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Abstract. This paper presents a framework of rule generation in Non-
deterministic Information Systems (NISs), which follows rough sets
based rule generation in Deterministic Information Systems (DISs).
Our previous work about NISs coped with certain rules, minimal
certain rules and possible rules. These rules are characterized by the
concept of consistency. This paper relates possible rules to rules by
the criteria support and accuracy in NISs. On the basis of the infor-
mation incompleteness in NISs, it is possible to define new criteria,
i.e., minimum support, maxrimum support, minimum accuracy and
mazimum accuracy. Then, two strategies of rule generation are pro-
posed based on these criteria. The first strategy is Lower Approzimation
strategy, which defines rule generation under the worst condition. The
second strategy is Upper Approximation strategy, which defines rule
generation under the best condition. To implement these strategies, we
extend Apriori algorithm in DISs to Apriori algorithm in NI1Ss. A pro-
totype system is implemented, and this system is applied to some data
sets with incomplete information.

Keywords: Rough sets, Non-deterministic information, Incomplete in-
formation, Rule generation, Lower and upper approximations, Apriori
algorithm.

1 Introduction

Rough set theory has been used as a mathematical tool of soft computing for
approximate two decades. This theory usually handles tables with deterministic
information. Many applications of this theory, such as rule generation, machine
learning and knowledge discovery, have been presented [5,9,15,21-25,36, 38].
We follow rule generation in Deterministic Information Systems (DISs)
[21-24,33], and we describe rule generation in Non-deterministic In formation
Systems (NISs). NISs were proposed by Pawlak [21], Orlowska [19,20] and



Lipski [13,14] to handle information incompleteness in DIS's, like null values,
unknown values, missing values. Since the emergence of incomplete information
research, NI1Ss have been playing an important role. Therefore, rule generation
in N1Ss will also be an important framework for rule generation from incomplete
information.

The following shows some important researches on rule generation from in-
complete information. In [13,14], Lipski showed a question-answering system
besides an axiomatization of logic, and Orlowska established rough set analysis
for non-deterministic information [3, 19, 20]. Grzymala-Busse developed a system
named LERS which depends upon LEM1 and LEM2 algorithms [5-7], and re-
cently proposed four interpretations of missing attribute values [8]. Stefanowski
and Tsoukias defined non symmetric similarity relations and valued tolerance
relations for analyzing incomplete information [34,35]. Kryszkiewicz proposed
a framework of rules in incomplete information systems [10-12]. According to
authors’ knowledge, these are the most important researches on incomplete in-
formation. We have also discussed several issues related to non-deterministic in-
formation and incomplete information [16—18], and proposed a framework named
Rough Non-deterministic Information Analysis (RNIA) [26-32].

In this paper, we briefly review RNTA including certain and possible rules,
then develop rule generation by the criteria support and accuracy in NISs. In
this rule generation, we extend Apriori algorithm in D1Ss to a new algorithm in
N1Ss. The computational complexity of this new algorithm is almost the same
as Apriori algorithm. Finally, we investigate a prototype system, and apply it
to some data sets with incomplete information.

2 Basic Definitions and Background of the Research

This section summarizes basic definitions, and reviews the background of this
research in [28,31, 32].

2.1 Basic Definitions

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V AL 4|
A € AT}, f), where OB is a finite set whose elements are called objects, AT
is a finite set whose elements are called attributes, VAL, is a finite set whose
elements are called attribute values and f is such a mapping that f : OBx AT —
UacarV AL 4 which is called a classification function. If f(x, A)=f(y, A) for
every A € ATR C AT, we see there is a relation between = and y for AT'R. This
relation is an equivalence relation over OB, and this is called an indiscernibility
relation.

We usually define two sets CON C AT which we call condition attributes and
DEC C AT which we call decision attributes. An object x € OB is consistent
(with any distinct object y € OB), if f(z, A)=f(y,A) for every A € CON
implies f(z, A)=f(y, A) for every A € DEC.



A Non-deterministic Information System (NIS) is also a quadruplet
(OB, AT,{VALs|A € AT}, g),whereg: OBXAT — P(UacarV AL,) (a power
set of UncarV AL 4). Every set g(z, A) is interpreted as that there is an actual
value in this set, but this value is not known. For a NIS=(OB, AT,{V AL 4|
A€ AT}, g) and a set ATR C AT, we name a DIS=(OB,ATR,{VALy|A €
ATR}, h) satistying h(z, A) € g(x, A) a derived DIS (for ATR) from NIS. For
aset ATR={A,,---,A,} C AT and any = € OB, let PT(z, ATR) denote the
Cartesian product g(x, A;) x -+ x g(x, A,). We name every element a possible
tuple (for ATR) of x. For a possible tuple (=((y,- -+, ¢(n) € PT(xz, ATR), let
[ATR, (] denote a formula A,_,., [A4i, (] Every [4;,¢] is called a descriptor.
Let PI(z,CON,DEC) (z € OB) denote a set {{CON,(] = [DEC,n]|¢ €
PT(z,CON), n € PT(x, DEC)}. We name an element of PI(z,CON,DEC)
a possible implication (from CON to DEC) of z. In the following, 7 denotes
a possible implication, and 7% denotes a possible implication obtained from an
object x.

