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We have investigated the possible existence of a quasi-bound state for the Σ-Σ-α system
in the framework of Faddeev calculations. We are particularly interested in the state of
total iso-spin T = 2, since for an inert α particle there is no strong conversion to Ξ-N-α
or Λ-Λ-α possible. A Σ-α optical potential based on Nijmegen model D and original Σ-Σ
interactions of the series of Nijmegen potentials NSC97 as well a simulated Gaussian type
versions thereof are used. Our investigation of the Σ-Σ-α system leads to a quasi bound
state where, depending on the potential parameters, the energy ranges between −1.4 and
−2.4 MeV and the level width is less than 0.4 MeV.

§1. Introduction

Strangeness S = −2 hypernuclei provide information on baryon-baryon forces in
the state of S = −2. Only three nuclei have been identified so far, 10

ΛΛBe,1) 6
ΛΛHe2) and

13
ΛΛB.3) The challenge is to understand their binding energies and decay properties.
These nuclei are especially interesting since the S = −2 two-baryon system is rich in
structure due to the conversions between ΛΛ , ΞN and ΣΣ. Baryon-baryon forces for
S = 0,−1 and −2 are being investigated in the meson exchange picture4)–7) or using
quark models.8) While there is a wealth of data for S = 0, which allows to fix force
parameters, the situation is still much open in the S = −1 and −2 sectors. Therefore
additional information is needed. In this study we would like to focus on the system
Σ-Σ-α in the state of total iso-spin T = 2. If the α-particle would be inert, that
system could not convert to Ξ-N-α or Λ-Λ-α. Therefore in case the forces would be
strong enough, there might exist a low lying state with a small width. The width
would be caused by Λ-Σ conversion leading, for instance, to Σ + Λ + N + (3He/3H),
where (N+3 He/3H) is in a state of total iso-spin T = 1 or into Σ+Λ+4 He∗ (T = 1).

We investigate that system Σ-Σ-α under effective simplifying assumptions. The
Σ-α interaction is modeled via an optical potential based on the Nijmegen model D
and the Σ-Σ interaction in the state of total iso-spin T = 2 is taken either directly as
a meson theoretical Nijmegen potential of the type NSC976) or a simulated version
thereof of the Gaussian type.9) That 3-body system is solved precisely in the Faddeev
scheme.

In §2 we derive the Faddeev equations for the Σ-Σ-α system. The numerical
results are displayed in §3. The Appendix shows technical details of the formulation.
We end with a brief summary of our work and an outlook in §4.
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§2. The Faddeev equations for the system Σ-Σ-α

We assume the existence of a quasi-bound state where the width of that state
is caused by the (absorptive) imaginary part of the effective Σ-α potential. If the α
particle would be inert and the two Σ couple to iso-spin T = 2, the system cannot
convert into Ξ-N-α or Λ-Λ-α. We focus on such a state with T = 2. The Schrödinger
equation reads

(H0 + VΣΣ + VΣ1α + VΣ2α)Ψ = EΨ. (2.1)

It is convenient to number the two Σ as 1 and 2 and the α particle as 3. Then
the Schrödinger equation converted into an integral equation reads

Ψ =
1

E −H0
(V12 + V13 + V23)Ψ (2.2)

which suggests the decomposition

Ψ = ψ12 + ψ13 + ψ23 (2.3)

with

ψij =
1

E −H0
VijΨ. (2.4)

Because of the identity of the Σ’s and the antisymmetry of Ψ the two Faddeev
components ψ23 and ψ13 are not independent and are related to each other by

ψ13 = −P12ψ23. (2.5)

This then leads to two coupled equations

ψ12 =
1

E −H0
V12 (ψ12 + (1 − P12)ψ23) , (2.6)

ψ23 =
1

E −H0
V23 (−P12ψ23 + ψ12) . (2.7)

In a standard manner one introduces the two-body t-matrices

t12 = V12 + V12
1

E −H0
t12, (2.8)

t23 = V23 + V23
1

E −H0
t23 (2.9)

and obtains the final set of two-coupled Faddeev equations

ψ12 =
1

E −H0
t12 (1 − P12)ψ23, (2.10)

ψ23 =
1

E −H0
t23 (−P12ψ23 + ψ12) . (2.11)
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The total state is then given as

Ψ = (1 − P12)ψ23 + ψ12. (2.12)

We solve that system in momentum space and use a partial wave decomposition.
To that aim we introduce two types of Jacobi momenta in terms of the individual
momenta ki , i=1, 2, 3;

p3 =
1
2

(k1 − k2) , (2.13)

q3 =
2mΣk3 −mα (k1 + k2)

