namely, Rule 14 is a minimal certain rule. The 

list [14,33,34,37,46,49] implies that Rule 14 occurs in 

these 6 objects. The list [(0.1,0.1),(1.0,1.0),(0.42, 0.54)] 

implies (minsupp, maxsupp), (minacc, maxacc), (mini-

mum coverage, maximum coverage) of this implication, 

respectively. 

6.2 Possible Rules in Table60 

 Possible rules are implications, which belong to either 

IGC, DMA or IMA class, like pimp11: [C,g]A [W,m]~ 

[P,e] in Table 1. For handling possible rules in IGC class, 

it is necessary to consider IfA•¸ATDECg(x,A)I kinds of 

discernibility functions. Furthermore in either DMA or 

IMA class, there may be huge number of [CON,ptup] 

satisfying inf(x,CON,ptup) C sup(x,DEC,ptup'), which is 

(2) in Theorem 1. Because of these reasons, we are 

employing an order of attributes. We employed an order 

Q2,Q3,Q4,Q5, Q6,Q11,Q12 for attributes. The following 

is the characteristic rules obtained. 

(Rule 17) [Q3,5]•È [Q4,5]A [Q6,5][Q16,5], 

[12288/12288:DMA], [14,34,37,40,43,46,49,50], 

[(0.11,0.13),(0.87,1.0),(0.5,0.66)] 

(Rule 18) [Q4,5]•È[Q10,3]•Ë[Q16,5],
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  [73728/442368:IGC], [34,37,43,46], 

 [(0.05,0.06), (1.0,1.0), (0.21,0.33)] 

(Rule 19) [Q4,5]•È[Q11,2]•Ë[P,5], 

[294912/1179648:IGC], [34,37,43,49], 

[(0.03,0.06),(1.0,1.0),(0.14,0.33)] 

(Rule 20) [Q3,5]•È[Q10,3]•Ë[Q16,5], 

[ 18432/331776:IMA], [34,37,43,46,53], 

[(0.05,0.08),(0.75,1.0),(0.21,0.38)]

7. CONCLUDING REMARKS 

 This paper surveyed a framework of RNIA, and applied 

tool programs to analyzing a class evaluation data by 

students. Realized tool programs can easily handle tables 

like Table45 and Table60. In this paper, we mainly showed 

how we obtain rules from tables, and we omitted the 

evaluation and the interpretation of every obtained rule. 

Intuitively, question Q3 (Was the teacher polite in every 

class?) seems the most important factor for the decision 

part [Q16,4] or [Q16,5]. In the next step, it is necessary to 
cope with the combinations of multivariate analysis and 

rough sets based analysis as well as the interpretation of 

obtained rules. 
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Appendix 1. 

 Let us show a real execution of manipulating possible 

equivalence relations and data dependency in Table 1. The 

ordinal number is employed for displaying every attribute 

in the following execution, namely Q1 and Q3 are 

displayed as 1 and 3. The underlined parts show the user's 

input. These programs are realized on a workstation with 

450MHz UltraSparc in prolog and C.

 % more data.pl [Operation 1] 

object(5,5). 

data (l, [g, [m, h] , l, t, e]). 

data (2, [b, [l,m], [m,l], [r,s],m]). 

data (3, [ [r,b] , 1, [s,m] , s, c]). 

data (4, [r,m, l, [t, s] , [c,m, e]]). 

data (5, [g,h, [s,m],s,e]). 

?-transall. [Operation 2] 

File Name for Read Open: data.pl.  

EXEC TIME=0.093 (sec) 

yes 

?-egall. [Operation 3] 

Attribute 1 

[1] [[1,5], [2, 3] , [4] ] 1 

[2] [[1,5], [2] , [3, 4] ] 1
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POSSIBLE CASES 2 

Attribute 2 

[1] [[1,5], [2, 3] , [4] ] 1 

[2] [[1,4], [2, 3] , [5] ] 1 

[3] [[1,5], [2, 4] , [3] ] 1 

[4] [[1,2,4], [3] , [5] ] 1 

POSSIBLE CASES 4 

Attribute 3 

[1] [[1,2,4], [3, 5] ] 2 

[2] [[1,2,4], [3] , [5] ] 2 

[3] [[1,4], [2, 3, 5] ] 1 

Attribute 5 

[1] [[1,4,5], [2] , [3] ] 1 

[2] [[1,5], [2, 4] , [3] ] 1 

[3] [[1,5], [2] , [3, 4] ] 1 

POSSIBLE CASES 3 

EXEC TIME=0. 148 (sec) 

yes

 In Operation 1, the original data is displayed. Realized 

programs can handle any data in the form of this syntax. 

We first translate original data into internal expressions in 

Operation 2, and we execute program 'eqall' in Operation 

3. We obtain all possible equivalence relations for each 

attribute. We can generate possible equivalence relations 

for any set of attributes by using program 'merge'.

%./merge [Operation 4] 

Merging 1.pe ... 

Merging 2.pe ... 

Merging 3.pe ... 

EXEC TIME=0.010 (sec ) 

%/depend [Operation 5] 

File Name for Condition: 123.pe 

File Name for Decision: 5.pe 

----- Dependency Check ------------------------ 

CRITERION 1(Num of Consistent DISs/Num of All 

DISs) 

Number of Derived DISs: 192 

Number of Derived Consistent DISs: 180 

Degree of Consistent DISs: 0.938 

CRITERION 2(Min and Max Degrees) 

Minimum Degree of Dependency: 0.600 

Maximum Degree of Dependency: 1.000 

EXEC TIME=0. 040 (sec)

 We define the details for merging in 'merge.dat', and 

execute program 'merge' in Operation 4. Here, possible 

equivalence relations for attributes { C,W,Si } are generated. 

