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Abstract 

We present high precision calculations for the triton binding energy using the most recent, phase equivalent realistic 
nucleon-nucleon (NN) potentials and the Tucson-Melbourne T-G- three-nucleon force (3NF). That 3NF is included up to a 
total two-body angular momentum of j,, = 6. It is shown that the inclusion of the 3NF slows down the convergence in the 
partial waves and j,, = 5 is needed in order to achieve converged results within a few keV. We adjust the cut-off parameter 
A in the form factors of the Tucson-Melbourne 3NF separately for the different NN potentials to the triton binding energy. 
This provides a set of phenomenological3N Hamiltonians which can be tested in three-nucleon scattering and systems with 
A > 3. Their NN correlation functions are compared to each other. @ 1997 Elsevier Science B.V. 

PACS: 21.30.-x; 21.4.5.+v; 27.10.+h; 21.1O.Dr 
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It has been possible to include a 3NF into Faddeev 
calculations for the 3N bound state since many years 
[ l-41. In configuration space calculations were per- 
formed up to a maximal two-body angular momentum 
of j,, = 4 [ 51. The same has been achieved using an 
admixture of configuration and momentum space [ 6- 
8]. In momentum space no efforts beyond j,, = 2 
have been reported up to now [ 9, lo]. 

Recently, due to a new way of partial wave decom- 
position (PWD) for the 3NF in momentum space 
[ 111, it became possible to include higher partial 
waves of the 3NF in momentum space with j > 2. The 
old PWD [ 12,131 used up to now leads to untractable 

t E-mail: Walter. Gloeckle@hadron.tp2.ruhr-uni-bochum.de. 

numerical instabilities for partial waves with j > 2. 
Previous results based on the 3NP up to j,, = 2 are 
however not affected. One aim of this study is to ex- 
tend the momentum space calculations for the triton 
binding energy to higher partial waves to demonstrate 
convergence within an accuracy of a few keV. 

The other aim is provoked by an ambiguity in 
the Tucson-Melbourne (TM) T-V exchange 3NF 
[ 14,121. In the TM 3NF the meson nucleon form fac- 
tors are parametrised by a certain cut-off parameter 
A, whose value is only roughly known. That param- 
eter A acts like a strength factor of that 3NF and the 
3N binding energy is quite sensitive to A. A variation 
of A within one pion mass causes differences in the 
3N binding energy of about 1.5 MeV. One can add 
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additional two-meson exchange 3NFs [ 15,101 like 
the r-p potential, which counteracts the attraction of 
the r-r potential. Chiral perturbation theory suggests 

many more structures [ 16,171. In this situation, where 
there is not yet a theory which predicts consistent NN 
and 3N forces, a phenomenological approach appears 
to be justified. Therefore the second aim is to adjust 

certain 3NFs in conjuction with given NN forces to 
the triton binding energy. Such an approach has been 

already taken by the Urbana-Argonne Collaboration 
[ 18,191. Performing now this fit for several modern 
NN potentials one gets a number of 3N Hamiltonians 
which all give the same (correct) triton binding en- 
ergy. Using these models one can then explore the 3N 
continuum and search for interesting 3NF effects in 
elastic nd scattering and in nd breakup observables. 
Also one might go on to A > 3 systems, which has 
already been pioneered in [ 201. 

We fit A in conjuction with the most recent, phase- 
equivalent realistic NN potentials, the phenomenolog- 

ical potentialsAV18 [21], NijmI, NijmII andReid 93 
[ 221, and the meson theoretical potentials Nijm 93 
[ 221 and CD-Bonn [ 231. Note that Nijm II was re- 
cently refitted in the ‘Pi-wave in order to remove an 
unphysical bound state at -964 MeV [ 241. The po- 

tentials Nijm II and Reid 93 are purely local, whereas 
Nijm 93, Nijm I and AV18 carry a small non-locality 
in form of p2-terms. CD-Bonn, which is defined in 
momentum space, is strongly non-local and carries all 
the Dirac structure of the nucleon. All these potentials 
are fitted perfectly to the recent Nijmegen phase shift 

analysis [25] with a x2 per datum very close to one; 
only Nijm 93 is fitted less perfectly. 