Now, we define six classes of possible implications, certain rules and possible
rules. For any 7* € PI(x,CON,DEC), let DD(7*,z,CON, DEC) denote a set
{¢| ¢ is such a derived DIS for CON UDEC that an implication from z in ¢ is
equal to 7 }. If PI(x, CON,DEC) is a singleton set {77}, we say 7% is de finite.
Otherwise we say 7% is inde finite. If aset {¢ € DD(7*,2,CON,DEC)| x is con-
sistent in ¢} is equal to DD(7*,z, CON, DEC'), we say 7" is globally consistent
(GC). If this set is equal to {}, we say 77 is globally inconsistent (GI). Other-
wise, we say 7% is marginal (M A). By combining two cases, i.e., ‘D(efinite) or
I(ndefinite)’ and ‘GC, M A or GI', we define six classes, DGC, DM A, DGI,
IGC, IMA, IGI in Table 1. A possible implication 7 belonging to DGC' class
is consistent in all derived DIS's, and this 7* is not influenced by the informa-
tion incompleteness, therefore we name 7% a certain rule or more correctly a
candidate of a certain rule. A possible implication 7% belonging to either DGC,
IGC, DM A or IMA class is consistent in some ¢ € DD(7*,xz,CON,DEC).
Therefore, we name 7 a possible rule or more correctly a candidate of a possible
rule.

Table 1. Six classes of possible implications in NISs.

GC | MA | GI
Definite |DGC|DM A|DGI
Indefinite| IGC |IMA|IGI

Now, we give necessary and sufficient conditions for characterizing GC', M A
and GI classes. For any ( € PT(xz, ATR), we define two sets

inf(x, ATR,()={y € OB|PT(y, ATR)={C}} U {«},
sup(z, ATR,()={y € OB|¢ € PT(y, ATR)}.

Intuitively, inf(z, AT R, () implies a set of objects whose tuples are ( and def-
inite. If a tuple ¢ € PT(z, ATR) is not definite, this object x does not satisfy



PT(xz, ATR)={(}. Therefore, we added a set {z} in the definition of inf. A set
sup(z, AT R, () implies a set of objects whose tuples may be (. Even though
does not appear in the right hand side of sup, we employ the sup(x, ATR, ()
notation due to the inf(z, AT R, () notation. Generally, {z} Cinf(z, ATR, ()=
sup(z, ATR, () holds in DISs, and {z} C inf(z,ATR,() C sup(z,ATR,()
holds in NISs.

Theorem 1. [28,29] For a NIS, let us consider a possible implication 7*:[CON,
(= [DEC,n] € PI(x, CON,DEC). Then, the following holds.

(1) 7* belongs to GC class, if and only if sup(x, CON, () C inf(x, DEC,n).
(2) 7 belongs to M A class, if and only if inf(z, CON, () C sup(xz, DEC,n).
(3) 7 belongs to GI class, if and only if inf(z, CON,() € sup(x, DEC,n).

Proposition 2. [28,29] For any NIS, let ATR C AT be {4,, ---,A,}, and
let a possible tuple ¢ € PT(xz, ATR) be ((1,--+, (). Then, the following holds.
(1) inf(z, ATR, Q)=Nyin f(x,{Ai}, (¢:))-

(2) sup(z, ATR, ()=N;sup(z,{A:}, (()).

2.2 An Illustrative Example

Let us consider NI1S; in Table 2. There are four derived DISs in Table 3.

Table 2. A table of NIS;.

OB Color Size
1 ({red, green}|{small}
2 | {red,blue} | {big}
3 {blue} {big}

Table 3. Four derived DISs from NIS;. Tables are o1, @2, 3, pa to the right.

OB||Color| Size ||OB||Color| Size ||OB|Color| Size ||OB||Color| Size

1 || red |small|| 1 || red |small|| 1 ||green|small|| 1 ||green|small
2 || red | big 2 || blue | big 2 || red | big 2 || blue | big
3 || blue | big 3 || blue | big 3 || blue | big 3 || blue | big

Let us focus on a possible implication

7 2 [Color, blue] = [Size,big] € PI(3,{Color},{Size}).
This 7 means the first implication from object 3, and 73 appears in four derived
DISs. Since the following holds,

{2,3} = sup(3, {Color}, (blue)) C inf(3,{Size}, (big)) = {2, 3},
72 belongs to DGC class according to Theorem 1. Namely, 7§ is consistent in
each derived DIS. As for the second possible implication,

7y : [Color,red] = [Size, small] € PI(1,{Color},{Size}),



the following holds:

{1,2} = sup(1, {Color}, (red)) € inf(1,{Size}, (small)) = {1},

{1} =inf(1,{Color}, (red)) C sup(l,{Size}, (small)) = {1}.
According to Theorem 1, 75 belongs to IM A class, namely 74 appears in ¢; and
2, and 73 is consistent just in @s.

2.3 Certain Rule Generation in Non-deterministic Information
Systems

This subsection briefly reviews the previous research on certain rule generation
in NISs [28,29]. We have named possible implications in DGC' class certain
rules. For certain rule generation, we dealt with the following problem.

Problem 1. [29] For a NIS, let DEC be decision attributes and let n be a
tuple of decision attributes values for DEC'. Then, find minimal certain rules in
the form of [CON, (] = [DEC,n)].

According to Theorem 1, Problem 1 is reduced to find some minimal sets of
descriptors [CON, (] satistying sup(z, CON,() C inf(xz, DEC,n). For solving
this problem, we employed a discernibility function in DISs [33]. We adjusted
the discernibility function to NISs, and implemented utility programs [29].