In reality, there are two distinct possible equivalence rela-

tions, {{1},{2},{3},{4},{5}} for 60 derived DISs and 

{{1},{2,3},{4},{5}} for 4 derived DISs. For a set of 
attributes { C,W,Si,P }, there exist 192 derived DISs, so we 

may sequentially examine the degree of dependency in

192 derived DISs. However in Operation 5, the 6 combi-

nations of two possible equivalence relations for { C,W,Si 

and three possible equivalence relations for { P } are exam-

ined, and the results are obtained. 

Appendix 2. 

 Here, we generate minimal certain rules in the form of 

[CON,ptup]•Ë[P,e] in Table 1. Before executing Opera-

tion 6, we prepare attribute definition file, which stores 

decision attributes, decision attributes values and candi-

dates of condition attributes. Here, [P,e] and condition 

attributes C,W,Si,Sh are specified in 'attrib.pl'. Operation 

6 generates internal expressions.

?-transattrib. [Operation 6] 

File Name for Read Open: data.pl. 

Decision Definition File: attrib.pl. 

File Name for Write Open: data.rs. 

EXEC TIME=0.025 (sec) 

yes 

?-init. [Operation 7] 

Rs File: data.rs. 

DECLIST : <inf= [ 1, 5 ] > 

Certain Rules come from [1,5] 

EXEC TIME=0.001 (sec) 

yes 

?-minimal. [Operation 8] 

<<Minimal Certain Rules from object 1>> 

 Descriptor [1,g] is a core for object 4 

[l,g]=>[5,e], [6/6(=2/2,3/3),DGC,Core], 

[1, 5] , [ (0.4, 0.4) , (1.0, 1.0) , (0.66, 1.0) ] 

<<Minimal Certain Rules from object 5>> 

[l,g]=>[5,e], [6/6(=2/2,3/3),DGC,Common], 

[1, 5] , [ (0.4, 0.4) , (1.0, 1.0) , (0.66, 1.0) ] 

[2, h] _> [5, e] , [12/12 (=4/4, 3/3) , DGC, Common] , 

[5], [ (0.2, 0.4) , (1.0, 1.0) , (0.33, 1.0) ] 

EXEC TIME=0.016(sec) 

yes

 In Operation 7, objects, which can generate certain 

rules, are examined. In this execution, we mark objects 1 
and 5. The details of this examination are like in Example 

2. For objects 1 and 5, program 'minimal' in Operation 8 

picks up minimal condition part [CON,ptup] by using 
each discernibility function DF(1) and DF(5), respectively. 
In Operation 8, core and common descriptors exist in both 
discernibility functions, therefore we obtained minimal 

certain rules without interactive process. 

Appendix 3. 
 Let us show the degrees dep'(CON,DEC) (Row: a 

condition attribute CON, Column: a decision attribute 
DEC, and the threshold value is 0.7 in Table45) of data 

dependencies in Table 3.
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Appendix 4. 

 Let us show a real execution to obtain minimal certain 

rules from 14th student's data in Table60.

 ?-solall (14). 

Input a number to Start Exhaustive Search: 10 .  

Exhaustive Search for less than 1024 Cases !! 

<<Minimal Certain Rules from object 14>> 

Core Descriptors: [] 

DF without Core Descriptors: [[1,[1,5],[2,5], 

[3,5], [4,5], [5,5], [6,5], [7,4], [8,1], [9,1], [10, 

1], [11,5], [12,1], [13,5], [15,5]], [2, [2,5], [3,5], 

[4,5],[5,5],[6,5],[7,4],[8,1],[10,1],[11,5], 

[12,1], [14,4], [15,5]], [59, [1,5], [3,5], [4,5], 

[5,5],[6,5],[7,4],[8,1],[9,1],[10,1],[11,5], 

[12,1],[13,5],[14,4],[15,5]]] 

Currently Selected Descriptors: [] 

[Loop: 1] 

Descriptors in DF: [[1,5],[2,5],[3,5],[4,5],[5, 

5],[6,5],[7,4],[8,1],[9,1],[10,1],[11,5],[12, 

1],[13,5],[14,4],[15,5]] 

Select a Descriptor: [2,5].  

[Loop: 2] 

Common Descriptors: [[3,5],[4,5]] 

Exhaustive Search for [[2,5],[3,5]], 4 Cases !! 

[2,5]&[3,5]=>[16,5], 

[4608/4608(=96/96,48/48),DGC], 

[14,33,34,37,46,49], 

[(0.1,0.1),(1.0,1.0),(0.42,0.54)] 

Exhaustive Search for [[2,5],[4,5]], 4 Cases !! 

[2,5]&[4,5]=>[16,5], 

[6144/6144(=128/128,48/48),DGC], 

[14,33,34,37,46,49], 

[(0.1,0.1),(1.0,1.0),(0.428,0.545)] 

EXEC_TIME(for Exhaustive Search)=0.000(sec) 

yes 

     Table 3 (No.1) : Degrees of data dependencies

Table 3 (No.2) : Degrees of data dependencies
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