Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy

A. B. Borisov, ${ }^{1}$ Jun-ichiro Kishine, ${ }^{2}$ I. G. Bostrem, ${ }^{3}$ and A. S. Ovchinnikov ${ }^{3}$
${ }^{1}$ Institute of Metal Physics, Ural Division, Russian Academy of Sciences, Ekaterinburg 620219, Russia
${ }^{2}$ Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
${ }^{3}$ Department of Physics, Ural State University, Ekaterinburg 620083, Russia
(Received 11 January 2009; revised manuscript received 4 March 2009; published 29 April 2009)

Abstract

We show the existence of an isolated soliton excitation over the topological ground-state configuration in chiral helimagnet with the Dzyaloshinskii-Moryia exchange and the strong easy-plane anisotropy. The magnetic field perpendicular to the helical axis stabilizes the kink crystal state which plays a role of "topological protectorate" for the traveling soliton with a definite handedness. To find new soliton solution, we use the Bäcklund transformation technique. It is pointed out that the traveling soliton carries the magnon density and a magnetic soliton transport may be realized.

DOI: 10.1103/PhysRevB.79.134436
PACS number(s): 75.47.-m, 94.05.Fg, 75.40.Gb, 11.30.Rd

I. INTRODUCTION

A study of spatially localized excitations over nontrivial many-body "vacuum" configuration is one of the most challenging problem in condensed-matter physics. Of particular interest is a collective transport of observable quantities accompanied with a sliding motion of incommensurate (IC) phase modulation of charge and magnetic degrees of freedom. However, well-known types of sliding density waves such as the charge-density wave and the collinear spindensity wave cannot easily be observed because the internal phase modulation does not carry directly measured quantity. ${ }^{1}$ Another example is the charge and spin soliton transport in conjugated polymers where the double degeneracy of ground-state configurations gives rise to diffusive solitons. ${ }^{2}$ In this paper, we demonstrate a possibility to create an isolated magnetic soliton over the topological ground-state configuration in chiral helimagnet with the antisymmetric Dzyaloshinskii-Moryia (DM) exchange and the strong easyplane anisotropy. We show that the isolated magnetic soliton exists and it can carry the observable magnetic density.

Helimagnetic structures are stabilized by either frustration among exchange couplings ${ }^{3}$ or the DM relativistic exchange. ${ }^{4}$ In the latter case, an absence of the rotoinversion symmetry in chiral crystals causes the Lifshitz invariant in the Landau free energy. Consequently, a long-period incommensurate helimagnetic structure is stabilized with the definite (left-handed or right-handed) chirality fixed by the direction of the DM vector. Over the past two decades, the ground state and linear excitations of the chiral helimagnet under an applied magnetic field have been a subject of extensive studies from both experimental and theoretical viewpoints. ${ }^{5}$ The compounds $\mathrm{MnSi},{ }^{6} \mathrm{FeGe},{ }^{7} \mathrm{CuB}_{2} \mathrm{O}_{4},{ }^{8}$ and $\mathrm{Cr}_{1 / 3} \mathrm{NbS}_{2}$ (Ref. 9) are some of real examples of helimagnets with the Lifshitz invariant. Concerning nonlinear excitations in this class of spiral systems, the solitonic excitations were studied in the case of easy-axis anisotropy. ${ }^{10}$ It has been revealed that the first simplest soliton solution in the easy-axis helimagnet presents a helical domain wall, a nucleation of a helical phase, whereas the second solution, so-called wave of rotation, describes a localized change in the phase with a
finite velocity, which is accompanied by a coming of moments out of the basal plane (Fig. 1). It turns out that the energy of the wave of rotation is less than that of spin wave with the same linear momentum. In a presence of magnetic field applied along the easy axis, when a simple helimagnetic structure transforms into the conical one, there are again two solitons with energies less than the energy of spin wave with the same momentum.

Recent progress on synthesis of new class of helimagnetic structures revives the interest to the case of chiral helimagnet with an easy-plane anisotropy. ${ }^{11}$ Findings of solitons in the previous (easy-axis) case was based on a deep analogy between a dynamics of these nonlinear excitations spreading over the easy axis in the chiral helimagnet and a dynamics of nonlinear excitations in the easy-axis ferromagnet. The correspondence reached by a gauge transformation enables to use a well established classification of nonlinear excitations

FIG. 1. Nonlinear excitations in a spiral structure with an easyaxis anisotropy: (a) the nucleation of the spiral phase and (b) the localized wave of rotation.
in the last system. ${ }^{12}$ However, the theoretical tool turns out to be inappropriate when applied to the helimagnet with the Lifshitz invariant and the easy-plane anisotropy because the axial symmetry is lost in this case.

Furthermore, we recently proposed a mechanism of the transport spin current in the chiral helimagnet. ${ }^{13}$ Under the static magnetic field applied perpendicular to the helical axis, the magnetic kink crystal (chiral soliton lattice) is formed. Once the kink crystal begins to move under the Galilean boost, the spin-density accumulation occurs inside each kink and periodic arrays of the induced magnetic dipoles carrying the transport spin current appear. The coherent motion of the kink crystal dynamically generates the spontaneous demagnetization field. This mechanism is analogous to the Döring-Becker-Kittel mechanism of the domain-wall motion in ferromagnets. ${ }^{14-16}$ It is then natural to ask if it is possible to have an isolated soliton which transports the magnon density.

In this paper, we provide an affirmative answer to this question by means of the Bäcklund transformation (BT) technique. ${ }^{17}$ The method we use has been effectively applied to studies of topological vortex-type singular solutions of the elliptic sine-Gordon (SG) equation. ${ }^{18}$ In particular, one- and two-dimensional vortex lattices on both a homogeneous and periodic backgrounds have been constructed using the Bäcklund transformation. ${ }^{19}$ One of the main findings of our investigation is an appearance of a nontrivial traveling soliton which carries a localized magnon density. This result may be useful in spintronics technology. ${ }^{20,21}$ In Sec. II, we describe the model Hamiltonian and basic equations. In Sec. III, we present the method to derive the soliton solution by using the Bäcklund transformations. In Sec. IV, we discuss the energy and momentum associated with a creation of the soliton. In Sec. V, we demonstrate that the traveling soliton carries the magnon density. Finally, we summarize the results in Sec. VI.