Example 1. Let us focus on a possible implication 73 : [Color, blue] = [Size, big]
in Table 2, again. Since inf (3, {Size}, (big))={2, 3}, it is necessary to discrim-
inate object 1 ¢ {2,3} from object 3. The descriptor [Color,blue] discrimi-
nates object 1 from object 3, because sup(3,{Color}, (blue))={2,3} and 1 ¢
sup(3,{Color}, (blue)) hold. In this way, the discernibility function DF(3) be-
comes [Color,blue], and we obtain minimal certain rule 7. The following is a
real execution.

h ./plc
?-consult(dgc_rule.pl).

yes
7-trans.
File Name for Read Open:’data.pl’.
Decision Definition File:’attrib.pl’.
File Name for Write Open:’data.rs’.
EXEC_TIME=0.01796603203 (sec)
yes
?-minimal. /* [1,blue] (=[Color,bluel),[2,big] (=[Size,bigl) */
<<Minimal Certain Rules from object 3>>
Descriptor [1,blue] is a core for object 1
[1,bluel=>[2,big] [4/4(=4/4,1/1) ,Definite,GC: Only Core Descriptors]
EXEC_TIME=0.01397013664 (sec)
yes



This program is implemented in prolog [28-30]. Each attribute is identified with
its ordinal number, namely Color and Size are identified with 1 and 2, respec-
tively. The underlined parts are specified by a user.

2.4 Non-deterministic Information and Incomplete Information

This subsection clarifies the semantic difference of non-deterministic information
and incomplete information.

Table 4. A table of DIS with incomplete information.

OB|Color| Size
1 *  |[small
2 * big
3 | blue | big

Let us consider Table 4. The symbol ”%” is often employed for indicating
incomplete information. Table 4 is generated by replacing non-deterministic in-
formation in Table 2 with *. There are some interpretations of this * symbol
[4,7,8,10,34,17]. In the most simple interpretation of incomplete information,
the symbol * may be each attribute value. Namely, * may be either red, blue or
green, and there are 9 (=3x3) possible tables in Table 4. In such a possible ta-
ble, the implication from object 1 may be [Color, blue] = [Size, small], and this
contradicts 7§ : [Color, blue] = [Size,big]. On the other hand in Table 2, the
function is g(1, {Color})={red, green} C {red, blue, green}, and we dealt with
four derived DISs. In Table 2, we did not handle [Color, blue] = [Size, small]
from object 1. Like this, 77 is globally consistent in Table 2, but 7 is inconsistent
in Table 4.

The function g(z, A) and a set sup(z, AT R, () are employed for handling in-
formation incompleteness, and cause the semantic difference of non-deterministic
information and incomplete information. In RN I A, the interpretation of the in-
formation incompleteness comes from the meaning of the function g(z, A). There
is no other assumption on this interpretation.

2.5 A Problem of Possible Rule Generation in Non-deterministic
Information Systems

We have defined possible rules by possible implications which belong to either
DGC, DM A, IGC or IM A classes. In this case, there may be a large number
of possible implications satisfying condition (2) in Theorem 1. For example in
Table 2, there are four possible implications including 7 and 7, and every
possible implication is consistent in at least a derived DIS. Thus, every possible
implication is a possible rule. This implies the definition of possible rules may be
too weak. Therefore, we need to employ other criteria for defining rules except
certain rules.



In the subsequent sections, we follow the framework of rule generation [1,2,
22,36, 38], and employ criteria, support and accuracy for defining rules including
possible rules.

3 New Criteria: Minimum Support, Minimum Accuracy,
Maximum Support and Maximum Accuracy

This section proposes new criteria in N1Ss, and investigates the calculation of
criteria. These new criteria depend upon each element in DD(7*,z, CON, DEC),
but the complexity of the calculation does not depend upon the number of ele-
ments in DD(7*, 2, CON, DEC).

3.1 Definition of New Criteria

In a DIS, criteria support and accuracy are usually applied to defining rules
[1,2,36]. In a NIS, we define the following four criteria, i.e., minimum support:
minsupp(T®), maximum support: maxsupp(T*), minimum accuracy: minacc(t*)
and maximum accuracy: mazacc(t*) in the following:

minsupp(t*) = Minimum,epp(r+,«,coN,pDEC)1SUpport(t”) in ¢},
mazxsupp(t®) = Maximumy,epp(r= 2,coN,DEC)LSUPPOrt(r7) in o},
inacc(t*) = Minimumgcpp(r=«,con,pEc){accuracy(t) in ¢},
azacc(t®) = Maximum,cpp(r+ «,cON,DEC)1aCCUTacy(T") in p}.

(1)
(2)
(3) m
(4) m
If 7* is definite, DD(7*,z,CON,DEC) is equal to all derived DISs. If 7% is
indefinite, DD (7%, 2, CON,DEC) is a subset of all derived DISs. If we em-
ploy all derived DISs instead of DD(7*, 2, CON, DEC') in the above definition,
minsupp(t®) and minacc(7®) are 0, respectively. Because, there exist some de-

rived DISs where 7% does not appear. This property for each indefinite 7% is
trivial, so we define minsupp(r*) and minace(t*) over DD(7*, 2, CON, DEC).

Example 2. In Table 2, let us focus on a possible implication
¥ : [Color, blue] = [Size,big] € PI(3,{Color},{Size}).
In DD(73,3,{Color},{Size})={¢1,¥2, ©3,pa}, the following holds:
1/3 = minsupp(r?) < mazsupp(ri) = 2/3,
1 = minace(}) < mazace(r}) = 1.
As for the second possible implication,
7y : [Color,red] = [Size, small] € PI(1,{Color},{Size}),
in DD(73,1,{Color}, {Size})={p1, 2}, the following holds:
1/3 = minsupp(ry) < mazsupp(ry) = 1/3,
1/2= minacc(ry) < mazrace(ry) = 1.

