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Abstract

Asymmetries in quasi-elastic3
−→
He(�e,e′p) have been measured at a momentum transfer of 0.67(GeV/c)2 and are compare

to a calculation which takes into account relativistic kinematics in the final state and a relativistic one-body current o
With an exact solution of the Faddeev equation for the3He-ground state and an approximate treatment of final state interac
in the continuum good agreement is found with the experimental data.
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Introduction

Investigations of the structure of the nuclear three-body system have recently attracted much interest.
three-body calculations allow for a quantitative description of this system not only of the ground state but
the continuum states. Results of such calculations open the possibility to test our understanding of the th
system, the role of three-body forces, and non-nucleonic degrees of freedom by using continuum obs
quantities that obviously have a much richer structure and contain additional information. These calculatio
reached a high degree of sophistication, and several “exact” calculations are available today [1,2].

Recently,3He became also important for studies of nucleon form factors. Due to the lack of free neutron
only neutrons bound in light nuclei can be studied. The main advantage of3He lies in the fact that for the major pa
of the ground state wave function the spins of the two protons are antiparallel so that spin-dependent obs
are dominated by the neutron [3].

When using3He as a neutron target, nuclear structure effects such as final state interactions (FSI),
exchange currents (MEC), and relativistic effects must be carefully considered [4]. With the calculations a
today such corrections can be performed quantitatively at lowQ2 as was demonstrated in the recent electromagn
form factor experiments by Becker et al. and Xu et al. [5,6]. However, given that the calculations were per
in a non-relativistic framework, a “rigorous” treatment of these corrections at higherQ2 was not at hand. Thi
represents a serious difficulty for experiments aiming at the electric neutron form factor,Gen.

The present Letter reports about a new, less rigorous approach to correct for nuclear effects at hQ2.
The theoretical results are compared with asymmetries measured in quasi-elastic3−→

He(�e,e′p)-scattering atQ2 =
0.67 (GeV/c)2.

Theory

The calculation is based on an exact, but non-relativistic3He ground state wave function. To obtain the ma
elements relativistic kinematics and a relativistic single nucleon current operator are used. Thereby the fi
includes rescattering terms to first order in the nucleon–nucleon (NN) t-matrix. Results for the AV18 NN-po
[7] will be presented. The dependence on the NN-interaction is studied with a calculation which employs t
Bonn NN-potential [8]. In order to provide insight into the importance of relativity additional calculations w
non-relativistic current or with non-relativistic kinematics are performed. All calculations use the parameter
by Höhler to describe the electromagnetic form factors of the nucleons [9].

As mentioned above,3
−→
He(�e,e′N) at largeQ2 does not allow for a rigorous treatment of FSI based on

Faddeev-like integral equation [1]. When the center-of-mass energy of the three-nucleon (3N) system
above the pion production threshold the usual potential approach is not valid. However, in quasi-elastic kin
the focus is mostly on the region of phase space, where one of the nucleons is struck with a high ene
momentum and leaves the remaining two-nucleon system with a rather small internal energy. Thus, one m
that approximations shown in Fig. 1 will be justified.

Let us first consider the three-body breakup of3He. The amplitudeA1 takes a very simple form

(1)A1 = 〈 �p1m1ν1 �p2m2ν2 �p3m3ν3|j ( �Q,1)|Ψb
�PMMT 〉,

where�pi are the individual nucleon momenta andmi (νi) their spin (isospin) projections.�P is the total momentum
andM (MT ) the spin (isospin) magnetic quantum number of the initial3He bound state. The single nucleon curr
j ( �Q,1) acts only on nucleon 1. Choosing the laboratory frame�P = 0 and the standard representation of the
bound state in the basis of relative Jacobi momenta�p and�q one gets

(2)A1 = δ( �p1 + �p2 + �p3 − �Q)
∑
m′

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)〈 �p�qm′

1m2m3ν1ν2ν3|ΨbMMT 〉,

1
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Fig. 1. Diagrammatical representation of the two-body (left) and three-body (right) breakup of3He. The curly lines denote the photon coupli
to nucleon 1. The large (small) semi-circles depict the3He (deuteron) bound state. InA1 FSI is neglected, inA2 the scattering operatort acts
only in the subsystem(23). Note, that for the two-body breakup there is no diagram corresponding toA2.

where �p = 1
2( �p2 − �p3), �q = �p1 − �Q. Finally, we use the partial wave decomposition of the bound state in the

|pqα〉 (see [10]) and arrive at

A1 = δ( �p1 + �p2 + �p3 − �Q)δν1+ν2+ν3,MT

∑
m′

1

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)