II. BASIC EQUATIONS

We describe the chiral helimagnet by the continuum Hamiltonian density,

$$
\begin{equation*}
\mathcal{H}=\frac{\alpha}{2}\left(\frac{\partial \mathbf{M}}{\partial z}\right)^{2}+D\left(M_{x} \frac{\partial M_{y}}{\partial z}-M_{y} \frac{\partial M_{x}}{\partial z}\right)+\beta^{2} M_{z}^{2}+h_{x} M_{x} \tag{1}
\end{equation*}
$$

where the symmetric exchange coupling strength is given by $\alpha>0$, the monoaxial DM coupling strength is given by D, the easy-plane anisotropy strength is given by $\beta^{2}>0$, and the external magnetic field applied perpendicular to the chiral z axis is $\mathbf{h}=\left(h_{x}, 0,0\right)$. When model Hamiltonian (1) is written, one implicitly assumes that the magnetic atoms form a threedimensional lattice and the uniform ferromagnetic coupling exists between the adjacent chains to stabilize the long-range order. Then, the Hamiltonian is interpreted as an effective one-dimensional model based on the interchain mean-field picture. We introduce the polar angles $\theta(z)$ and $\varphi(z)$, and represent $M(z)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. The corresponding Lagrangian density is $\mathcal{L}=(\cos \theta-1) \dot{\varphi}-H$. The Euler-Lagrange equations yield

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=-b \sin \varphi-\cos \theta\left(a+2 \frac{\partial \varphi}{\partial z}\right) \frac{\partial \theta}{\partial z}-\sin \theta \frac{\partial^{2} \varphi}{\partial z^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial \varphi}{\partial t}= & 2 \beta^{2} \cos \theta-\cos \theta\left(\frac{\partial \varphi}{\partial z}\right)^{2}-b \cos \varphi \cot \theta \\
& -a \cos \theta \frac{\partial \varphi}{\partial z}+\frac{1}{\sin \theta} \frac{\partial^{2} \theta}{\partial z^{2}} \tag{3}
\end{align*}
$$

Hereinafter, we set $\alpha=1$ and rewrite $h_{x}=b$, and $D=a / 2$. The magnetic kink crystal phase is described by the stationary soliton solution minimizing \mathcal{H} with keeping $\theta=\pi / 2$. The solution obeys the SG equation, $\varphi_{z z}=-b \sin \varphi$, and is given by $\sin (\varphi / 2)=\operatorname{sn}(\sqrt{b} z, q)$, where sn is the Jacobi elliptic function with the elliptic modulus $q\left(0<q^{2}<1\right)$. The magnetic kink crystal phase is sometimes called the soliton lattice (SL) state. The background material behind this solution is summarized in Appendix A. As the modulus q increases, the lattice period of the kink crystal increases and finally diverges at $q \rightarrow 1$, where the incommensurate-tocommensurate (IC-C) phase transition occurs.

Now, our goal is to find out possible nonlinear excitations with small deflections of spins around the basal $x y$ plane. For this purpose we use the expansion

$$
\begin{equation*}
\theta(z, t)=\frac{\pi}{2}+\widetilde{s} \theta_{1}(z, t) \tag{4}
\end{equation*}
$$

with the small fluctuation $\theta_{1} \ll 1$ with \widetilde{s} being a dummy variable controlling an order of the expansion. Plugging this into Eqs. (2) and (3), we have

$$
\begin{equation*}
0=b \sin \varphi+\widetilde{s} \frac{\partial \theta_{1}}{\partial t}+\frac{\partial^{2} \varphi}{\partial z^{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+\widetilde{s} \theta_{1}\left[2 \beta^{2}-\left(\frac{\partial \varphi}{\partial z}\right)^{2}-b \cos \varphi-a \frac{\partial \varphi}{\partial z}\right]-\widetilde{s} \frac{\partial^{2} \theta_{1}}{\partial z^{2}}=0 \tag{6}
\end{equation*}
$$

where the terms linear in \widetilde{s} are hold.
The further analytical treatment is performed in a regime of the strong easy-plane anisotropy, i.e., $a^{2} \ll \beta^{2}$ (this condition is self-consistently derived at the end of Sec. III). For spin configurations, where the last four terms in Eq. (6) may be neglected (see the end of Sec. III), one obtains the relation

$$
\begin{equation*}
\theta_{1}=-\frac{1}{2 \widetilde{s} \beta^{2}} \frac{\partial \varphi}{\partial t} \tag{7}
\end{equation*}
$$

which establishes a conjugate relation between the dynamical θ and φ variables. Physical meaning of this relation is also captured by noting that Eq. (7) describes the Larmor precession caused by the demagnetizing field $2 \widetilde{s} \beta^{2} \theta_{1}$ coming from the molecular field $2 \beta^{2} M_{z} \hat{\mathbf{z}}$ originated from the anisotropy term. This field gives the torque $-M \times\left(2 \beta^{2} M_{z} \hat{\mathbf{z}}\right)$, which leads to $\dot{M}_{y}=2 \beta^{2} M_{z} M_{x}$. The substitutions $M_{x} \simeq 1$,
$M_{y} \simeq \varphi$, and $M_{z} \simeq-\widetilde{s} \theta_{1}$ immediately leads to Eq. (7). On the other hand, the anisotropy term $\beta^{2} M_{z}^{2} \simeq \beta^{2} \tilde{s}^{2} \theta_{1}^{2}$ clearly plays a role of the restoring harmonic potential for the θ fluctuations. This cooperative coupling of θ and φ motions eventually results in an emergence of the stable soliton. The same relation was discussed in the context of soliton dynamics in one-dimensional magnets. ${ }^{22}$ To find a class of nontrivial solutions we plug Eq. (7) into Eq. (5), and obtain the ($1+1$)-dimensional SG equation,

$$
\begin{equation*}
b \sin \varphi-\frac{1}{2 \beta^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0 . \tag{8}
\end{equation*}
$$

We use Eqs. (7) and (8) to find the soliton solutions.

III. BÄCKLUND TRANSFORMATION

The BT is known to be a powerful method to systematically construct nonlinear solution in a certain class of partial differential equations. The case of the sine-Gordon equation is briefly summarized in Appendix B. In the new coordinates $\sqrt{2 b} \beta t \rightarrow t, \sqrt{b} z \rightarrow z$, two solutions φ and $\widetilde{\varphi}$ of the SG equation $\varphi_{t t}-\varphi_{z z}=\sin \varphi$ are related via the BT with the real valued parameter $k \neq 0$ (Ref. 23)

$$
\left\{\begin{array}{l}
\widetilde{\varphi}_{t}=\varphi_{z}+k \sin \left(\frac{\varphi+\tilde{\varphi}}{2}\right)-\frac{1}{k} \sin \left(\frac{\varphi-\tilde{\varphi}}{2}\right) \tag{9}\\
\widetilde{\varphi}_{z}=\varphi_{t}+k \sin \left(\frac{\varphi+\widetilde{\varphi}}{2}\right)+\frac{1}{k} \sin \left(\frac{\varphi-\widetilde{\varphi}}{2}\right)
\end{array}\right.
$$

We here use the notation $\varphi_{z}=\partial_{z} \varphi=\partial \varphi / \partial z, \quad \varphi_{z z}=\partial_{z}^{2} \varphi$ $=\partial^{2} \varphi / \partial z^{2}$, and so on. A pair of the solutions is written in a form,

$$
\left\{\begin{align*}
\varphi(z) & =\pi+4 \tan ^{-1}[F(z)] \tag{10}\\
\widetilde{\varphi}(z, t) & =\pi+4 \tan ^{-1}[V(z, t)]
\end{align*}\right.
$$

It is easy to verify that the background kink crystal solution, $\sin (\varphi / 2)=\operatorname{sn}(z, q)$, is reproduced by choosing $F(z)$ as

$$
\begin{equation*}
F(z)=\frac{\operatorname{cn}(z, q)}{1+\operatorname{sn}(z, q)} \tag{11}
\end{equation*}
$$

The dependence of V upon the time and the coordinate should be found through the BT.