3.2 A Simple Method for Calculating Criteria

In order to obtain minsupp(r®), minace(t®), mazsupp(r®) and mazacc(r®),
the most simple method is to examine each support(r®) and accuracy(r*) in



every ¢ € DD(7*,2,CON, DEC). This method is simple, however the number
of elements in DD(7", 2, CON,DEC) i8 [[sccon,peprc,ezy 19Y: Dll9(y, B)|,
and the number of elements increases in exponential order. Therefore, this simple
method will not be applicable to NISs with a large number of derived DIS's.

Effective Calculation of Minimum Support and Minimum
Accuracy

3.3

Let us consider how to calculate minsupp(r*) and minacc(r®) for 7 : [CON, (]
= [DEC,n] from object . Each object y with descriptors [CON, (] or [DEC, n]
influences minsupp(r®) and minacc(r*). Table 5 shows all possible implications
with descriptors [CON, (] or [DEC,n]. For example in CASE 1, we can obtain
just an implication. However in CASE 2, we can obtain either (C2.1) or (C2.2).
Every possible implication depends upon the selection of a value in g(y, DEC).
This selection of attribute values specifies some derived DISs from a NIS.

Table 5. Seven cases of possible implications (related to [CON, (] = [DEC,n] from
object z, n #n', ( #(')in NISs.

Condition : CON|Decision : DEC Possible_-Implications
CASEl|g(y,CON) = {(} |9(y, DEC) = {n}| [CON, (] = [DEC, 5](C1.1)
CASE2|g(y,CON) = {¢} |n € g(y, DEC) CON, (] = [DEC,n](C2.1)

CON, (] = [DEC,7'](C2.2)
CASE3|g(y,CON) ={¢} |n € g(y, DEC) CON, (] = [DEC,n"](C3.1)
CASEA|C € g(y,CON) gy, DEC) = {n}| [CON, {] = [DEC, 1)(C4.1)
[CON, ('] = [DEC,n](C4.2)
CASE5|¢ € g(y,CON) |n€g(y,DEC) |[CON,(] = [DEC,n|(C5.1)
[CON,(] = [DEC,n'](C5.2)
[CON, ('] = [DEC,n](C5.3)
[CON,({'] = [DEC,7'](C5.4)
CASE6(C € g(y,CON) |n &gy, DEC) [[CON,(] = [DEC,n'|(C6.1)
[CON, ('l = [DEC,7'](C6.2)
CASET7|C & g(y, CON) |Any [CON, ('] = Decision(C7.1)

Now, we revise the definition of inf and sup information in the previous
section. We handled both inf and sup information for every object x. However,
in the subsequent sections it is enough to handle minimum and maximum sets
of an equivalence class defined by a descriptor [AT R, val]. This revision is very
simple, and this revision reduces the manipulation of each calculation.

Definition 1. For each descriptor [AT' R, val](= [{A1,---, A}, (G, -+, C)], (K >
1) )in a NIS, Descinf and Descsup are defined as follows:

(1) Descinf([As, Gl)={z € OB|PT (z,{A:})={Gi}}={z € OB|g(z, {A:})={G}}-
(2) Descinf([AT R, val])=Descin f(A\;[A;, G;])=N;Descin f ([A;, (i]).

E DescsupE{Ai,Ci]):{x € OB|(; € PT(x,{A;})}={z € OB|(; € g(z,{A:})}.

1
2
3
4) Descsup([AT R, val])=Descsup(N;[Ai, (;])=N; Descsup([A;, (i]).

— — — —



The definition of Descinf requires that every element in this set is defi-
nite. Even though the definition of Descsup is the same as sup, we employ the
Descsup([AT R, (]) notation due to the Descinf([ATR,(]) notation. Clearly,
Descinf([CON,(]) is a set of objects belonging to either CASE 1, 2 or 3 in Ta-
ble 5, and Descsup([CON, (]) is a set of objects belonging to either CASE 1 to
CASE 6. Descsup([CON,(]) — Descinf([CON,(]) is a set of objects belonging
to either CASE 4,5 or 6.

Proposition 3. Let | X| denote the cardinality of a set X . In Table 6, the support
value of 7% : [CON, (] = [DEC, 7] from z is minimum.
If 7 is definite, namely 7* belongs to CASE 1,
mansupp(r®)=|Descinf([CON,(]) N Descinf([DEC,n])|/|OB].
If 7% is indefinite, namely 7 does not belong to CASE 1,
mansupp(T®)=(|Descin f([CON,(]) N Descinf([DEC,n])| +1)/|0B|.
Proof. This selection of attribute values in a NIS excludes every [CON, (] =
[DEC,n)] from object y # z. In reality, we remove (C2.1), (C4.1) and (C5.1)
from Table 5. Therefore, the support value of 7¥ is minimum in a derived DIS
with such selections of attribute values. If 7 is definite, object = is in a set
Descinf([CON,])NDescinf([DEC,n]). Otherwise, 7 belongs to either (C2.1),
(C4.1) or (C5.1). Thus, it is necessary to add 1 to the numerator.

Table 6. Selections from Table 5. These selections make the support value of
[CON, (] = [DEC, 7] minimum.

Condition : CON|Decision : DEC Selection
CASE1|g(y, CON) = {(} |g(y, DEC) = {n}| [CON, (] = [DEC, n](C1.1)
CASE2|g(y, CON) = {C} |n € 9(y, DEC) |[CON, (] = [DEC, ](C2.2)
CASE3|g(y, CON) = (¢} |n € g(y, DEC) _|[CON, (] = [DEC, 7](C3.1)
CASE4|¢ € g(y,CON) |g(y, DEC) = {n}|[CON, ('l = [DEC,n](C4.2)
CASES|C € g(y,CON) |1 € g(y, DEC) |[CON, (] = [DEC,7)(C5.2)

[CON, ('] = [DEC,n](C5.3)
[CON, ('] = [DEC, |(C5.4)
CASES|C € g(y,CON)  |n & g(y, DEC) |[CON,(]= [DEC,7'](C6.1)
[CON, '] = [DEC, 1](C6.2)
CASET7|C & g(y, CON) |Any [CON, ('] = Decision(C7.1)

Proposition 4. Table 7 is a part of Table 5. In Table 7, the accuracy value of

7% : [CON,(] = [DEC,n] from z is minimum. Let OUT ACC' denote
[Descsup([CON,(]) — Descinf([CON,(])] — Descinf([DEC,n]).