It is clear that these NN forces and the TM3NF are 
inconsistent. This is a trivial statement for the phe- 
nomenological NN forces, but even for the meson the- 
oretical ones there is no consistent scheme behind the 
forces. Therefore fitting A is just a zeroth order, purely 
phenomenological step, which will lay some ground 
to do exploratory steps in 3N scattering and for sys- 
tems with A > 3. This might be accepted until there 
are predictive, generally accepted consistent NN and 
3N forces. The work of the Bochum group [26,27] 
are steps into this direction. 

The Faddeev equation for the 3N bound state reads 

E91 

I+) = Go t f’ I+> + Go (1 +t Go) @” (1 f P) 11)) 
(1) 

Here GO is the free 3N propagator, t the NN t-matrix 
and P the sum of a cyclic and an anti-cyclic permu- 
tation of the three nucleons. I$) is the Faddeev am- 
plitude, from which one determines the wave function 
]Yr) via 

I?) = (1 + P) I$) (2) 

We use the fact that all 3NF s considered up to now can 
be split into three parts, each of them being symmetric 

under exchange of two of the three particles: 

v, = I$” + v(2) + v(3) 
4 4 (3) 

Therefore Vd” goes together with t E t23. We solve 
Eq. ( 1) in momentum space using a PWD. For details 

see [ 9,281. 

Let us comment on the numerics. For the discreti- 
sation of the Jacobi momenta p and 4 (for the nota- 
tion see [ 281) we use 40 and 36 Gaussian points, re- 
spectively. The cut-offs of the integrals in p and 4 are 
60 fm-’ and 20 fm-‘, respectively. For the angular 
integration introduced by the permutation operator P 
we use 16 points. The nucleon mass is chosen as m = 
938.9 MeV. Using these sets of grid points we achieve 
a numerical accuracy in the binding energy of about 
0.1%. A good measure for the numerical accuracy of 
the wave function is to evaluate the energy expectation 

value(H) E (W]H]v) = (WjHo]Q)+(~JV\?) and 
compare it to the energy eigenvalue of Eq. ( 1). We 
find that these two numbers differ always by less than 
0.05%. 

First we document in Table 1 the convergence of the 
triton binding energy with and without 3NF. For that 
purpose we chose the AV14 [29] NN force together 
with the TM n--z- 3NF (A = 5.13m,). For that spe- 
cific model we can compare to the very recent results 
of the Pisa group. Let us first consider the results as a 
function of j = j,, without 3NF. It can be seen that 
in order to reach an accuracy of 0.1% one has to take 
into account all partial waves up to a total two-body 
angular momentum of j = 4. We also list the expecta- 
tion values of kinetic energy (Ha), NN potential en- 
ergy (V), and 3N potential energy (Vi). Table 1 also 
reveals that (HO) and (V) changes somewhat if a 3NF 
is included and (VT) is only about 2 % of (V). That ap- 
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Table 1 
Triton binding energies Et and energy expectation values (Ho), (V).(Vd) and (H) for the AV14 NN potential only and together with the 
TM 3NF using A = 5.13 ?nrr 

j,, AV14 only AV14 + TM 3NF 

Et (Ho) 
[MeVl [MeVl 

(V) 
[MeVl 

(v4) 
[MeVl 

(H) & 
[MeVl [MeVl 

(Ho) 
[MU 

(V) 
[MeVl 

0%) 
[MeVl 

(H) 
[MeVl 

2 -7.577 45.177 -52.756 - -7.579 -8.478 49.516 -56.567 -1.430 -8.481 
3 -7.659 45.596 -53.257 - -7.662 -8.440 49.185 -56.343 -1.285 -8.443 
4 -7.674 45.654 -53.330 - -7.676 -8.490 49.370 -56.537 -1.325 -8.492 
5 -7.680 45.677 -53.360 - -7.683 -8.482 49.332 -56.509 -1.308 -8.484 
6 -7.682 45.680 -53.364 - -7.684 -8.486 49.340 -56.518 -1.310 -8.489 

Table 2 
Contributions of the NN and the 3N forces to the triton binding 
energy for a given j (see text) 

j AV14 only AV14 + TM 3NF 
(&l/‘v - GI,Nf:) BeVl (Et17 - E,ljNN) 

-(EtJjN_N:3NF - Etl~!I) ReVI 

3 82 781- 901= -120 
4 15 816 - 781= 35 
5 6 802 - 816 = -14 
6 2 804 - 802 = 2 

proximately additional 1 MeV for (V4) is a big effect 
in relation to Er itself, but only a small modification 
of the total potential energy. 