To reduce a complexity, it is convenient to rewrite Eq. (9) in terms of the functions F and V. Then, we have the first and the second BTs, respectively, given by

$$
\begin{align*}
V_{t}= & \frac{2 k F_{z}+F\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)} V^{2}+\frac{\left(F^{2}-1\right)\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)} V \\
& +\frac{2 k F_{z}-F\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
V_{z}=\frac{V\left(F^{2}-1\right)\left(k^{2}+1\right)+F\left(V^{2}-1\right)\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)} \tag{13}
\end{equation*}
$$

The further strategy is straightforward. The time dependence is first found from Eq. (12) and then followed by solving of Eq. (13).

A. Solving BT Equations

First, we solve BT Eq. (12). The right-hand side of Eq. (12) is quadratic in V. To reach a simplification we use the shift

$$
\begin{equation*}
V(z, t)=U(z, t)-\frac{\left(F^{2}-1\right)\left(k^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)} \tag{14}
\end{equation*}
$$

which transforms Eq. (12) into

$$
\begin{equation*}
U_{t}+A(z) U^{2}+B(z)=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
A(z)=-\frac{F k^{2}+2 k F_{z}+F}{2 k\left(1+F^{2}\right)} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
B(z)= & {\left[8 k\left(1+F^{2}\right)\left(F k^{2}+2 k F_{z}+F\right)\right]^{-1}\left[-16 k^{2} F_{z}^{2}\right.} \\
& \left.+F^{4}\left(k^{2}-1\right)^{2}+\left(k^{2}-1\right)^{2}+2 F^{2}\left(1+k^{4}+6 k^{2}\right)\right] . \tag{17}
\end{align*}
$$

Another simplification is achieved through the identity,

$$
\begin{equation*}
A(z) B(z)=\frac{1}{16}\left(\frac{4}{q^{2}}-k^{2}-\frac{1}{k^{2}}-2\right)=s \tag{18}
\end{equation*}
$$

In the sector $s<0$, when the Bäcklund parameter k is constrained by $\left|k+k^{-1}\right|>2 / q$, Eq. (15) can be immediately resolved

$$
\begin{equation*}
U(z, t)=\frac{\mathcal{S}}{A(z)} \tanh \left[\frac{\mathcal{S}}{A(z)}\left\{A(z) t-C_{1}(z)\right\}\right], \tag{19}
\end{equation*}
$$

where $s=-\mathcal{S}^{2}$, and $C_{1}(z)$ is a function of the coordinate. The another sector $s>0$ contains no localized solitons. The time dependence that we need is recovered from Eq. (14)

$$
\begin{align*}
V(z, t)= & \frac{\mathcal{S}}{A(z)} \tanh \left[\frac{\mathcal{S}}{A(z)}\left\{A(z) t-C_{1}(z)\right\}\right] \\
& -\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)} \tag{20}
\end{align*}
$$

Second, we solve BT Eq. (13). The unknown function $C_{1}(z)$ should be determined from the second BT equation. The derivation is relegated to Appendix C and the result has the form

$$
\begin{equation*}
\frac{A_{z}}{A}\left(A t-C_{1}\right)-\left(A_{z} t-C_{1 z}\right)=\frac{F\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)} \tag{21}
\end{equation*}
$$

The substitution $C_{1}(z)=A(z) \mathcal{M}(z)$ transforms this equation into

$$
\mathcal{M}_{z}(z)=\frac{F\left(k^{2}-1\right)}{2 A k\left(1+F^{2}\right)}
$$

By using the explicit expressions for $F(z)$ and

$$
\begin{equation*}
A(z)=\frac{1}{4 k}\left(\frac{2 k}{q} \operatorname{dn}(z, q)-\left(k^{2}+1\right) \operatorname{cn}(z, q)\right), \tag{22}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\mathcal{M}_{z}(z)=\frac{\left(1-k^{2}\right) q \operatorname{cn}(z, q)}{\left(1+k^{2}\right) q \operatorname{cn}(z, q)-2 k \operatorname{dn}(z, q)} \tag{23}
\end{equation*}
$$

After integration, this yields

$$
\begin{align*}
\mathcal{M}(z)= & \frac{1}{4 q \mathcal{S}} \log \left|\frac{4 \mathcal{S} k-\left(k^{2}-1\right) \operatorname{sn}(z, q)}{4 \mathcal{S} k+\left(k^{2}-1\right) \operatorname{sn}(z, q)}\right|-\frac{k^{2}+1}{k^{2}-1} z \\
& +\frac{4 k^{2}\left(1-q^{2}\right)\left(1+k^{2}\right)}{\left(1-k^{2}\right)\left[\left(1+k^{2}\right)^{2} q^{2}-4 k^{2}\right]} \widetilde{\Pi}\left(n, \mathrm{am}(z, q), q^{2}\right) \tag{24}
\end{align*}
$$

The function $\widetilde{\Pi}$ is defined by

$$
\tilde{\Pi}\left[n, \operatorname{am}(z, q), q^{2}\right]=\left\{\begin{aligned}
& \Pi\left[n, \operatorname{am}(z, q), q^{2}\right] \text { for } n<1, \\
&-\Pi\left[N, \operatorname{am}(z, q), q^{2}\right]+\mathcal{F}\left[\operatorname{am}(z, q), q^{2}\right]+\left(1 / 2 p_{1}\right) \log \left|\frac{\operatorname{cn}(z, q) \operatorname{dn}(z, q)+p_{1} \operatorname{sn}(z, q)}{\operatorname{cn}(z, q) \operatorname{dn}(z, q)-p_{1} \operatorname{sn}(z, q)}\right| \text { for } n>1,
\end{aligned}\right.
$$

where am is the Jacobi elliptic function, and $n=(1$ $\left.-k^{2}\right)^{2} q^{2} /\left[\left(1+k^{2}\right)^{2} q^{2}-4 k^{2}\right]$ is the characteristic index of the elliptic integral of the third kind Π. Furthermore, $N=q^{2} / n$, $p_{1}=\sqrt{(n-1)(1-N)}$, and $\mathcal{F}(\ldots)$ is the elliptic integral of the first kind (see formulas 17.7.7 and 17.7.8 in Ref. 24). Equations (20), (22), and (24) determine explicitly the solution conjugated to the soliton lattice through the Bäcklund transformation. To complete we focus on the asymptotic behavior of the found solution.