If 7% is definite,

. _ |Descinf(J[CON,(])NDescinf([DEC,n])]|
minacc(r")= [Descinf([CONC)|+]OUTACC| -
If 7% is indefinite,
. _ |Descinf(JCON,(])NDescinf([DEC,n])|+1
minace(t")= [Descinf([CON,C|)U{z}[+]OUTACC—{=}|"

Proof. Since m/n < (m + k)/(n +k) (0 < m < n,n # 0, k > 0) holds,
we excludes every [CON,(] = [DEC,n] from object y # x. We select possi-



Table 7. Selections from Table 5. These selections make the accuracy value of

[CON, (] = [DEC,n] minimum.

Condition : CON |Decision : DEC Selection
CASE1l|g(y,CON) = {¢} |9(y, DEC) = {n}| [CON, (] = [DEC, n](C1.1)
CASE2|g(y,CON) ={¢} |n € g(y, DEC) CON,(] = [DEC, 7/ (C2.2)
CASE3|g(y,CON) = {(} |n & g(y, DEC) CON, (] = [DEC,n'](C3.1)
CASFE4|¢ € g(y,CON) g9(y, DEC) = {n}|[CON, ('l = [DEC,n](C4.2)
CASE5|C € g(y, CON) n € g(y, DEC) CON,(] = [DEC, 7/ (C5.2)
CASFE6|C € g(y, CON) |n ¢ g(y, DEC) CON, (] = [DEC,n'](C6.1)
CASET7|C & g(y, CON) Any CON, ('] = Decision(C7.1)

ble implications [CON,(] = [DEC,n'], which increase the denominator. The
accuracy value of 7% is minimum in a derived DIS with such selection of at-
tribute values. The set OUT ACC' defines objects in either CASE 5 or CASE
6. As for CASE 4 and CASE 7, the condition part is not [CON,(]. There-
fore, we can omit such implications for calculating minace(r®). If 7* is definite,
the numerator is |Descinf([CON, (]) N Descin f([DEC, n])| and the denomina-
tor is |Descinf([CON,(])|+|OUTACC|. If 7% is indefinite, 7% belongs to ei-
ther (C2.1), (C4.1) or (C5.1). The denominator is |Descinf([CON,(]) U{z}| +
|OUTACC — {z}| in every case, and the numerator is |Descinf([CON,(]) N
Descinf ([DEC,n])|+1.

Theorem 5. For a NIS, let us consider a possible implication 7*:[CON, (] =
[DEC,n] € PI(xz,CON,DEC). Let SUPP,,;n={¢|¢ is a derived DIS from
NIS, and support(r®) is minimum in @}. Then, accuracy(r*) is minimum in
some ¢ € SUPP,,in.

Proof. Table 7 is a special case of Table 6. Namely, in CASE 5 of Table 6,
either (C5.2), (C5.3) or (C5.4) may hold. In CASE 6 of Table 6, either (C6.1)
or (C6.2) may hold. In every selection, the minimum support value is the same.
In Table 7, (C5.2) in CASE 5 and (C6.1) in CASE 6 are selected.

Theorem 5 assures that there exists a derived DIS, where both support(r*)
and accuracy(t®) are minimum. DIS,,,.s; denotes such a derived DIS, and
we name DIS,.rst a derived DIS with the worst condition for 7. This is an
important property for Problem 3 in the subsequent section.

3.4 Effective Calculation of Maximum Support and Maximum

Accuracy

In this subsection, we show an effective method to calculate mazsupp(7®) and
mazace(t®) based on Descinf and Descsup. The following can be proved ac-
cording the same manner as Proposition 3, 4 and Theorem 5. A derived DIS



Table 8. Selections from Table 5. These selections make the support and accuracy
values of [CON, (] = [DEC,n] maximum.

Condition(CON)|Decision(DEC) Selection
CASEl|g(y,CON) = {(} |9(y, DEC) = {n}| [CON, (] = [DEC, n](C1.1)
CASE2|g(y, CON) = {C} | € 9y, DEC) | [CON, (| = [DEC, 5)(C2.1)
CASE3|g(y, CON) = {¢} |n € 9(y, DEC) |[CON,¢] = [DEC,7](C3.1)
CASE4|¢ € g(y,CON) |g(y, DEC) = {n}| [CON,(] = [DEC,n](C4.1)
CASES|C € g(y,CON) | € g(y, DEC) |[CON,¢| = [DEC, n](C5.1)
CASEG|C € g(y,CON) |y € g(y, DEC) |[CON, (| = [DEC,/](C6.2)
CASET|C € g(y,CON) |Any [CON, ('] = Decision(C7.1)

defined in Table 8 makes both support and accuracy maximum.

Proposition 6. For 7* : [CON, (] = [DEC, 7] from z, the following holds.
maxsupp(t®)=|Descsup([CON, (]) N Descsup([DEC,n))|/|OB|.