2mΣ +mα
, (2.14)

and
p1 =

mαk2 −mΣk1

mα +mΣ
, (2.15)

q1 =
(mα +mΣ) k1 −mΣ (k2 + k3)

mα + 2mΣ
. (2.16)

The momenta p3, q3 and p1, q1 are adequate for the Faddeev amplitudes ψ12 and
ψ23 which are driven by the two-body t-matrices t12 and t23, respectively. Related
to these momenta are partial wave projected basis states

|p3q3 (l3s3) j3λ3 (j3λ3)JM(11)2〉 ≡ |p3q3α3〉 (2.17)

and ∣∣∣∣p1q1

(
l1

1
2

)
j1

(
λ1

1
2

)
I1 (j1I1)JM(11)2

〉
≡ |p1q1α1〉 . (2.18)

The sequence of discrete quantum numbers denote orbital and spin angular
momenta, their intermediate couplings and the couplings to the total 3-body angular
momentum J with magnetic quantum number M . Finally (11)2 denotes the iso-spin
coupling. Because of the identity of particles 1 and 2, (l3 + s3) has to be even. This
imposes the only restriction to these intermediate quantum numbers.

By a standard procedure10) the coupled set of equations (2.10)–(2.11) is pro-
jected onto those basis states. It results

ψα3
12 (p3q3) ≡ 〈p3q3α3 |ψ12〉=

2

E − p2
3

2µ3
− q2

3
2M3

∑
α1

∫ ∞

0
dq1q

2
1

×
∫ 1

−1
dxt12

(
p3, π2, E − q23

2M3

)
×Gα3α1 (q3q1x)ψα2

23

(
π′2,q1

)
, (2.19)

ψα1
23 (p1q1) =

1

E − p2
1

2µ1
− q2

1
2M1

∑
α3

∫ ∞

0
dq3q

2
3

∫ 1

−1
dxt23

(
p1, π3, E − q21

2M1

)
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×Gα3α1 (q3q1x)ψα3
12

(
π′3q3

)
− 1

E − p2
1

2µ1
− q2

1
2M1

∑
α′

1

∫ ∞

0
dq′1q

′2
1

∫ 1

−1
dxt23

(
p1, π4, E − q21

2M1

)

×Gα1α′
1

(
q1q

′
1x

)
ψ

α′
1

23

(
π′4q

′
1

)
. (2.20)

The purely geometrical quantities Gαα′ resulting from recouplings are given in
the Appendix. Further the shifted arguments in the two-body t-matrices and the
Faddeev amplitudes under the integrals are given as

π2 =
√
q21 + ρ2

1q
2
3 + 2ρ1q1q3x, π3 =

√
ρ2

2q
2
1 + q23 + 2ρ2q1q3x,

π′2 =
√
ρ2

2q
2
1 + q23 + 2ρ2q1q3x, π′3 =

√
q21 + ρ2

1q
2
3 + 2ρ1q1q3x,

π4 =
√
ρ2q21 + q′21 + 2ρq1q′1x, π′4 =

√
q21 + ρ2q′21 + 2ρq1q′1x,

where ρ1 = 1
2 ,ρ2 = Mα

Mα+MΣ
and ρ = MΣ

MΣ+Mα
.

The reduced masses are
µ3 = 1

2MΣ,

M3 = 2MαMΣ
2MΣ+Mα

,

µ1 = MαMΣ
Mα+MΣ

,

M1 = MΣ(MΣ+Mα)
2MΣ+Mα

.

This is an infinite set of homogeneous coupled integral equations in two variables,
which can be truncated since the two-body t-matrices drop quickly in magnitude with
increasing angular momenta.

§3. Results

The set of coupled equations (2.19)–(2.20) are discretized in a standard manner.
We choose Gaussian quadrature points in the variables q and x and spline interpola-
tion for the variables π under the integrals. The two-body t-matrices are generated
from the Lippmann Schwinger equation again using Gaussian quadrature discretiza-
tion. We refer for numerical details to Refs. 10) and 11). The energy eigenvalue E
is determined as follows. The homogeneous set of coupled equations is schematically
written as

η(E)ψ = K(E)ψ

with η(E) = 1 at the energy eigenvalue. Without knowing E, one first determines η
and varies E such that finally η(E) = 1. The eigenvalue η is determined either by a
simple power method or by a Lanczos type algorithm. For details see Refs. 11) and
12).