For definiteness we choose $|k|>1$, the opposite case $|k|$ <1 can be analogously treated. By noting that $\mathcal{M}(z$ $\rightarrow \pm \infty)= \pm \infty$ in this case, and vise versa for $|k|<1$, one obtains

$$
\begin{align*}
V(z \rightarrow \pm \infty, t) & \approx \mp \frac{\mathcal{S}}{A(z)}-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)} \\
& =\frac{k^{2}-1 \pm 4 \mathcal{S} k+F^{2}\left(1-k^{2} \pm 4 \mathcal{S} k\right)}{2\left(F k^{2}+2 k F_{z}+F\right)} \\
& =q \frac{\left[\left(k^{2}-1\right) \operatorname{sn}(z) \pm 4 k \mathcal{S}\right]}{\left(1+k^{2}\right) q \operatorname{cn}(z)-2 k \operatorname{dn}(z)} \tag{25}
\end{align*}
$$

if to be used for the explicit expressions for $F(z)$ and $F_{z}(z)$.
Now, it is easy to prove that Eq. (25) may be rewritten in the form

$$
\begin{equation*}
V(z \rightarrow \pm \infty, t) \approx \frac{\mathrm{cn}(z+\delta, q)}{1+\operatorname{sn}(z+\delta, q)} \tag{26}
\end{equation*}
$$

which is similar to that used for $F(z)$ given by Eq. (11). To find the shift δ, and explicit values of $\operatorname{sn}(\delta, q), \mathrm{cn}(\delta, q)$, and $\operatorname{dn}(\delta, q)$, we use the addition theorems for the elliptic functions,

$$
\mathrm{cn}(z+\delta)=\frac{\operatorname{cn}(z) \operatorname{cn}(\delta)-\operatorname{sn}(z) \operatorname{sn}(\delta) \operatorname{dn}(z) \operatorname{dn}(\delta)}{1-q^{2} \operatorname{sn}^{2}(z, q) \operatorname{sn}^{2}(\delta, q)}
$$

$$
\operatorname{sn}(z+\delta)=\frac{\operatorname{sn}(z) \operatorname{cn}(\delta) \operatorname{dn}(\delta)+\operatorname{sn}(\delta) \operatorname{dn}(z) \operatorname{cn}(z)}{1-q^{2} \operatorname{sn}^{2}(z) \operatorname{sn}^{2}(\delta)}
$$

where the elliptic modulus q is omitted. Recalling the periodicity of form (26), and requiring the function given by Eq. (26) to coincide with the values of Eq. (25) in the boundary points 0 and $2 K$ of the period, we obtain the desired result,

$$
\begin{gather*}
\operatorname{sn}(\delta, q)=-\frac{2 k}{\left(1+k^{2}\right) q} \\
\operatorname{cn}(\delta, q)= \pm \frac{4 k \mathcal{S}}{1+k^{2}} \\
\operatorname{dn}(\delta, q)=\frac{1-k^{2}}{1+k^{2}} \tag{27}
\end{gather*}
$$

From this result, we obtain the asymptotic behavior,

$$
\widetilde{\varphi}(z \rightarrow \pm \infty, t) \approx \pi+4 \tan ^{-1}\left[\frac{\operatorname{cn}(z+\delta, q)}{1+\operatorname{sn}(z+\delta, q)}\right]
$$

where the sign plus in Eq. (27) is related with the limit z $\rightarrow \infty$, whereas the minus is related with $z \rightarrow-\infty$. At the end, we note an analogy of the introduced shift δ with the shift of atoms relative to potential minima in the model of Frank and Van der Merwe (FVdM). ${ }^{25}$ Now, we have done everything we need by using BT and found out that the BT creates an additional kink over the background kink crystal state and causes an expansion of the periodical spin structure at infinity.

B. Case near the incommensurate-to-commensurate phase boundary

We consider in details the case near the IC-C phase boundary $(q \rightarrow 1)$. In this limit, the lattice period of the kink crystal tends to go to infinity and the background state consists of a solitary kink described by $\varphi(z)=2 \sin ^{-1}(\tanh z)$. Fortunately, in this limit, Eq. (23) can be integrated by using
elementary functions. By using the relationships $\mathrm{cn}(z, 1)$ $=1 / \cosh z, \operatorname{sn}(z, 1)=\tanh z$, and $\operatorname{dn}(z, 1)=1 / \cosh z$, Eq. (23) is integrated to give

$$
\mathcal{M}(z)=\frac{1+k}{1-k} z+\mathcal{M}_{0}
$$

where \mathcal{M}_{0} is a constant. The same simplifications yield

$$
A(z)=-\frac{(k-1)^{2}}{4 k \cosh z}
$$

and $\quad F_{z}(z, 1)=-[\cosh z(1+\tanh z)]^{-1}, \quad F(z, 1)=[\cosh z(1$ $+\tanh z)]^{-1}$. The parameter \mathcal{S} in Eq. (19) reads as $\mathcal{S}=\left(k^{2}\right.$ $-1) /(4 k)$ in this case.

After collecting the results together, one eventually obtains (the initial coordinates are restored)

$$
\begin{align*}
V(z, t)= & \frac{k+1}{k-1}\{\sinh \sqrt{b} z+\cosh \sqrt{b} z \\
& \left.\times \tanh \left[\frac{k^{2}-1}{4 k}\left(\frac{1+k}{1-k} \sqrt{b} z+\mathcal{M}_{0}-\sqrt{2 b} \beta t\right)\right]\right\}, \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{\varphi}(z, t)=\pi+4 \tan ^{-1}[V(z, t)], \tag{29}
\end{equation*}
$$

where $v_{0}=(1-k) /(1+k)$ can be thought of as the "velocity" of the soliton.

The polar angle computed via Eq. (7) takes the form,

$$
\begin{align*}
\theta(z, t)= & \frac{\pi}{2}+\sqrt{\frac{b}{2 \beta^{2}}} \frac{(k+1)^{2}}{k} \frac{1}{1+V^{2}} \\
& \times \frac{\cosh \sqrt{b} z}{\cosh ^{2}\left\{\frac{k^{2}-1}{4 k}\left(\frac{1+k}{1-k} \sqrt{b} z+\mathcal{M}_{0}-\sqrt{2 b} \beta t\right)\right\}} \tag{30}
\end{align*}
$$

This solution is viewed as a "collision" of two kinks as shown in Fig. 2. One of the kinks is "at rest" as a member of the background configuration while the other travels with the speed v_{0} and goes through the background without changing its shape.

Having in hands the exact solution one may find an applicability of assumptions made in Eq. (6). One of them amounts to $b \ll \beta^{2}$, i.e., weak magnetic fields are relevant. Note that magnetic field strength b is limited by the critical value $b_{c} \sim a^{2}$ of the IC-C phase transition (see Appendix A). It means that $b \leqq a^{2} \ll \beta^{2}$, i.e., the case $|a| \ll|\beta|$ realizes. The conditions $\left|a \varphi_{z}\right| \ll \beta^{2}$ and $\varphi_{z}^{2} \ll \beta^{2}$ produce the restrictions

$$
\begin{equation*}
\left|\frac{k^{2}-1}{k}\right| \ll \frac{\beta^{2}}{|a| \sqrt{b}}, \tag{31}
\end{equation*}
$$

and

FIG. 2. A profile of the soliton excitation at $q=1$ in a spiral with an easy-plane anisotropy directly (a) before and (b) after collision of the kinks.

$$
\begin{equation*}
\left|\frac{k^{2}-1}{k}\right| \ll \frac{|\beta|}{\sqrt{b}} \tag{32}
\end{equation*}
$$

respectively. Apparently, the last condition [Eq. (32)] absorbs the first one [Eq. (31)]. To get these inequalities we used the peak value of φ_{z} at the point $z=0$ at $t=0$.