Proposition 7. For 7* : [CON,(] = [DEC,n] from z, let INACC denote
[Descsup([CON, (]) — Descinf([CON,(])] N Descsup ([DEC,n)]).
If 7 is definite,

__|Descinf([CON (])NDescsup([DEC,n))|+|INACC]|
mazace(T")= [Descinf([CON,C) [+ INACC] .
If 7" is indefinite,
maxacc(T’”): |Descinf([CON,])NDescsup([DEC,n])—{z}|+|INACC—{z}|+1 ]

[Descinf([CON (])U{z}+[INACC —{z}]

Theorem 8. For a NIS, let us consider a possible implication 7*:[CON, (] =
[DEC,n] € PI(x,CON,DEC). Let SUPP,,4e={¢|p is a derived DIS from
NIS, and support(r®) is maximum in ¢}. Then, accuracy(t®) is maximum in
some ¢ € SUPP,,4:-

Theorem 8 assures that there exists a derived DIS, where both support(r*)
and accuracy(r®) are maximum. DISp.s denotes such a derived DIS, and we
name DISy.s: a derived DIS with the best condition for 7®. This is also an
important property for Problem 4 in the subsequent section.

4 Rule Generation by New Criteria in Non-deterministic
Information Systems

This section applies Proposition 3, 4, 6, 7 and Theorem 5, 8 to rule generation
in NISs.

4.1 Rules by the Criteria in Deterministic Information Systems

In DISs, rule generation by the criteria is often defined as the following.



Problem 2. In a table or a DIS, find every implication 7 that support(r) > «
and accuracy(r) > 8 for given a and 8 (0 < «, 8 < 1).

For solving this problem, Apriori algorithm was proposed by Agrawal [1,
2]. In this framework, association rules in transaction data are obtained. The
application of the large item set is the key point in Apriori algorithm. This
Problem 2 has also been considered in [22, 36, 38].

4.2 Rules by New Criteria and Two Strategies in Non-deterministic
Information Systems

Now, we extend Problem 2 to Problem 3 and Problem 4 in the following.

Problem 3. (Rule Generation by Lower Approximation Strategy) For
a NIS, let CON C AT and DEC C AT be condition attributes and the de-
cision attribute, respectively. Find every possible implication 7* : [CON, (] =
[DEC,n) satisfying minsupp(t®) > a and minacc(t®) >  for given a and S
0<a,B<1).

Problem 4. (Rule Generation by Upper Approximation Strategy) For
a NIS, let CON C AT and DEC C AT be condition attributes and the de-
cision attribute, respectively. Find every possible implication 7% : [CON, (] =
[DEC,n) satisfying mazsupp(t®) > a and mazacc(t®) >  for given a and
0<a,B<1).

It is necessary to remark that both minsupp(7®) and minacc(r™) are defined
over DD(7*,2,CON,DEC). For definite 7, DD(7*,2,CON,DEC) is equal
to all derived DISs. However for indefinite 7%, DD(7*,z,CON,DEC) is not
equal to all derived DISs, and minsupp(7®)=0 and minacc(r*)=0 may hold.
This may be an important issue in lower approximation strategy. However
in this paper, we employ a set DD(7*,x, CON, DEC) instead of all derived
DISs. As for upper approvimation strategy, maxsupp(t®) and mazacc(T®)
over DD(7%,2,CON, DEC) are the same as mazsupp(r®) and mazacc(r")
over all derived DISs. We employed terms Min-Maxz and Max-Maz strate-
gies in [31,32]. According to rough sets based concept, we rename these terms
lower approximation strategy and upper approximation strategy, respectively.

Next Proposition 9 clarifies the relation between certain rules, possible rules
and rules by new criteria.

Proposition 9. For a possible implication 7, the following holds.
(1) 7® is a certain rule in Section 2.1, if and only if 7* is definite and minacc(r”)=1.
(2) T is a possible rule in Section 2.1, if and only if mazace(r®)=1.

The concept of consistency defines certain and possible rules, therefore there
is no definition about support. In certain rule generation, we often have a possible



implication whose minacc(7*)=1 and minsupp(7®) is quite small. Proposition
10, 11 and 12 clarify the properties of rule generation.

Proposition 10. For a given o and 8 (0 < «, 8 < 1), let Rule(a, 3, LA) denote
a set of rules defined by lower approximation strategy with a and 3, and let
Rule(a, ,UA) denote a set of rules defined by upper approxzimation strategy
with o and . Then, Rule(a, 8, LA) C Rule(a, 8,UA) holds.

Proposition 11. The following, which are related to a possible implication
7 . [CON, (] = [DEC,n], are equivalent.
(1) 7™ is obtained according to lower approximation strategy, namely
minsupp(t®) > « and minace(t®) > B.
(2) support(r®) > « and accuracy(r™) > f in each ¢ € DD(7*,x, CON, DEC).
(3) In a derived DIS,,0rst defined in Table 7,
support(t®) > a and accuracy(r*) > [ hold.
Proof: For each ¢ € DD(7*,2,CON, DEC), support(t*) > minsupp(r®) and
accuracy(t®) > minacc(r) hold, therefore (1) and (2) are equivalent. Accord-
ing to Theorem 5, a derived DIS,,o.st (depending upon 7%) defined in Table 7
assigns minimum values to both support(7*) and accuracy(r®). Thus, (1) and
(3) are equivalent.

Proposition 12. The following, which are related to a possible implication
" : [CON,(] = [DEC, 1], are equivalent.
(1) 7 is obtained according to upper approzimation strategy, namely
mazsupp(t®) > a and mazace(t®) > B.
(2) support(t®) > a and accuracy(t*) > B in a p € DD(r*, 2, CON,DEC).
(3) In a derived DISpes; defined in Table 8,
support(t®) > « and accuracy(7*) > S hold.
Proof: For each ¢ € DD(r*,x,CON,DEC), support(t®) < maxsupp(t®)
and accuracy(t®) < mazace(r®) hold. According to Theorem 8, a derived
DISpest (depending upon 7*) defined in Table 8 assigns maximum values to both
support(t®) and accuracy(r*). In this DISpest, maxsupp(r™)=support(r®) and
mazacc(T*)=accuracy(7*) hold. Thus, (1), (2) and (3) are equivalent.