Table 1 shows that the convergence of the triton 
binding energy with inclusion of the 3NF is slower 
than without 3NF. This is displayed in detail in Table 
2. We denote the triton binding energy including par- 
tial waves up to a certain j by Et/j. We see that the 
contributions of the 3NF for a given j, (J!$(Y~+~~~ - 

EtlyN) - (ElIyft3NF - E,lf!!l), are larger than the 

contributions Er lj”” -Et /;!I of the NN force (only for 

j = 6 they are both equally small). Further the contri- 
butions of the 3NF change their sign with increasing 
j. For even j the 3NF acts attractive and for odd j 
repulsive. (Of course, the step to a higher j also in- 
cludes transition potentials from lower j s to that spe- 
cific higher j.) This alternating sign in the contribu- 
tions of the 3NF leads to the fact that for odd j the 
contribution of the 3NF to the triton binding energy 
is partially cancelled by the NN force contribution. 
Therefore the total change in the triton binding energy 
going from j = 4 to j = 5 is only 8 keV in this model. 

This is about 0.1% of the binding energy and corre- 
sponds to our numerical accuracy. Therefore we chose 
j = 5 for the evaluation of the triton binding energy 

including a 3NF. 
A comparison to the work of the Pisa group using 

exactly the same force model shows very good agree- 
ment. The Pisa group calculates the triton binding en- 
ergy in configuration space using the pair correlated 
hyperspherical harmonic basis approach [30]. Thus 
their method is mathematically and numerically to- 
tally independent from our approach. The I’esult given 
in [30] is 8.484 MeV. A recent increase in accuracy 

leads to 8.486 MeV [ 311. Both numbers are in excel- 
lent agreement to our most advanced result of 8.486 
MeV given in Table 1. 

The results shown in the following refer to the 

choice, that NN and 3N force components are kept up 
to j = 5. The NN potentials under discussion include 
charge independence breaking (CIB) and on top for 
AV18 and CD-Bonn also charge symmetry breaking 
(CSB) . In other words, all these potentials are given 
in an np, pp and two also in an nn version. The np and 
pp versions are obtained by fitting to the correspond- 
ing sets of NN phase shifts, whereas the choices of the 
nn versions are nonuniform [ 321 and lead to different 
behaviours, as will be shown below for AV18 and CD- 
Bonn. Because of that and since only little is known 
about the CSB in the NN force, we replace the nn by 
the pp force, except for AV18 and CD-Bonn, where 
we present both results. On the other hand the CIB 
in the NN force is known rather well and we have to 
take it into account. We do this according to [ 33,341 
by choosing an effective t-matrix 

teE = I/3 tap -I- 213 tpp (4) 
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Table 3 

Triton binding energies Et for various realistic NN potentials in 

charge dependent calculations without 2’ = 3/2. The numbers 

in parenthesis refer to np and nn forces. The adjusted cut-off 

parameters A in the 3NF leading to the resulting triton binding 

energies (last column) 

Potential Et [MeV] A/in, & IMeVl 
1 t = 5 tnp + 5 tpp 

1 
f = 5 t*p + 5 tpp 

CD-Bonn 7.953 (8.014) 4.856 (4.79) 8.483 

Nijm II 7.709 4.990 8.477 

Reid 93 7.648 5.096 8.480 

Nijm I 7.731 5.147 8.480 

Nijm 93 7.664 5.207 8.480 

AV18 7.576 (7.685) 5.215 (5.107) 8.479 

Ruhrpot 7.644 5.306 8.459 

We neglect the total isospin T = 3/2 admixture, which 
is justified for the triton (and many but not all observ- 
ables in nd scattering [ 351) . 

