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We introduce a new screening function which is useful for the few-body Coulomb scat-
tering problem in the screening and renormalization scheme. We modify the Yukawa-type
screened Coulomb potential more useful. In the proton-proton scattering, we demonstrate
high precision calculations of the new renormalization.

1. Introduction When one considers a system consisting of a few charged par-
ticles, it is well known that there are serious difficulties involved in the calculation
of scattering processes.1) This is caused by the long range nature of the Coulomb
potential in coordinate space, or, equivalently, its singularity in momentum space.

Here we note two approaches for overcoming these difficulties, a modified time-
dependent scattering theory,2) and a screening and renormalization method. In the
former, the coherent Gaussian function is used as the initial state instead of the
Coulombic plane wave. This makes the difficulties easier to treat. However, many
investigations have been done in few-body systems using the latter approach. Alt
et al.3) carried out computations for three-body scattering processes with charged
particles employing the screening Coulomb potential and the renormalization scheme.

However, the screening radius R used in those calculations is typically about 600
fm, which is quite large in comparison with the short range force. At such a large
radius, the screened Coulomb potential is no longer smooth, and this necessitates
a careful treatment in momentum space, and great amounts of memory and cpu
time in numerical computations. Therefore, it is desirable to work with a smaller
radius. The purpose of this paper is to investigate a new screening function, which is
different from that used by Alt et al.3) and to determine the precision of the results
that can be obtained with results the new renormalization factor for both large and
small values of R.
2. Renormalization scheme Before we discuss the new screening function, we
would like to point out the significance of the renormalization. If one considers a
bound state, numerical calculations can be performed by employing the screening
method with an appropriately large radius, R, and the result will be independent of
the choice of R. However, for a scattering state, the situation is completely different.
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In this case, the limit of the solutions obtained with screened Coulomb potentials
as R increases will not agree with the solutions obtained using a pure Coulomb
potential. This is due to the fact that different boundary conditions are used in the
two cases. To solve this problem, a renormalization method, like that introduced by
Taylor,4) is necessary.

The following Yukawa-type screened Coulomb potential with screening radius R
has been used:

V R(r) = e2 exp[−(r/R)]
r

. (1)

In this paper we consider proton-proton scattering, and therefore, here, e represents
the charge of the proton. We evaluate the phase shift for pp scattering in the state
1S0. As a typical NN force, we choose the Reid Soft Core potential,5)

V NN (r) = −10.463
exp [−µr]

µr
− 1650.6

exp [−4µr]
µr

+ 6484.2
exp [−7µr]

µr
[MeV],(2)

with µ is 0.7 fm−1.
The following relation,1),4) among various phase shifts, is obtained by considering

the asymptotic behavior of the wave function:

δ
(R)
0 −−−−→

R→∞
δSC
0 + σ0 + φR. (3)

Here, δ
(R)
0 is the phase shift of the NN force and the screened Coulomb potential,

δSC
0 is that of the NN force and the pure Coulomb potential, σ0 is the standard

Coulomb phase shift obtained from arg Γ (1 + iη), and φR is the renormalization
phase. For higher partial waves (angular momentum l) we need to replace σ0 by
σl = arg Γ (1 + l + iη). Further, η = e2m/2p is the Sommerfeld parameter, with m
the nucleon mass and p(=

√
mEcm) the relative momentum. According to Taylor,4)

the renormalization phase φR(p) is given by

φR(p) ≡ −η

∫ ∞

(2p)−1

exp[−(r/R)]
r

dr. (4)

We evaluated this by numerical integration.
The phase shifts δSC

0 , δ
(R)
0 , σ0 and φR are plotted in Fig. 1. We calculated

δSC
0 and δ

(R)
0 by solving the Schrödinger equation in configuration space. The as-

ymptotic form of the wave function for the screened Coulomb potential involves the
Bessel regular/irregular functions. For the case of no screening, the pure Coulomb
regular/irregular functions are used. The renormalization phase φR is not needed in
the high energy region (see Fig. 1) because p in the denominator of the Sommerfeld
parameter is large in that case.