In order to demonstrate our numerical accuracy we would firstly like to display
results on the ΛΛα system, where for model forces we recalculated 6

ΛΛHe binding
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Table I. Comparison of 6
ΛΛHe binding energies in MeV based on the model forces given in Refs. 13)

and 14) for an increasing number of partial waves.

lΛα lΛΛ Ours Filikhin Myint

0 0 −6.880 −6.880 −6.880

0,1 0 −6.986 −6.987 −6.983

0,1,2 0,2 −7.050 −7.045 −7.041

0,1,2,3 0,2 −7.084 −7.078 −7.073

Table II. The potential strength parameters of the Gaussian form “sim” given in Eq. (3.1) for the

Σ-Σ system. The range parameters are µ1 = 0.37 fm and µ2 = 1.0 fm.

V1 (MeV) V2 (MeV)

NSC97a “sim” 5274.2576 −292.7193

NSC97c “sim” 4886.7830 −289.8740

NSC97e “sim” 4588.5040 −294.2548

energies. The model forces are of Gaussian types and we refer to Refs. 13) and
14). That system has been investigated before by Filikhin et al.13) using Faddeev
equations in configuration space and by Myint et al.14) using a variational method
based on a Gaussian expansion. Our method is mathematically different from theirs.
We solved the Faddeev equations in momentum space which allows us to treat any
type of two body forces. We show in Table I 6

ΛΛHe binding energies for an increasing
number of relative orbital angular momenta within the Λα and ΛΛ sub-systems. Our
results are in very good agreement with the other two methods which underlines the
reliability of our treatment. In late years, a detail study of the Λ-Λ-α bound system is
reviewed,15) here we would like only to show reliability of our numerical computation.

Now we turn to the central topic, the ΣΣα system in the state of total iso-
spin T = 2. For the Σ-Σ potential we use either the original Nijmegen potentials
NSC97a,c,e4) or the simulated Gaussian forms thereof.9) The latters are given as

V (r) =
2∑

i=1

Vie
−(r/µi)

2
(3.1)

with the parameters shown in Table II. The Σ-α potential is chosen to be complex
to provide for absorptive processes, like the ones mentioned in the introduction. We
use the form

VΣα(r) =
2∑

i=1

Vie
−(r/µi)

2
+ i

2∑
i=1

Uie
−(r/µi)

2
(3.2)

with the parameters V1 = −21.3 MeV, V2 = 4.8 MeV for the real part and U1 = 4.07
MeV, U2 = −11.73 MeV for the imaginary part. Further, one has µ1 = 1.3 fm and
µ2 = 1.7 fm.

The Σ-α potential has been constructed in the following manner. An effective
Σ-N potential was firstly derived from the original Nijmegen model D interaction
in the Brueckner framework. Then that effective potential was expanded into a
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five-range Gaussian form. That potential was used in a generalized Hartree-Fock
method to generate the effective Σ-α potential.16) The imaginary part arises due
to ΛN to ΣN conversion. The procedure to derive the Σ-α optical potential is the
same as the one followed by Akaishi et al.,17) in which details of deriving Λ-t and
Λ-α potentials can be found. Those Λ-nucleus potentials are derived from a phase-
equivalent Nijmegen model D interaction, referred to as D2, and well reproduce all
the s-shell Λ hypernuclear binding energies consistently as a result of right order of
ΛN-ΣN coupling strength of D2. Due to our knowledge, the existence of a ΣHe4

bound states has been theoretically predicted, and the experimental spectrum has
been well analysed by Harada18) based essentially on this D2, the one we used in our
Σ-α optical potential. Thus we are convinced that the model D is suitable for the
Σ-α potential.
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Fig. 1. Energy trajectory in the complex energy plane for the Σ-α potential. The numbers at

each point indicate the multiplicative factors by which the attractive real part and the over all

imaginary parts were multiplied.
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Fig. 2. Comparison of ΣΣ-phase shifts for the

original Nijmegen potentials NSC97a,c,e

and the Gaussian potentials for 1S0 T = 2.