In Table 3 we show the triton binding energies cal- 

culated for the the different NN potentials using the 
effective NN t-matrix (4). We see the well known gap 
to the experimental number of 8.48 MeV. Only CD- 
Bonn with its strong non-locality sticks out. Just for 
the sake of information, we also present the results 
if we replace rPP by tnn in Eq. (4), which is possi- 

ble for AV18 and CD-Bonn. The results are shown in 
parenthesis and we find an effect of CSB of about 100 
and 60 keV, respectively. This shift in energy is about 
what is needed to “understand” the mass difference 
between 3H and 3He on top of electromagnetic effects 
and n-p mass differences [ 6-81. The larger effect for 

the AV18 potential is due to the fact that changes have 
been introduced on au operator level in going from the 
pp to the nn system [ 321, whereas in CD-Bonn only 
the I So component of the NN force has been changed 
[ 36 J . The theoretical binding energy for Nijm II dif- 
fers from theresult shown in [ 37,381 because there the 
old potential version has been used; also we increased 
now the accuracy in going to j = 5. The difference to 
AV18 (cd) shown in [37,38] is again due to j = 5, 
but more due to the fact that in [ 37,381 t,, instead of 
tpp has been used in Eq. (4). Also our numbers differ 
from the ones given in [ 391, since we allow for CIB. 
We also included the Ruhrpot NN interaction [ 26,271 
for reasons explained below. 

Now let us come to the main point, the adjustment 
of the triton binding energy by choosing the appropri- 

Fig. 1. Triton binding energies versus A according to Table 3. 

ate cut-off parameter A in the strong form factors of 

the TM T-V 3NF. They are shown in Table 3 together 
with the resulting binding energies. The less accurate 
adjustment for the Ruhrpot interaction is sufficient for 
the purposes discussed below. Inspection of Table 3 
reveals that the connection between A and the triton 
binding energy without 3NE is not linear as one might 
expect naively: for example the two NN forces Reid 93 
and Nijm 93 give nearly the same value for the triton 
binding energy without 3NF, but their As are quite 
different. This fact demonstrates the subtle interplay 
of the 3NF with the various NN forces which can lead 
to unexpected results. Since the NN forces are phe- 
nomenological and therefore no internal consistency 
exists to that 3NF, this is not necessarily surprising 
and has been noticed before [ 40,4 1 ] . We illustrate our 
findings in Fig. 1, were we plot the fitted A s against 
the triton binding energy without 3NF. One feature 
sticks out: For Nijm II, Reid 93 and AV18 the con- 
nection between A and Et is very well linear. Is there 
anything special about these three potentials? 

A guess might be that the probability to find the 
three nucleons in the triton at a certain distance might 
be important. A hint in that direction is the NN corre- 
lation function in the triton, which is defined as 

C(r) ZZ f& /dfi,(*lC S(r-r;i.) (9) (5) 
i<j 

where r is the distance of two of the three nucleons and 
r;j the corresponding operator. C provides the proba- 
bility to find two nucleons at a distance r. It is shown 
in Fig. 2 for the various NN potentials. We see that 
there is indeed a significant difference between the po- 
tentials of the two groups mentioned above. For the 



A. Nogga et al/Physics Letters B 409 119911 19-2.5 23 

CD-Bonn - 

.._..” : ,j’, 
0.002 _ . . . . . . . ..‘.’ .‘X/ 

,x5’ 

0 .==-#- 0 0.2 114 1.6 

Fig. 2. Two-body correlation functions for the triton using various 
NN potentials. Subfigure (b) shows an enlargement for small r 

of subfigure (a). 

potentials Nijm II, Reid 93 and AV18 C is essentially 

zero at r = 0 and their C s are very similar, whereas 
the probabilities C(r) are much less suppressed at 

short distances for the potentials CD-Bonn, Nijm I, 
and Nijm 93. The potentials, which are strongly repul- 
sive at short distances require a smaller strength fac- 
tor A in the 3NF to achieve the triton binding energy 
than the weaker repulsive ones. For instance Reid 93 
and Nijm 93 give nearly the same triton binding en- 
ergy (without 3NF) but require different strength fac- 
tors A. The one which allows two nucleons to come 
closer to each other, Nijm 93, needs a larger A. The 
corresponding remark applies to the pair Nijm II and 
Nijm I. CD-Bonn has no local, strongly repulsive part- 
ner to compare with, but the nearly linear correlation 
with A for the three potentials Nijm 93, Nijm I, and 
CD-Bonn shown in Fig. 1 has obviously to do with 
the increasingly weaker suppression of C(r) at r = 0. 
We also included a 7” potential, the Ruhrpot [ 26,271, 
which is a meson theoretical interaction, but there the 
x2 is not pushed to that accuracy as for the other po- 
tentials and it is fitted to a different set of NN phase 