Another requirement arises from $\left|d^{2} \theta_{1} / d z^{2}\right| \ll \beta^{2} \theta_{1}$ that yields the restriction

$$
\begin{equation*}
\left|\frac{k^{2}+1}{k}\right| \ll \frac{|\beta|}{\sqrt{b}} . \tag{33}
\end{equation*}
$$

To obtain this condition, we use the asymptotic of $\left|\left(d^{2} \theta_{1} / d z^{2}\right) / \theta_{1}\right|$ at $z \rightarrow \pm \infty$.

At last, Eq. (7) implies that $\left|\varphi_{t}\right| \ll \beta^{2}$ that results in

$$
\begin{equation*}
\frac{(1+k)^{2}}{|k|} \ll \frac{|\beta|}{\sqrt{b}} \tag{34}
\end{equation*}
$$

for the peak value of $\left|\varphi_{t}\right|$ at $z=0$ and $t=0$.
Note that the constraint $|k+1 / k|>2 / q$ excludes only the points $k= \pm 1$. The inequalities [Eqs. (31)-(34)] determine in total the regions near the points, where Eqs. (6) and (7) are valid. It is easy to see that the strongest condition is given by Eq. (33) for $k<0$ and by Eq. (34) for $k>0$.

IV. ENERGY AND MOMENTUM

Next we consider the energy and momentum associated with creation of the found soliton. Energy density (1) is written in polar coordinates as
$\mathcal{H}=\frac{1}{2}\left(\theta_{z}^{2}+\sin ^{2} \theta \varphi_{z}^{2}\right)+\frac{a}{2} \sin ^{2} \theta \varphi_{z}+\beta^{2} \cos ^{2} \theta+b \sin \theta \cos \varphi$.

Using expansions (4) and (7), and neglecting terms higher than second-order derivatives, one obtains

$$
\begin{equation*}
\mathcal{H} \approx \frac{1}{2} \varphi_{z}^{2}+\frac{a}{2} \varphi_{z}+\frac{\varphi_{t}^{2}}{4 \beta^{2}}+b \cos \varphi\left(1-\frac{\varphi_{t}^{2}}{8 \beta^{4}}\right) . \tag{36}
\end{equation*}
$$

Due to the condition $\left|\varphi_{t}\right| \ll \beta^{2}$ imposed by Eq. (7) the term proportional to $b \varphi_{t}^{2}$ may be ignored and the energy density \mathcal{H} measured in b units becomes

$$
\mathcal{H}=\cos \varphi+\frac{1}{2}\left(\varphi_{z}^{2}+\varphi_{t}^{2}\right)+c \varphi_{z},
$$

where $c=a /(2 \sqrt{b})$, and the rescaled coordinates $\sqrt{2 b} \beta t \rightarrow t$ and $\sqrt{b} z \rightarrow z$ are again used. Following the method suggested in Ref. 26, we find the difference between the energy densities calculated on the solutions coupled by the BT

$$
\begin{align*}
\mathcal{H}(\widetilde{\varphi})-\mathcal{H}(\varphi)= & c\left(\widetilde{\varphi}_{z}-\varphi_{z}\right) \\
& +\frac{1}{k^{2}}\left[k^{2} \sin \left(\frac{\varphi+\widetilde{\varphi}}{2}\right)+\sin \left(\frac{\varphi-\widetilde{\varphi}}{2}\right)\right]^{2} \\
& +\left[k \sin \left(\frac{\varphi+\widetilde{\varphi}}{2}\right)+\frac{1}{k} \sin \left(\frac{\varphi-\widetilde{\varphi}}{2}\right)\right] \varphi_{t} \\
& +\left[k \sin \left(\frac{\varphi+\widetilde{\varphi}}{2}\right)-\frac{1}{k} \sin \left(\frac{\varphi-\tilde{\varphi}}{2}\right)\right] \varphi_{z}, \tag{37}
\end{align*}
$$

where transformation (9) is employed. This amounts to a derivative of the function

$$
\begin{equation*}
\Psi^{(e)}=c(\widetilde{\varphi}-\varphi)+\frac{2}{k} \cos \left(\frac{\varphi-\tilde{\varphi}}{2}\right)-2 k \cos \left(\frac{\varphi+\tilde{\varphi}}{2}\right), \tag{38}
\end{equation*}
$$

with respect to z. Thus, the difference of energy (37) integrated over the total length L of the system is equal to

$$
\int_{0}^{L} d z\{\mathcal{H}(\widetilde{\varphi})-\mathcal{H}(\varphi)\}=\Psi^{(e)}(L)-\Psi^{(e)}(0)
$$

The momentum density $\mathcal{P}=\hbar S(1-\cos \theta) \varphi_{z}$ is treated in the same manner. The spin value S is related with the magnetic moment by $\mathbf{M}=2 \mu_{0} \mathbf{S}$. Using again the expansions (4) and (7), and the new coordinates, one obtains

$$
\mathcal{P} \approx \varphi_{z}-\nu \varphi_{z} \varphi_{t}
$$

of the same accuracy as in case (36). Here, the momentum \mathcal{P} is measured in the units $\hbar S \sqrt{b}$, and $\nu=\sqrt{b / 2 \beta^{2}}$. The difference between the momentum densities of the solutions conjugated by the BT amounts to

$$
\mathcal{P}(\widetilde{\varphi})-\mathcal{P}(\varphi)=\Psi_{z}^{(m)}
$$

where the function $\Psi^{(m)}$ is given by

$$
\begin{equation*}
\Psi^{(m)}=\widetilde{\varphi}-\varphi+\nu\left[\frac{2}{k} \cos \left(\frac{\varphi-\tilde{\varphi}}{2}\right)+2 k \cos \left(\frac{\varphi+\widetilde{\varphi}}{2}\right)\right] . \tag{39}
\end{equation*}
$$

Therefore, the additional momentum with reference to the background kink crystal state becomes

$$
\int_{0}^{L} d z\{\mathcal{P}(\widetilde{\varphi})-\mathcal{P}(\varphi)\}=\Psi^{(m)}(L)-\Psi^{(m)}(0)
$$

V. MAGNON CURRENT

Once the isolated soliton begins to move, it carries the magnon current. This fact is intuitively understood based on the Döring-Becker-Kittel mechanism, ${ }^{14-16}$ which explains the inertial motion of the conventional Bloch wall in ferromagnets, where the magnetization rotates through the plane of the wall. The translation of the domain wall is driven by the appearance of the local demagnetization field inside the wall that causes the precessional motion of the magnetization within the plane. In our case, the magnon current transferred by the θ fluctuations is determined through the definition of the accumulated magnon density ρ_{s} in the total magnon density $\mathcal{N}=g \mu_{B} S(1-\cos \theta)=\rho_{0}+\rho_{s}$, where the "superfluid" part $\rho_{s}=-g \mu_{B} S \cos \theta$ is conjugated with the magnon time-even current carried by the θ fluctuations. ${ }^{13}$ Then, we obtain the magnon current via the continuity equation $\mathcal{N}_{t}+J_{z}^{z}=0$. Here, we compute the magnon current density carried by the traveling soliton in the limit of $q \rightarrow 1$, where the analytical solution with the intrinsic boost transformation is available based on Eqs. (29) and (30).