Before we present the result for the
three-body system ΣΣα we firstly inves-
tigate the properties of the underlying
two-body sub-systems. The complex
Σ-α potential leads to a complex energy
eigenvalue. We locate the one with the
“lowest” energy in the following man-
ner. We neglect the imaginary part
and multiply the attractive real part by
some enhancement factor. Choosing for
instance that factor to be 2.5 we find
a binding energy of −1.0 MeV. Next
we allow the imaginary part to increase
from 0 in steps of 0.1 until we reach the
physical value 1. In this manner we find
the energy trajectory in the complex en-
ergy plane shown in Fig. 1. We end
up with the complex energy position in
the lower energy half plane just below
the unitarity cut from 0 to infinity. To
reach that final position we have chosen
that detour in the complex energy plane
which appears to us more feasible than
a direct energy search for the physical
potential strength. Thus we find that
the effective Σ-α potential is not strong
enough to generate a complex energy
with a negative real part. The energy
search in the complex energy plane was
greatly simplified by using a method of
analytical continuation in the form of
the point method19) which is recently
applied to the Faddeev continuum equa-
tions20) and to the Yakbovsky four-body
continuum equations.21)

The chosen Σ-Σ potentials support
a bound state. The corresponding bind-
ing energies are displayed in Table III
for the original Nijmegen potentials and
the simulated ones. The phase shifts in
the state 1S0 and T = 2 for the original
and simulated potentials agree perfectly
well with each other as shown in Fig. 2.
Though it is presumably unrealistic that
two Σ are bound it is the result of the
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Table III. Comparison of the two-body ΣΣ binding energies in MeV for the original Nijmegen

potentials NSC97a,c,e and the simulated Gaussian potentials.

Gaussian Nijmegen

NSC97a −2.253 −2.250

NSC97c −2.460 −2.437

NSC97e −3.214 −3.122

Table IV. The energy eigen values in MeV for the ΣΣα system using the simulated Gaussian and

the original Nijmegen Σ-Σ potentials together with the real part alone of the Σ-α potential.

NSC97a NSC97c NSC97e

Nijmegen −1.840 −2.378 −2.728

Gaussian −1.841 −2.400 −2.819

Table V. The complex energy eigen values in MeV for the ΣΣα system using the simulated Gaussian

and the original Nijmegen Σ-Σ potentials together with the complex Σ-α potentials.

NSC97a NSC97c NSC97e

Nijmegen −1.418−i0.202 −2.34−i0.014 −2.376−i0.191

Gaussian −1.492−i0.218 −2.323−i0.017 −2.354−i0.211

meson based Nijmegen potentials, whose parameters have been fixed to very many
data in the nucleon-nucleon and hyperon-nucleon sectors and where SU(3) symme-
try arguments allow for a prediction to the S = −2 sector. We shall comment below
on an ad hoc weakening of those potentials.

We are interested to see the outcome of those dynamical assumptions for the ΣΣα
system. In this exploratory investigation we restrict all orbital angular momenta to
be zero. In the first step we neglect the imaginary part of the Σ-α potential. It turns
out that in all cases using the original Nijmegen Σ-Σ potentials or the simulated
ones, the three-body system is bound. The results are given in Table IV. Then we
switch on the imaginary part of the Σ-α potential in steps of 0.1. The results are
displayed in Figs. 3 and 4 for the two cases. The effect of the imaginary part in the
Σ-α potential shifts the real part of the energy slightly to the right and introduces
a small negative imaginary part. The resulting final energy positions are displayed
in Table V.

In order to explore the outcome using Σ-Σ potentials which are weaker than
the ones we used, we multiplied them by overall factors 0.9 and 0.8. The resulting
Σ-Σ binding energies for the original NSC97e potential are −1.5 and −0.4 MeV,
respectively (in comparison to the original value of −3.1 MeV). Then we performed
again the energy search for the Σ-Σ-α system starting with zero imaginary part for
the effective Σ-α potential. In case of the reduction factor 0.9 (0.8) this leads to
a 3-body binding energy of −1.08 MeV (−0.32 MeV). For the full imaginary part
we end up with (−0.68 − i 0.21) MeV for the factor 0.9 and with(−0.279 - i 2.0×
10-2) MeV for the factor 0.8. We conjecture that a low lying quasi bound state or a
resonance for the Σ-Σ-α system in the T = 2 might exist in reality.

Finally we would like to mention a possible means to approach such a state
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Fig. 3. Energy trajectories in the complex energy plane for the 6
ΣΣHe system using the original Σ-Σ

Nijmegen NSC97e interaction. The numbers at each point indicate the multiplicative factors by

which the attractive real part and the over all imaginary parts were multiplied.

experimentally. One could think of the two step process of (K−,K+) reaction on a
6Li target;

K− +6 Li → Σ0 + π0 + n +4
2 He,

π0 + n → Σ− + K+.
In this manner one populates two Σ together with α. It remains of course the

task to estimate the reaction rates.