shift parameters, namely the Arndt phases [ 421. Also 
the Ruhrpot model is provided only in a np version. As 
seen from Fig. 2 C(Y) for that potential is also strongly 
suppressed near r = 0 but nevertheless the A is quite 

large. Its C(r) behaves however differently from the 
others, since it rises very quickly to its maximum. 
We included that potential as an example for a quali- 
tatively different behaviour of C(I). Apparently that 

quick rise of C(I) is more important than the strong 
suppression of C(r) at very small Y 2 0.2 fm-’ and 
causes the large A. This demonstrates the subtlety of 
the interplay of properties of the NN forces and that 
3NF. The detailed behaviour of the forces at short dis- 
tances below about 1 fm is important. 

It is obvious that this observations can be further il- 
lustrated and possibly understood by investigating the 

configuration space properties of that 3NF and the NN 
forces together with the behaviour of the 3N wave- 
function (also with respect to spin-isospinproperties) . 
Since we work in momentum space this is not directly 
accessible to us and we leave that as a suggestion. 

The various short range behaviours of NN correla- 
tion functions have been emphasised before in [ 431. 
They play a crucial role for instance in inclusive elec- 
tron scattering at intermediate energies [44,45] or in 
(e,e’,p) processes, where nucleon momentum distri- 
butions enter, which are again influenced by NN cor- 

relations [ 461. 
In that context it is also of interest to see how C(r) 

changes, once that 3NF has been included. Our results 

shown in Fig. 3 tell that the C s do not change qualita- 
tively. The C s increase in the maximum at r M 1 fm 
including that 3NF. This is connected with the stronger 
decrease at larger YS. The change at very short dis- 
tances is nearly zero for the very repulsive NN po- 
tentials and increases with decreasing repulsion. We 
also determined the probability to find one nucleon at 
a certain distance from the centre of mass for the var- 
ious NN forces, with and without 3NF. The effect of 
that 3NF was to increase the probability slightly for 
r 5 1 fm. Especially around 0.5 fm, where the density 
without 3NF starts to flatten towards r = 0 the density 
aquires a small hump due to the 3NF. Our results are 
very similar to the one already found in [ 47]_ 

It will be interesting to repeat this sort of study 
for other 3NFs and to pin down possible effects in 
inclusive and exclusive electron scattering. 
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Fig. 3. Two-body correlation functions for the triton using vari- 

ous NN forces without (solid line) and with (dashed line) the 

TM-3NF. 

This work was supported by the Deutsche 
Forschungsgemeinschaft and the Research Contract 
# 41324878 (COSY-044) of the Forschungszen- 
trum Jiilich. The numerical calculations have been 
performed on the T3E of the Hijchstleistungsrechen- 
zentrum in Jiilich, Germany. 

0.020 

0.015 

0.010 

0.005 

0 

0123456 

r WI 

0123456 

T [fml 

References 

[ 11 S. Ishikawa, T. Sasakawa, T. Sawada and T. Ueda, Phys. 
Rev. I.&t. 53 (1984) 1877. 

[2] C.R. Chen, G.L. Payne, J.L. Friar and J.L. Gibson, Phys. 
Rev. L&t. 55 (1985) 374. 

[3] A. Biimelburg, Phys. Rev. C 34 (1986) 14. 
[4] P.U. Sauer, Prog. Part. Nucl. Phys. 16 (1986) 35. 

[5] C.R. Chen, G.L. Payne, J.L. Friar and J.L. Gibson, Phys. 
Rev. C 33 (1986) 1740. 



A. Nogga et al. /Physics Letters B 409 (19971 1 P-25 25 

[ 61 T. Sasakawa and S. Ishikawa, Few-Body Systems 1 (1986) 

3. 
[7] S. Ishikawa and T. Sasakawa, Few-Body Systems 1 (1986) 

143. 

[27] J.A. Eden and M.F. Gari, Phys. Rev. C 53 (1996) 1510. 

[28] W. Gliickle, The Quantum Mechanical Few-Body Problem 

( Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 

1983). 

[ 81 Y. Wu, S. Ishikawa and T. Sasakawa, Few-Body Systems 15 [29] R.B. Wiringa, R.A. Smith and T.L. Ainsworth, Phys. Rev. 

(1993) 145. C 29 (1984) 1207. 

[9] A. Stadler, W. Gliickle and PU. Sauer, Phys. Rev. C 44 

(1991) 2319. 