The additional magnon density associated with the solutions given by Eqs. (29) and (30) is

$$
\delta \mathcal{N}=-\frac{S}{2 \beta^{2}} \widetilde{4}_{t}
$$

Taking the time derivative of $\delta \mathcal{N}$ and using the property $\widetilde{\varphi}_{t}$ $=-v_{0} \widetilde{\varphi}_{z}$, we get $\delta \mathcal{N}_{t}=-J_{z}^{z}$, where the current $J^{z}=S v_{0} \theta_{1}$ has the explicit form

$$
\begin{align*}
J^{z}(z, t)= & S \sqrt{\frac{b}{2 \beta^{2}}} \frac{\left(1-k^{2}\right)}{k} \frac{1}{1+V^{2}} \\
& \times \frac{\cosh z}{\cosh ^{2}\left\{\frac{k^{2}-1}{4 k}\left(\frac{1+k}{1-k} z+\mathcal{M}_{0}-t\right)\right\}} \tag{40}
\end{align*}
$$

where the rescaled coordinates are again used.
Note a significant difference of the result with the magnon current due to the translational motion of the whole kink crystal considered by some of the authors recently. ${ }^{13}$ In the latter case, the sliding motion of the whole kink crystal excites massive spin-wave excitations of the θ mode above the traveling state that is responsible for a magnon density transport. In the present case, the nontrivial soliton solution itself carries a localized magnon density (the magnon "droplet") due to the intrinsic boost symmetry.

In Fig. 3(a), we depict the background topological charge $\mathcal{Q}=\partial_{z} \varphi$ associated with the standing kink around

FIG. 3. (a) The background topological charge $\mathcal{Q}=\partial_{z} \varphi$ associated with the standing kink. [(b-1)-(b-6)] The magnon density distribution $J^{z}(z, t)$ carried by the traveling kink at the time $t=-20,-4,-2,0,2$, and 4 , respectively. The soliton travels from left to right. The magnon density is largely amplified when the soliton surfs over the standing kink.
$z=0$ in the $q \rightarrow 1$ limit, i.e., $\varphi(z)=2 \sin ^{-1}(\tanh z)$. In Figs. 3(b-1)-3(b-6), we show the magnon density distribution $J^{z}(z, t)$ carried by the traveling kink at the time $t=-20,-4$, $-2,0,2$, and 4 , respectively, where the soliton travels from
left to right. The traveling soliton collides with the standing kink at $t=0$. It is clearly seen that the magnon density is largely amplified when the soliton "surfs" over the standing kink.

VI. CONCLUDING REMARKS

In summary, by using the Bäcklund transformation technique we investigated soliton excitations in the chiral helimagnetic structure with the antisymmetric DzyaloshinskiiMoryia exchange and with the strong easy-plane anisotropy, which is experienced by the external magnetic field applied perpendicular to the modulation axis. The soliton we found was obtained, as an output of the BT, from the kink crystal solution as an input. We emphasize that the soliton has definite chirality because of the presence of the DM term $D \partial \varphi / \partial z$ in the Hamiltonian density [Eq. (1)]. The presence of this term lifts the degeneracy between the left-handed soliton and the right-handed antisoliton solutions. For example, in Eq. (10), the right-handed antisoliton solutions may be given by changing the sign of the phase gradient, i.e., $\varphi(z)$ $=\pi-4 \tan ^{-1}[F(z)]$, and $\widetilde{\varphi}(z, t)=\pi-4 \tan ^{-1}[V(z, t)]$. Although these solutions satisfy the same SG equation as Eq. (8), their static energies are higher than the left-handed soliton solution given by Eq. (10).

In the class of the found solutions we identify the soliton with the intrinsic boost transformation. An essential point is that the traveling soliton cannot exist without the kink crystal (soliton lattice) as a topological background configuration. It means that the nontrivial topological object is excited over the topological vacuum. The standing kink crystal enables the soliton to emerge and transport the magnon density. As compared with the motion of the whole kink crystal with a heavy mass, ${ }^{13}$ our soliton is a well localized object with a light mass. This traveling soliton can be regarded as a promising candidate to transport magnetic information by using chiral helimagnet.

ACKNOWLEDGMENTS

We acknowledge Yu. A. Izyumov for the interest to the work, and N. E. Kulagin pointed out us to Ref. 26. J.K. acknowledges Grant-in-Aid for Scientific Research (A) (Contract No. 18205023) and (C) (Contract No. 19540371) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

APPENDIX A: FORMATION OF THE KINK CRYSTAL STATE

We here discuss the kink crystal (soliton lattice) formation from a general viewpoint. Let us consider a magnetic system described by the two-component order parameter (OP) (η, ξ) with the Ginzburg-Landau functional, ${ }^{5}$

$$
\begin{align*}
\Phi= & \frac{1}{L} \int d z\left[r(\eta \xi)+u(\eta \xi)^{2}+w\left(\eta^{n}+\xi^{n}\right)\right. \\
& \left.+i \sigma\left(\eta \frac{d \xi}{d z}-\xi \frac{d \eta}{d z}\right)+\gamma \frac{d \eta}{d z} \frac{d \xi}{d z}\right] \tag{A1}
\end{align*}
$$

where the conditions $u>0$ and $\gamma>0$ ensure a stability of extremal points of the functional. The signs of w and σ are arbitrary. We assume the spin arrangement is uniform in the x and y directions, and hence the volume integral is implic-
itly reduced to one-dimensional integration over z axis, where L is a crystal size in this direction. In the approximation of constant OP modulus, $\rho=$ const, when $\eta=\rho e^{i \varphi}$ and ξ $=\rho e^{-i \varphi}$, functional (A1) depends only on the phase φ,

$$
\begin{align*}
\Phi= & r \rho^{2}+u \rho^{4}+\frac{1}{L} \int d z\left\{\gamma \rho^{2}\left(\frac{d \varphi}{d z}\right)^{2}+2 \sigma \rho^{2} \frac{d \varphi}{d z}\right. \\
& \left.+2 w \rho^{n} \cos (n \varphi)\right\} \tag{A2}
\end{align*}
$$

and includes ρ as a parameter. Minimization of Φ with respect to φ results in the equation

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}}(n \varphi)+v \sin (n \varphi)=0 \tag{A3}
\end{equation*}
$$

where the effective anisotropy parameter is defined by v $=n^{2}(w / \gamma) \rho^{(n-2)}$. The case of magnetic field corresponds to $n=1$. With the notations used in the main text $v=b, \gamma=1 / 2$, $\sigma=a / 4, \omega=b / 2$, and $\rho=1$.