Due to Proposition 10, 11 and 12, Rule(a, 8, LA) defines a set of possible
implications in a DISyopst, and Rule(a, f,UA) defines a set of possible impli-
cations in a DISp.s;. This implies that we do not have to examine each derived
DIS in DD(7*,2,CON,DEC), but we have only to examine a DIS,,s for
the lower approzimation strategy and a DSy for the upper approzimation
strategy.

4.3 Extended Apriori Algorithms for Two Strategies and A
Simulation

This subsection proposes two extended Apriori algorithms in Algorithm 1 and
2.In DISs, Descinf([A, (])=Descsup([A, (]) holds, however Descinf([A, (]) C



Descsup([A,(]) holds in NISs. Apriori algorithm handles transaction data, and
employs the sequential search for obtaining large item sets [1,2]. In DIS's, we em-
ploy the manipulation of Descinf and Descsup instead of the sequential search.
According to this manipulation, we obtain the minimum set and maximum set of
an equivalence class. Then, we calculate minsupp(r*) and minacc(r*) by using
Descinf and Descsup. The rest is almost the same as Apriori algorithm.

Algorithm 1: Extended Apriori Algorithm for Lower Approximation
Strategy

Input : A NIS, a decision attribute DEC, threshold value o and 3.
Output: Every rule defined by lower approximation strategy.
for (every A € AT) do
| Generate Descinf([A, (]) and Descsup([A,(]);
end
For the condition minsupp(7*)=|SET|/|OB| > «, obtain the number NUM of
elements in SET),
Generate a set CANDIDATE(1), which consists of descriptors [A, (4]
satisfying either (CASE A) or (CASE B) in the following;
(CASE A) |Descinf([A,Ca])| > NUM,
(CASE B) |Descinf([A, a])|=(NUM — 1) and
(Descsup([A, Ca]) — Descinf([4,Cal)) # {}-
Generate a set CANDIDATE(2) according to the following procedures;
(Proc 2-1) For every [A, (4] and [DEC,(prc] (A # DEC) in
CANDIDATE(1), generate a new descriptor [{A, DEC}, (Ca,(pEc)];
(Proc 2-2) Examine condition (CASE A) and (CASE B) for each
[{A, DEC}, (Ca,CprO)];
If either (CASE A) or (CASE B) holds and minacc(t) > 3
display 7 : [A,Ca] = [DEC,{pErc] as a rule;
If either (CASE A) or (CASE B) holds and minacc(r) < 3,
add this descriptor to CANDIDATE(2);
Assign 2 to n;
while CANDIDATE(n) # {} do
Generate CANDIDATE(n + 1) according to the following procedures;
(Proc 3-1) For DESC, and DESC, ([DEC,(prc] € DESCi NDESC> )
in CANDIDATE(n), generate a new descriptor by using a
conjunction of DESCy AN DESC5;
(Proc 3-2) Examine the same procedure as (Proc 2-2).
Assign n+ 1 to n;
end

Now, we show an example, which simulates Algorithm 1.

Example 3. Let us consider Descinf and Descsup, which are obtained from
NIS5 in Table 9, and let us consider Problem 3. We set a=0.3, =0.8, condition
attribute CON C {P, @, R, S} and decision attribute DEC={T'}. Since |OB|=5
and minsupp(t)=|SET|/5 > 0.3, |[SET| > 2 must hold. According to Table 10,



Algorithm 2: Extended Apriori Algorithm for Upper Approximation
Strategy
Input : A NIS, a decision attribute DEC, threshold value o and 3.
Output: Every rule defined by upper approximation strategy.
Algorithm 2 is proposed as Algorithm 1 with the following two revisions :
1. (CASE A) and (CASE B) in Algorithm 1 are replaced with (CASE C).
(CASE C) |Descsup([A,Ca])| > NUM.
2. minace(r) in Algorithm 1 is replaced with mazacc(r).

we generate Table 11 satisfying either (CASE A) or (CASE B) in the following:
(CASE B) |Descinf([A,Ca] A [T, n])|=1 and Descsup([4, Ca] A [T, 7))~
Descinf([4,Ca] A [To1]) # {} (A € {P,Q, R, S}).

The conjunction [P, 3] A [T, 3] in Table 11 means an implication 75,735 : [P, 3] =
[T, 3]. Because Descsup([P, 3] A[T,3])={1,5} holds, 74 and 75 come from object
1 and 5, respectively. Since 1,5 € Descinf([P,3] A [T, 3]) holds, minsupp(ri)=
minsupp(r3)=[{1,5}|/5=0.4 holds. Then, the conjunction [@, 1]A[T, 3] in Table
11 means an implication 71,7} : [@, 1] = [T, 3]. Since 5 € Descinf([Q,1]A[T, 3])

Table 9. A Table of NIS-.

OoB| P Q R S T
{3} {1,3}] {3} | {2} | {3}
{2} 1{2,3}4{1,3}({1,3}] {2}
{2} {2} |{1,2}] {3} | {1}
{1} | {3} | {3} |{2,3}){1,2,3}
33 | {1} {1,2}] {3} | {3}

Y| W N =

Table 10. Descinf and Descsup information in Table 9.