1301 A. Kievsky, M. Viviani and S. Rosati, Nucl. Phys. A 577 

(1994) 511. 

[lo] A. Stadler, _I. Adam Jr., H. Henning and P.U. Sauer, Phys. 

Rev. C 51 (1995) 2896. 

[ 1 l] D. Htiber, H. Witala, A. Nogga, W. Gltickle and H. Kamada, 

will appear in Few-Body-Systems. 

[ 121 S.A. Coon and W. Gliickle, Phys. Rev. C 23 (1981) 1790. 

[ 131 D. Hiiber, Ph.D. Thesis, Bochum, 1993, unpublished. 

[14] S.A. Coon, M.D. Scadron, PC. McNamee, B.R. Barrett, 

D.W.E. Blatt andB.H.J. McKellar, Nucl. Phys. A 317 (1979) 

242. 

1311 A. Kievsky, private communication. 

[32] V.G.J. Stoks, private communication. 

[33] H. Witala, W. GlSckle and Th. Cornelius, Phys. Rev. C 39 

(1989) 384. 

[34] H. Witala, W. Glijckle and H. Kamada, Phys. Rev. C 43 

(1991) 1619. 

[ 151 S.A. Coon and M.T. Pena, Phys. Rev. C 48 (1993) 2559. 

[ 161 S. Weinberg, Phys. Lett. B 251 (1990) 288. 

[ 171 C. Ordonez and U. van Kolck, Phys. I.&. B 291 (1992) 

459. 

[35] W. GlBckle, H. Witala, D. Hiiber, H. Kamada and J. Golak, 

Phys. Rep. 274 (1996) 107. 

[36] R. Machleidt, private communication. 

[37] W. Gliickle, H. Kamada, H. Witala, D. Htiber, J. Golak, K. 

Miyagawa and S. Ishikawa, Few Body Systems, Suppl. 8 

(1995) 9. 

[ 181 J. Carlson, V.R. Pandharipande and R. Schiavilla, Nucl. Phys. 

A 401 (1983) 59. 

[ 191 R. Schiavilla, V.R. Pandharipande and R.B. Wiringa, Nucl. 

Phys. A 449 (1986) 219. 
[20] B.S. Pudliner, V.R. Pandharipande, J. Carlson and R.B. 

Wiringa, Phys. Rev. Lett. 74 (1995) 4396. 

[21] R.B. Wiringa, V.G.J. Stoks and R. Schiavilla, Phys. Rev. C 

51 (1995) 38. 

[38] W. Glockle, H. Witala, H. Kamada, D. Hiiber and J. Golak, 

Few Body Systems, Suppl. 9 (1995) 384. 

[39] J.L. Friar, G.L. Payne, V.G.J. Stoks and J.J. de Swart, 

Phys. I.&t. B 311 (1993) 4. 

1401 R. Wiringa, Nucl. Phys. A 401 (1983) 86. 

[41] W. Gliickle and H. Kamada, Nucl. Phys. A 65 (1993) 541. 

1421 SAID program, Virginia Polytechnic Institute Blacksburg, 

VA. 

[22] V.G.J. Stoks, R.A.M. Klomp, C.PE Terheggen and J.J. de 

Swart, Phys. Rev. C 49 (1994) 2950. 
[23] R. Machleidt, E Sammanuca and Y. Song, Phys. Rev. C 53 

(1996) R 1483. 

[43] R. Schiavilla et al., Nucl. Phys. A 473 (1987) 267. 

[44] R. Schiavilla, V.R. Pandharipande and D.O. Riska, Phys. 

Rev. C 40 (1989) 2294. 
[45] R. Schiavilla, R.B. Wiringa and J. Carlson, Phys. Rev. Left. 

70 (1993) 3850. 

[ 241 V.G.J. Stoks, private communication. 

[25] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester and J.J. 

de Swart, Phys. Rev. C 48 (1993) 792. 

[26] D. Plumper, J. Flender and M.F. Gari, Phys. Rev. C 49 

( 1994) 2370. 

1461 S.C. Pieper, R.B. Wiringa and VR. Pandharipande, Phys. 

Rev. C 46 (1992) 1741. 

[47] J.L. Friar, B.F. Gibson, G.L. Payne and C.R. Chen, Phys. 

Rev. C 34 (1986) 1463. 