×
∑
α′

∑
µ′

C
(
j ′, I ′, 1

2;µ′,M − µ′,M
)
C(l′, s′, j ′;µ′ − m2 − m3,m2 + m3,µ

′)

×C
( 1

2,
1
2, s

′;m2,m3,m2 + m3
)
C

(
λ′, 1

2, I
′;M − µ′ − m′

1,m
′
1,M − µ′)

×C
(
t ′, 1

2,
1
2; ν2 + ν3, ν1, ν1 + ν2 + ν3

)
C

( 1
2,

1
2, t

′; ν2, ν3, ν2 + ν3
)

(3)× Yl′,µ′−m2−m3(p̂)Yλ′,M−µ′−m′
1
(q̂)〈pqα′|Ψb〉.

The amplitudeA2 is given by

(4)A2 = 〈 �p1m1ν1 �p2m2ν2 �p3m3ν3|t23G0j ( �Q,1)|Ψb
�PMMT 〉

and can be written as

A2 = δ( �p1 + �p2 + �p3 − �Q)δν1+ν2+ν3,MT δν1,ν
′
1

∑
m′

1

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)

×
∫

d �p′ ∑
m′

2,m
′
3

∑
ν2

′,ν ′
3

δν2+ν3,ν
′
2+ν ′

3
〈 �pm2m3ν2ν3|t (z)| �p′m′

2m
′
3ν

′
2ν

′
3〉

(5)× 1

E − E(p1,p23,p′)+ iε
〈 �p′ �qm′

1m
′
2m

′
3ν

′
1ν

′
2ν

′
3|ΨbMMT 〉,

where�q = �p1 − �Q and �p23 = �p2 + �p3. The total energyE of the 3N system can be expressed as

E = ω + m3He =
√
m2

N + p2
1 +

√
4
(
m2

N + p2
) + p2

23

(6)≈
√
m2

N + p2
1 +

√
4m2

N + p2
23 + p2√

m2
N + 1

4p
2
23

≡ E(p1,p23,p),

with mN the nucleon mass. In Eq. (6)�p is the (relativistic) relative momentum between nucleons 2 and 3 calcu
in the frame where the total momentum of the(23) pair is zero. It agrees, however, to a good approximation
the standard (nonrelativistic) definition�p = 1

2( �p2 − �p3). Consequently, the(23) subsystem internal energy whic
enters in the nonrelativistic t-matrix calculation is taken as

(7)z = E −
√
m2

N + p2
1 −

√
4m2

N + p2
23.
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In a final step both the bound state wave function and the t-matrix are given in the partial wave basis
yields

A2 = δ( �p1 + �p2 + �p3 − �Q)δν1+ν2+ν3,MT

∑
m′

1

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)

×
∑
lsjµt

C(l, s, j ;µ− m2 − m3,m2 + m3,µ)C
( 1

2,
1
2, s;m2,m3,m2 + m3

)

×C
(
t, 1

2,
1
2; ν2 + ν3, ν1, ν1 + ν2 + ν3

)
C

( 1
2,

1
2, t; ν2, ν3, ν2 + ν3

)
Yl,µ−m2−m3(p̂)

×
∑
l̄

∑
α′

δl′ l̄ δs ′sδj ′j δt ′tC
(
j, I ′, 1

2;µ,M − µ,M
)
C

(
λ′, 1

2, I
′;M − µ− m′

1,m
′
1,M − µ

)

(8)× Yλ′,M−µ−m′
1
(q̂)

∫
dp′ (p′)2 〈p′qα′|Ψb〉

E − E(p1,p23,p′)+ iε
〈p(ls)j t|t (z)|p′(l′s′)j t〉.

The amplitude for the two-body breakup of3He,Apd, is given as

(9)Apd = 〈 �p1m1ν1φd �pdmd |j ( �Q,1)|Ψb
�PMMT 〉,

whereφd is the deuteron state with the spin magnetic quantum numbermd and laboratory momentum�pd . In the
next step one gets

(10)Apd = δ( �p1 + �pd − �Q)δν1MT

∑
m′

1

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)〈�qm′

1ν1φd �pdmd |ΨbMMT 〉,

where�q = �p1 − �Q. Partial wave expansion of the deuteron and3He bound state leads to

Apd = δ( �p1 + �pd − �Q)δν1MT

∑
m′

1

j ( �p1, �p1 − �Q;m1,m
′
1; ν1)

×
∑
α′

(δl′0 + δl′2)δs ′1δj ′1δt ′0C
(
j ′, I ′, 1

2;md,M −md,M
)
C

(
λ′, 1

2, I
′;M − md − m′

1,m
′
1,M − md

)

(11)× Yλ′,M−md−m′
1
(q̂)

∫
dp′ (p′)2ϕl′(p

′)〈p′qα′|Ψb〉.