Without the nonlinear anisotropy term, Eq. (A3) is resolved by $\varphi=Q z$ which describes a one-harmonic IC structure, for example, a simple helimagnet, with the wave vector $Q=-\sigma / \gamma$. At finite v, the exact periodic solution is given by

$$
\begin{equation*}
\sin \left[\frac{n}{2} \varphi(z)\right]=\operatorname{sn}\left(\frac{\sqrt{v}}{q} z, q\right) \tag{A4}
\end{equation*}
$$

The elliptic modulus q must be determined by minimizing the corresponding energy,

$$
\begin{equation*}
\Phi_{\mathrm{IC}}=r \rho^{2}+u \rho^{4}-2 \rho^{2}|\sigma| \frac{\pi \sqrt{v}}{n q K}+2 \rho^{2} \gamma \frac{v}{n^{2}}\left(\frac{q-2}{q^{2}}+\frac{4}{q^{2}} \frac{E}{K}\right) \tag{A5}
\end{equation*}
$$

where K and E denote the elliptic integrals of the first and second kinds, respectively. This procedure yields q as a function of the anisotropy parameter v,

$$
\begin{equation*}
E / q=\sqrt{v_{c} / v} \tag{A6}
\end{equation*}
$$

with the critical anisotropy parameter being defined by v_{c} $=n^{2} \pi^{2} \sigma^{2} / 16 \gamma^{2}$ or $b_{c}=\pi^{2} a^{2} / 64$ in the notations of the main text. A change in q from zero to one corresponds to a change in v from zero to v_{c}. Varying the parameter v causes a drastic change in the behavior of amplitude (A4). The region of an almost constant phase within the period l comes up at v $\rightarrow v_{c}$ while the phase rapidly changes at the ends of the period, where the overall phase change is $2 \pi / n$. The region of the constant phase increases as $v \rightarrow v_{c}$. For $0<v<v_{c}$, the kink crystal phase is stabilized, where a periodic array of commensurate phase regions separated by the kinks (solitons). The spatial period is given by $l=4 q K / \sqrt{v}$, and it diverges logarithmically at $v \rightarrow v_{c}$, i.e., $q \rightarrow 1$,

$$
\begin{equation*}
l=(4 q / \sqrt{v}) \ln \left[4 / \sqrt{1-q^{2}}\right] \tag{A7}
\end{equation*}
$$

As it follows from Eq. (A6) the ratio \sqrt{v} / q tends to $\sigma / 2 \gamma$ or to $a / 4$ in the notations of the main text, at $q \rightarrow 0$. Taking into account that $\operatorname{sn}(z, 0)=\sin z$, one see that soliton lattice (A4) transforms into the simple spiral $\varphi=a z / 2$ in this limit.

APPENDIX B: BÄCKLUND TRANSFORMATION

An existence of exact multisoliton solutions is a peculiar property of the SG equation, and the BT is a systematic way to obtain them. Indeed, let both φ_{0} and φ_{1} be solutions of the SG equation,

$$
\partial_{+} \partial_{-} \varphi=\sin \varphi,
$$

written via light-cone coordinates $x^{+}=(x+t) / 2$ and $x^{-}=(x$ $-t) / 2$. Then, the Bäcklund transformation $\varphi_{1}=\mathcal{B}_{k}\left[\varphi_{0}\right]$ is given by

$$
\begin{equation*}
\partial_{ \pm}\left(\frac{\varphi_{1} \mp \varphi_{0}}{2}\right)=k^{ \pm 1} \sin \left(\frac{\varphi_{1} \pm \varphi_{0}}{2}\right) \tag{B1}
\end{equation*}
$$

where $k \neq 0$ is a real parameter. The relation is consistent with the SG equation, i.e., $\partial_{-} \partial_{+} \varphi_{0}=\sin \varphi_{0}$ and $\partial_{-} \partial_{+} \varphi_{1}$ $=\sin \varphi_{1}$. Any two functions φ_{0} and φ_{1} that satisfy the BT necessarily solve the SG equation. Equation (B1) is nothing but Eq. (9).

It turns out that analytical expression for multisoliton solutions may be outlined by an entirely algebraic procedure because the BT embodies a nonlinear superposition principle known as Bianchi's permutation theorem. Suppose that φ_{0} is a seed SG solution and $\varphi_{1,2}$ are the BTs of φ_{0}, i.e.,

$$
\varphi_{1}=\mathcal{B}_{k_{1}}\left[\varphi_{0}\right], \quad \varphi_{2}=\mathcal{B}_{k_{2}}\left[\varphi_{0}\right] .
$$

Two successive BTs commute, i.e., $\mathcal{B}_{k_{1}} \mathcal{B}_{k_{2}}=\mathcal{B}_{k_{2}} \mathcal{B}_{k_{1}}$, if the Bianchi's identity,

$$
\varphi_{3}=\varphi_{0}+4 \tan ^{-1}\left[\frac{k_{2}+k_{1}}{k_{2}-k_{1}} \tan \left(\frac{\varphi_{2}-\varphi_{1}}{4}\right)\right],
$$

is fulfilled. It means that the nonlinear superposition rule holds $\varphi_{3}=\mathcal{B}_{k 2}\left[\varphi_{1}\right], \varphi_{3}=\mathcal{B}_{k 1}\left[\varphi_{2}\right]$. This algebraic relation indicates that a series of soliton solutions is given by φ $=4 \tan ^{-1}[f / g]$, which supports the forms of Eq. (10).

APPENDIX C: DERIVATION OF EQ. (21)

To derive the determining equation for the function $C_{1}(z)$ we rewrite Eq. (13) through the function $U(z, t)$

$$
\begin{aligned}
U_{z}= & \frac{F F_{z}\left(k^{2}-1\right)}{F k^{2}+2 F_{z} k+F}-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)\left(F_{z} k^{2}+2 F_{z z} k+F_{z}\right)}{2\left(F k^{2}+2 F_{z} k+F\right)^{2}}+\frac{F^{2}\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}\left(U-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)}\right) \\
& -\frac{\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}\left(U-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)}\right)+\frac{F\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)}\left[\left(U-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{2\left(F k^{2}+2 k F_{z}+F\right)}\right)^{2}-1\right],
\end{aligned}
$$

and use Eq. (19) to obtain the relation,

$$
\begin{align*}
& \frac{\mathcal{S}}{A}\left[\frac{F^{2}\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}+\frac{A_{z}}{A}-\frac{\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}-\frac{F\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)} \frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{\left(F k^{2}+2 k F_{z}+F\right)}\right] \tanh (T)+\left(\frac{\mathcal{S}}{A}\right)^{2} \frac{1}{\cosh ^{2}(T)} \\
& \quad \times\left[\frac{A_{z}}{A}\left(A t-C_{1}\right)-\left(A_{z} t-C_{1 z}\right)-\frac{F\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)}\right]-\frac{\left(k^{2}+1\right)\left(k^{2}-1\right)\left(F^{2}-1\right)^{2}}{4 k\left(1+F^{2}\right)\left(F k^{2}+2 k F_{z}+F\right)}+\frac{\left(k^{2}-1\right) F F_{z}}{F k^{2}+2 k F_{z}+F}-\frac{\left(k^{2}-1\right) F}{2 k\left(1+F^{2}\right)} \\
& \quad+\left(\frac{\mathcal{S}}{A}\right)^{2} \frac{\left(k^{2}-1\right) F}{2 k\left(1+F^{2}\right)}-\frac{\left(k^{2}-1\right)\left(F^{2}-1\right)\left(F_{z} k^{2}+2 k F_{z z}+F_{z}\right)}{2\left(F k^{2}+2 k F_{z}+F\right)^{2}}+\frac{\left(k^{2}-1\right)^{3} F\left(F^{2}-1\right)^{2}}{8 k\left(F^{2}+1\right)\left(F k^{2}+2 k F_{z}+F\right)^{2}}=0, \tag{C1}
\end{align*}
$$

where $T=(\mathcal{S} / A)\left(A t-C_{1}\right)$. Being constant at any time moment, Eq. (C1) means that the coefficients before $\tanh (T)$ and $\cosh ^{-2}(T)$ turn simultaneously into zero. With some tedious but a straightforward algebra (see below), one finds that only the factor before $\cosh ^{-2}(T)$ produces the nontrivial result [Eq. (21)].