§4. Summary and outlook

We developed a Faddeev code for the effective three-body systems ΛΛα and
ΣΣα. It is formulated in momentum space and is applicable for any type of two-
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Fig. 4. Energy trajectories in the complex energy plane for the 6
ΣΣHe system using the simulated

Gaussian form for the Σ-Σ Nijmegen NSC97e interaction. The numbers at each point indicate

the multiplicative factors by which the attractive real part and the overall imaginary parts were

multiplied.

baryon forces. This allowed us to use directly the original Nijmegen forces, in the
three-body calculation within Faddeev framework. We tested our code in a bench
mark model study for the ΛΛα system reproducing perfectly well the results from
two earlier studies. Our results for the ΣΣα system lead to a quasi bound state
with a small negative imaginary part. The negative real part of the energy ranges
between −1.4 and −2.4 MeV. These numbers are based on the original or simulated
Nijmegen potentials for the ΣΣ system in the state T = 2, which support a bound
state with a binding energy of about −2.5 MeV. Further we use a Σ-α optical model
potential, which by itself supports a complex energy eigen value of about (2−i 0.1)
MeV. We also artificially reduced the overall strength of the Σ-Σ potential by factors
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0.9 and 0.8, which moved the 3-body Σ-Σ-α energies toward −0.68 and −0.279 MeV,
respectively, with small widths.

Both dynamical assumptions on the Σ-Σ and Σ-α potentials should be critically
reinvestigated in the future. Upcoming meson based Σ-Σ potentials without a bound
state should be used and in addition the effective Σ-α potential should be generated
more consistently using realistic α particle wave functions in conjunction with Σ-
nucleon forces related to the same theoretical model as for the Σ-Σ interaction. A
low lying state for the Σ-Σ-α system with isospin T = 2 would provide interesting
additional information on the dynamics in the strangeness S = −2 sector.
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Appendix

The purely geometrical coefficients occurring in Eqs. (2.19) and (2.20) are

Gα3α′
1

(
q3, q

′
1, x

)
=

1
4
(−)j+λ+1+l′

√
ĵ ĵ′ Î ′ ŝ l̂ λ̂ l̂′ λ̂′

∑
Ls

L̂(−)L

{
s l j
λ J L

}


l′ 1
2 j′

λ′ 1
2 I ′

L s J




×
∑

l1+l2=l

∑
l′1+l′2=l′

ρl2
1 ρ

l′1
2 (q3)

l2+l′2
(
q′1

)l′1+l1

×
√

(2l + 1)!
2l1!2l2!

√
(2l′ + 1)!
2l′1!2l′2!

∑
f

{
l1 l2 l
λ L f

}
C (l2λf ; 00)

×
∑
f ′

{
l′2 l′1 l′

λ′ L′ f ′

}
C

(
l′1λ

′f ′; 00
) ∑

k

k̂ Pk(x)
∑

h

ĥ gh

∑
f ′′

C
(
khf ′′; 00

)2

×
{

f l1 L
f ′ l′2 f ′′

}
C

(
f ′′l′2f ; 00

)
C

(
f ′′l1f ′; 00

)

with

gh =
∫ 1

−1
dxPh(x)

1

|ρ2q′
1 + q3|l

′
1

|q′
1 + ρ1q3|l

and
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Gα1α′
1

(
q1, q

′
1, x

)
=

1
4

∑
LS

(−)1−S

√
ĵ Î ĵ′ Î ′ l̂ λ̂l̂′ λ̂′ L̂ Ŝ




l 1
2 j

λ 1
2 I

L S J







l′ 1
2 j′

λ′ 1
2 I ′

L S J




×
∑

l1+l2=l

∑
l′1+l′2=l′

ρl′1+l2
(
q′1

)l1+l′1 (q1)
l2+l′2

×
√

(2l + 1)!
2l1!2l2!

√
(2l′ + 1)!
2l′1!2l′2!

∑
f

{
l1 l2 l
λ L f

}
C (l2λf ; 00)

×
∑
f ′

{
l′2 l′1 l′

λ′ L f ′

}
C

(
l′1λ

′f ′; 00
)∑

k

k̂Pk(x)
∑

h

ĥgh

×
∑
f ′′

C
(
khf ′′; 00

)2
{

f l1 L
f ′ l′2 f ′′

}
C

(
f ′′l′2f ; 00

)
C

(
f ′′l1f ′; 00

)

with

gh =
∫ 1

−1
dxPh(x)

1

|ρq1 + q′
1|l

1

|q1 + ρq′
1|l

′ .
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