The single nucleon current matrix elementsj ( �p1, �p′
1;m1,m

′
1; ν1) (ν1 decides whether the photon couples

the proton or to the deuteron) are taken completely relativistically, i.e.,

j ( �p1, �p′
1;m1,m

′
1) ≡ jµ( �p1, �p′

1;m1,m
′
1)

(12)=
√√√√ mN√

m2
N + p2

√√√√ mN√
m2

N + p′2
ū(pm1)

(
F1γ

µ + iF2σ
µν(p − p′)ν

)
u(p′m′

1).

In the case ofApd only the proton single nucleon current contributes (ν1 = MT = 1
2). The amplitudesA1, A2 and

Apd are used to calculate the response functions entering the cross sections and the polarization observa
To simplify integrations over the unobserved parameters of the final 3N system we change the v

according to [11]:

(13)d3p1d
3p2d

3p3 = I d3p1 d
3p23d

3p with I = 4E2E3

(E2 + E3)

√
(E2 + E3)2 − p2

23

(Ei is the total energy of the ith nucleon).
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Experiment

Asymmetries of the3
−→
He(�e,e′p)-reaction have been measured in quasi-elastic kinematics at a four mom

transfer ofQ2 = 0.67 (GeV/c)2. As the spin asymmetry of protons in3He is very small [4] one can expect that t
asymmetries of the3

−→
He(�e,e′p) reaction are very sensitive to FSI and provide a significant test of the calculat

For an arbitrary direction of the target spin the asymmetry is given by

(14)A(θ∗, φ∗) = 1

PePt

N+ − N−

N+ + N−

with θ∗, φ∗ the polar and azimuthal angle of the target spin direction with respect to the three-momentum tra�q.
The polarizations of beam and target are given byPe andPt and the normalized3

−→
He(�e,e′p) events for positive

(negative) electron helicity areN+(N−). The two asymmetriesA‖ andA⊥ measured in the present work a
A⊥ = A(90◦,0◦) andA‖ = A(0◦,0◦) [12].

The setup of the experiment was very similar to the one described by Rohe et al. [13]. A polarized con
wave electron beam with an energy of 854.5 MeV was incident on a glass cell filled with polarized3He.
Longitudinally polarized electrons of∼ 80% polarization were produced with a strained layer GaAsP cryst
a typical current of 10 µA [14]. Spectrometer A with a solid angle of 28 msr and a momentum acceptance
[15] was used to detect the scattered electron at a scattering angle of 78.6◦. The struck protons were detected
coincidence with an array of plastic scintillator bars placed at 32.2◦, the direction of�q for an energy transferω of
368 MeV.

The 3−→
He-target consisted of a spherical glass container with two cylindrical extensions. The beam en

exits through 25 µm Cu-windows. The cylindrical extensions allowed for an effective shielding of the back
from the Cu-windows by positioning the windows outside of the acceptance of the spectrometer. The3He gas was
polarized by metastable optical pumping at pressures around 1 mbar and subsequently compressed by a
titanium piston compressor to 4 bar. The target polarization achieved was approximately 50% [16].

The entire target was enclosed in a rectangular box of 2 mm thickµ-metal and iron. The box served as
effective shield for the stray field of the magnetic spectrometers and provided a homogeneous magnetic
field of ≈ 4× 10−4 T produced by three independent pairs of coils. With additional correction coils a relative
gradient of less than 5× 10−4 cm−1 was achieved. The setup allowed for an independent rotation of the
spin in any desired direction by remote control. In order to reduce systematic errors, the spin of the tar
circularly rotated in the scattering plane by 90◦ with respect to the direction of�q at regular intervals, alternative
accumulating data forA‖ andA⊥.

The hadron detector consists of an array of four layers of five vertically placed plastic scintillator bar
dimensions 50× 10× 10 cm3 preceded by two layers of 1 cm thick-E detectors for particle identification. Eve
plastic bar was equipped with two Photo Multipliers (PM) on top and bottom. The detector was placed at 3◦ at
a distance of 160 cm from the target which resulted in a solid angle of 100 msr. The entire detector was
with 10 cm Pb except for an opening towards the target where the Pb-shield was reduced to 2 cm.