Indeed, consider the coefficient before $\tanh (T)$ in Eq. (C1)

$$
\begin{align*}
\frac{\mathcal{S}}{A} & {\left[\frac{F^{2}\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}+\frac{A_{z}}{A}-\frac{\left(k^{2}+1\right)}{2 k\left(1+F^{2}\right)}-\frac{F\left(k^{2}-1\right)}{2 k\left(1+F^{2}\right)} \frac{\left(k^{2}-1\right)\left(F^{2}-1\right)}{\left(F k^{2}+2 k F_{z}+F\right)}\right] } \\
= & \frac{\mathcal{S}}{2 k A^{2}\left(1+F^{2}\right)\left(F k^{2}+2 k F_{z}+F\right)} \\
& \times\left\{F\left(k^{2}-1\right)^{2}\left(F^{2}-1\right) A-2 k A_{z}\left(1+F^{2}\right)\left[F\left(k^{2}+1\right)+2 k F_{z}\right]+A\left(k^{2}+1\right)\left(1-F^{2}\right)\left[F\left(k^{2}+1\right)+2 k F_{z}\right]\right\} \\
= & \frac{\mathcal{S}}{A^{2}\left(1+F^{2}\right)\left(F k^{2}+2 k F_{z}+F\right)}\left\{A\left(1-F^{2}\right)\left[2 k F+F_{z}\left(k^{2}+1\right)\right]-A_{z}\left(1+F^{2}\right)\left[F\left(k^{2}+1\right)+2 k F_{z}\right]\right\} . \tag{C2}
\end{align*}
$$

Now we use Eq. (16) to find

$$
\begin{equation*}
\frac{A_{z}}{A}=\frac{1}{1+F^{2}} \frac{1}{F\left(k^{2}+1\right)+2 k F_{z}}\left[2 k F_{z z}\left(1+F^{2}\right)+\left(k^{2}+1\right) F_{z}\left(1+F^{2}\right)-4 k F F_{z}^{2}-2 F^{2} F_{z}\left(k^{2}+1\right)\right] \tag{C3}
\end{equation*}
$$

The function $F(z)$ obeys the equation

$$
\left(1+F^{2}\right) F_{z z}-2 F F_{z}^{2}=-F\left(F^{2}-1\right)
$$

which is derived from SG Eq. (8). Together with Eq. (C3) this produces

$$
\frac{A_{z}}{A}=\frac{1-F^{2}}{1+F^{2}} \frac{F_{z}\left(k^{2}+1\right)+2 k F}{F\left(k^{2}+1\right)+2 k F_{z}}
$$

Plugging this into the right-hand side of Eq. (C2) we come to zero.

After lengthy manipulation it may be shown that the free terms in Eq. (C1), i.e., those without either $\tanh (T)$ or $\cosh ^{-2}(T)$ factors, are simplified to

$$
\begin{aligned}
& -\left(k^{2}-1\right)\left[q^{2} k^{4}-2 k^{2} q^{2}\left(8 \mathcal{S}^{2}-1\right)-4 k^{2}+q^{2}\right] \\
& \times \operatorname{cn}(z, q) \frac{\left[\left(k^{2}+1\right) q \operatorname{cn}(z, q)-2 k \operatorname{dn}(z, q)\right]^{3}}{16 k^{3} q^{5}[1+\operatorname{sn}(z, q)]^{3}}
\end{aligned}
$$

The factor $q^{2} k^{4}-2 k^{2} q^{2}\left(8 \mathcal{S}^{2}-1\right)-4 k^{2}+q^{2}$ equals to zero bearing in mind Eq. (18).
${ }^{1}$ P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin/Cummings, California, 1984).
${ }^{2}$ H. Fukuyama and H. Takayama, in Electronic Properties of Inorganic Quasi-One-Dimensional Materials, I, edited by P. Monceau (Reidel, Dordrecht, 1985), p. 41.
${ }^{3}$ A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).
${ }^{4}$ I. E. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958); Sov. Phys. JETP 19, 960 (1964); 20, 665 (1965).
${ }^{5}$ Yu. A. Izyumov, Sov. Phys. Usp. 27, 845 (1984).
${ }^{6}$ G. Shirane, R. Cowley, C. Majkrzak, J. B. Sokoloff, B. Pagonis, C. H. Perry, and Y. Ishikawa, Phys. Rev. B 28, 6251 (1983).
${ }^{7}$ J. Bernhard, B. Lebech, and O. Beckman, J. Phys. F: Met. Phys. 14, 2379 (1984).
${ }^{8}$ B. Roessli, J. Schefer, G. Petrakovskii, B. Ouladdiaf, M. Boehm, U. Staub, A. Vorotinov, and L. Bezmaternikh, Phys. Rev. Lett. 86, 1885 (2001).
${ }^{9}$ T. Moriya and T. Miyadai, Solid State Commun. 42, 209 (1982).
${ }^{10}$ A. B. Borisov and Yu. A. Izyumov, Dokl. Akad. Nauk SSSR 283, 859 (1985).
${ }^{11}$ J. Kishine, K. Inoue, and Y. Yoshida, Prog. Theor. Phys. 159, 82 (2005).
${ }^{12}$ E. K. Sklyanin, LOMI Report No. Leningrad E-3-79, 1979 (unpublished).
${ }^{13}$ I. G. Bostrem, J. I. Kishine, and A. S. Ovchinnikov, Phys. Rev. B 77, 132405 (2008); 78, 064123 (2008).
${ }^{14}$ W. Döring, Z. Naturforsch. A 3A, 374 (1948).
${ }^{15}$ R. Becker, Proceedings of the Grenoble Conference, 1950 (unpublished).
${ }^{16}$ C. Kittel, Phys. Rev. 80, 918 (1950).
${ }^{17}$ C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge University Press, Cambridge, 2002).
${ }^{18}$ G. Leibbrandt, Phys. Rev. B 15, 3353 (1977).
${ }^{19}$ A. B. Borisov and V. V. Kiselev, Physica D 31, 49 (1988).
${ }^{20}$ J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
${ }^{21}$ L. Berger, Phys. Rev. B 54, 9353 (1996).
${ }^{22}$ H. J. Mikeska, J. Appl. Phys. 52, 1950 (1981).
${ }^{23}$ R. K. Dodd and R. K. Bullough, Proc. R. Soc. London, Ser. A 351, 499 (1976).
${ }^{24}$ M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), Chap. 17.
${ }^{25}$ P. Bak, Rep. Prog. Phys. 45, 587 (1982).
${ }^{26}$ N. E. Kulagin, private communication.