As mentioned in introduction, the screening radius R must have a large value
when we use the screening function in Eq. (1), in order to obtain a good numerical
result by using δ

(R)
0 − σ0 − φR instead of δSC

0 [see Eq. (3)]. Therefore we should
search for a new screening function that gives good numerical results for smaller
values of R.
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Fig. 1. Comparison of the phase shifts δSC
0 ,

δ
(R)
0 , σ0 and φR for R = 50 fm.
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Fig. 2. Pure and screened Coulomb potentials

for n = 1 − 5.

3. New screening functions We now introduce a new screened Coulomb potentials
of the form

V R
n (r) = e2 exp[−(r/R)n]

r
. (5)

Note that Eq. (5) reduces to the Yukawa-type potential for n = 1 [see Eq. (1)] and
that it converges to a sharply truncated potential as n → ∞,

lim
n→∞V R

n (r) =
e2

r
· θ(R − r), (6)

where θ(r) is the step function. The pure and screened Coulomb potentials for n =
1 to 5 at R = 50 fm are displayed in Fig. 2. This figure reveals that as n increases,
the cutoff becomes sharper, and the pure Coulomb potential is better represented in
the inner region.

As a measure of the quality of the new screening function, we introduce the
quantity

∆δ ≡ δSC
0 + φR

n + σ0 − δ
(R)
0 . (7)

We next study the dependences of (7) on the c.m. energy Ecm, the screening radius
R and the power n. The renormalization phase φR

n (p) is calculated as

φR
n (p) = −η

∫ ∞

(2p)−1

exp[−(r/R)n]
r

dr. (8)

This quantity generally depends on the power n. Although we integrate (8) numer-
ically in this paper, an analytic expression is given with any value of n:

φR
n (p) = −η

[
ln(2pR) − γ

n

]
+ η

∞∑
k=1

(−1)k

knk!(2pR)kn
, (9)

with the Euler constant γ (= 0.5772 · · · ). The last term has an order of 0(1/Rn),
and the first term is derived from∫ R

0

exp[−(r/R)n] − 1
r

dr +
∫ ∞

R

exp[−(r/R)n]
r

dr = −γ

n
, (10)
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Fig. 3. |∆δ| for R = 50 fm as a function of

Ecm for various values of n.
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Fig. 4. The same as Fig. 3 for R = 500 fm.
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Fig. 5. |∆δ| for Ecm = 10 MeV as a function

of R for various values of n.
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Fig. 6. The same as Fig. 5 for Ecm = 100

MeV.

where we use the replacement s = (r/R)n.
The quantity |∆δ| is plotted in Figs. 3–8. In Figs. 3 and 4 we plot the de-

pendence of |∆δ| on Ecm for R = 50 fm and 500 fm, respectively. The value of
|∆δ| decreases rapidly with Ecm. These figures clearly show that the calculations for
n ≥ 2 are more precise than that for n=1. In consideration of Fig. 1, we are led to
conjecture that this is due to the fact that the screened Coulomb potential is closer
to the pure Coulomb potential in the inner region when n is larger than 1.

In Figs. 5 and 6, we illustrate the R dependence of |∆δ| for two fixed values of
Ecm, 10 and 100 MeV. We find that |∆δ| does indeed decrease as R increases, but
again, the results are better behaved for n > 1 than for n = 1. Figures 7 and 8 plot
the n dependence of |∆δ| for fixed Ecm and various values of R at Ecm= 10 and 100
MeV, respectively. It is seen that R = 50 fm and n=2 is sufficient to obtain precise
results.
4. Summary We generalized the Yukawa-type screened potential that was adopted
by Alt et al.3) to the form given in Eq. (5). We find that already for n=2, the screened
Coulomb potential given in Eq. (5) is closer to the pure Coulomb potential in the
inner region. Our numerical results reveal that high precision calculations can be
carried out with the new screened Coulomb potentials for n ≥ 2 and a screening
radius as small as R=50 fm.
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Fig. 7. |∆δ| for Ecm = 10 MeV as a function

of n for various values of R.
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Fig. 8. The same as Fig. 7 for Ecm = 100

MeV.

Looking to further works, we note that the new screened Coulomb potential
allows us to calculate values for 3-body scattering systems more accurately than the
former potential with which Alt used the large radius R=600 fm.1),3)
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