As in the experiment by Rohe et al. [13] the product of target and beam polarization was monitored du
data taking via determination of the asymmetry for elastic3−→

He(�e,e)-scattering. The3He-form factors are accurate
known [17] and the comparison of the calculated and measured asymmetry allows for a precise determin
the polarization productPePt . The elastically scattered electrons were detected in spectrometer B at a sca
angle ofϑe = 25◦. This resulted in a polarization product of 0.279± 0.010 for runs withA = A‖ or −A‖ and
0.282± 0.003 forA = A⊥ or −A⊥. The difference of the error bar results from the different sensitivity of
measurement to the target spin direction.

In addition, the time dependence of the polarization of the target cell was continuously measured du
experiment by Nuclear Magnetic Resonance, while the absolute polarization was measured by the m
Adiabatic Fast Passage [18]. The mean target polarization from these measurements was 0.356± 0.015. From
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Fig. 2. Experimental spectrum of the3
−→
He(�e,e′p)-data as a function of the energy transferω. The dot-dashed lines indicate the two regio

selected for the analysis.

the elastic scattering data and the target polarization measurements a beam polarization ofPe = 0.788± 0.036 was
determined which agreed well with the result from a Møller polarimeter (0.827± 0.017).

Analysis

In the off-line analysis, protons are defined as events with a hit in two consecutive-E detectors from the
two -E-detector planes. For the kinematics of the experiment the proton energies range from∼ 280 MeV to
∼ 400 MeV. For this energy range protons reach at least the third bar layer. A correct mean time of at lea
plastic bars is also required. For the combination of these cuts negligible background survives in the3−→

He(�e,e′p)
coincidence time peak. The segmentation of the hadron detector and the up-down PM readout allow
determination of the direction of the protons. The resolution is∼ 0.8◦ in both vertical and horizontal direction.

In order to study the effect of FSI on the asymmetries in different kinematic regions, the quasi-elastic
divided in two regions ofω. One region covers the peak and therefore emphasizes low nucleon momenta w
the other region covers the lowω tail sensitive preferentially to high nucleon momenta. Fig. 2 shows theω spectrum
of 3−→

He(�e,e′p)-events and indicates the two kinematic regions. The events in each of the two regions are s
over the entire acceptance of the out-of-plane angle of electron and proton and over the electron scatterin
a range from 75.8◦ to 81.8◦.

Results

The experimental results forA‖ andA⊥ are shown in Figs. 3 and 4 compared to the results of the plane
impulse approximation (PWIA) and the calculation including the dominant FSI effect. As expected the asym
are small over the entire kinematic region so that FSI effects appear prominently. Compared to the s
accuracy (0.02–0.03) the systematic errors are small (0.01). The error of the deviation of�q from its nominal
direction, which is usually the dominant systematic error in electric form factor determinations [13], is neg
here mainly becauseA‖ andA⊥ are not very different from each other.
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Fig. 3. Experimental results ofA‖ for the quasi-elastic peak region (left) and the lowω tail region (right) as a function of the scattering ang
of the knocked out proton. The results of the full (PWIA) calculation are shown with solid (dashed) lines. The result of the full calculat
a non-relativistic current (dot), the effect of a(v/c)2 correction (dot-dot-dash) and the same with non-relativistic kinematics (dot-dash) ar
shown.

Fig. 4. Same as Fig. 3, but forA⊥.

The hadron detector does not allow for a high-resolution determination of the proton energy. In particu
not possible to distinguish two- and three-body breakup events. Accordingly, the calculations have been in
over the two-body and over the first 26 MeV of the three-body breakup channel. For the highest accepted
energy of 26 MeV, the cross section is smaller by at least one order of magnitude compared to the cros
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at threshold. Extending the integration limit has no effect on the results. In addition, the calculated res
integrated over the experimentally accepted out-of-plane proton angle and the relevantω range (Fig. 2).

Conclusions

Figs. 3 and 4 show that the PWIA calculations are in clear disagreement with the experimental results. T
holds for the calculation which does not account for relativistic kinematics. On the other hand, very good ag
between experiment and theory is found when including theA2-term of Fig. 1 and accounting for relativist
kinematics. This applies also for the results using the CD–Bonn NN-potential with negligible differences
differences of the results are observed when the current is replaced by a non-relativistic version or
relativistic (v/c)2-correction is added. The results indicate that at highQ2, where complete non-relativist
calculations are not applicable anymore, a good description of the data can be achieved taking into
relativistic kinematics and an approximate treatment of FSI-effects. The use of a relativistic current ope
less relevant. The result is important for experiments aimed at extracting fundamental properties of the
from asymmetry measurements of inclusive3−→

He(�e,e′) or exclusive3−→
He(�e,e′n) reactions. The corrections for FS

effects for these reactions can be reliably calculated within the approach presented here.
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