(P 1] |[P 2] | [P, 3] (@, 1] (@, 2]| [@,3] | [R,1] |[R,2]] [R,3]
Descinf| {4} | {2} [{1,5}] {5} | {3} | {4} { { | {14}
Descsup]{3, 43[{2, 3} {1, 5}| {1, 5}| {2, 3} {1, 2, 4] {2, 3, 5}|{3, 5} [{1, 2, 4}

[S,1([S,2]] [S,3] |[T,1]|[T,2]| [T,3]

Descinf| {1} | {1} | 13,5 | (31 | {2} | (L5}
Descsup| {2] |11, 4112, 3, 4, 51|13, 41|12, 41| {1, 4, 5]

Table 11. Conjunctions of descriptors satisfying either (CASE A) or (CASE B) in
Table 10.

[P, 3] AT, 3]|[Q, 1] AT, 3]|[R, 3] AT, 3]|[S, 2] A [T, 3]|[S, 3] A [T, 1]|[S, 3] A [T, 3]

Descinf|  {1,5} {5} {1} {1} {3} {5}

Descsup|  {1,5} {1,5} {1,4} {1,4} {3,4} {4,5}




holds, minsupp(r7)=|{5}|/5=0.2 holds. On the other hand, 1 € Descsup([Q, 1]A
[T,3]) — Descinf([Q,1] A [T, 3]) holds, so minsupp(r})=(|{5}| + 1)/5=0.4 holds
in object 1. According to this consideration, we obtain the candidates of rules,
which satisfy minsupp(r®) > 0.3, as follows:

Tis}v’ri? [P73]:>[T73]7 Ti Z[Q,l]i[T,?)], Té [R73]:>[T73]7

69,21 = [T1,3], 77:[S,3]=[T,1], 75:[5,3]=1[T,3].
For these candidates, we examine each minace(t®) according to Proposition 4.
For 71 and 73, Descsup([P,3])={1,5}, Descinf ([P, 3])={1,5}, Descinf([P,3] A
[T,3])={1,5} and OUTACC=[{1,5} —{1,5}]—{1,5}={}. Since 1,5 € Descin f(
[P,3] AT, 3]) holds, minacc(rs)= minace(3)=|{1,5}/(I{1,5} + [{}])=1 is de-
rived. For 7 : [S, 3] = [T, 1], Descsup([S, 3])={2, 3, 4,5}, Descinf([S, 3])={3,5},
Descinf([S, 3|A[T, 1])={3}, Descsup([S, 3|A[T, 1])= {3,4} and OUT ACC=[{2,
3,4,5} — {3,5}] — {3}={2,4} holds, so minacc(r#)=(|{3}| +1)/(]{3,5} U {4}| +
[{2,4} — {4}])=0.5 is derived. In this way, we obtain three rules satisfying
mansupp(T®) > 0.3 and minacc(r®) > 0.8 in the following:

4,75 [P, 3] = [T, 3] (minsupp=0.4, minacc=1),

74 [Q,1] = [T, 3] (minsupp=0.4, minacc=1),

8 :[S,2] = [T, 3] (minsupp=0.4, minacc=1).
Any possible implication including [R, 3] A [T, 3] does not satisty minsupp(r®) >
0.3. As for [S,3] A [T, 1] and [S, 3] A [T, 3], the same results hold.

The following shows a real execution on Example 3.

% ./nis_apriori
version 1.2.8
File Name:’nis2.dat’

Lower Approximation Strategy

CAn(1)=[P,11,[P,2],[P,3],[Q,11,([Q,2],[Q,3],[R,3]1,[S,2]1,[s,31, [T,1],
[T,2],[T,3]1(12)

CAN(2)=[S,3][T,1] (KDEF>0.250,<INDEF>0.500), [P,3] [T,3] (<DEF>1.000,
<INDEF>1.000),[Q,1] [T, 3] (KDEF>1.000,<INDEF>1.000), [R,3] [T,3] (KDEF>0.333,
<INDEF>0.667),[S,2]1[T,3] (<DEF>0.500,<INDEF>1.000),[S,3][T,3] (<DEF>0.250,
<INDEF>0.500) (6)

========== (BTAINED RULE ==========

[P,3]=>[T,3] (minsupp<DEF>=0.400,minsupp<INDEF>=0.400,minacc<DEF>=1.000,
minacc<INDEF>=1.000) (<DEF>from 1,5) (<KINDEF>from )

[Q,1]1=>[T,3] (minsupp<DEF>=0.200,minsupp<INDEF>=0.400,minacc<DEF>=1.000,
minacc<INDEF>=1.000) (<DEF>from ) (<INDEF>from 1)

[S,2]1=>[T,3] (minsupp<DEF>=0.200,minsupp<INDEF>=0.400,minacc<DEF>=0.500,
minacc<INDEF>=1.000) (<DEF>from ) (<INDEF>from 4)

EXEC_TIME=0.0000000000 (sec)

Upper Approximation Strategy

can(1)=[p,1],[P,2],[P,3],[Q,1],[Q,2],[Q,3],[R,3]1,[s,2],[S,3],[T,1],



[T,2],[T,3]1(12)
CAN(2)=[S,3][T,1] (KDEF>0.667 ,<INDEF>0.667),[P,3][T,3] (<DEF>1.000,
<INDEF>1.000),[Q,1][T,3] (<DEF>1.000,<INDEF>1.000), [R,3][T,3] (<KDEF>1.000,
<INDEF>1.000),[S,2][T,3] (<DEF>1.000,<INDEF>1.000),[S,3][T,3] (<DEF>0.667,
<INDEF>0.667) (6)

========== QBTAINED RULE ==========

[P,3]=>[T,3] (maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,
maxacc<INDEF>=1.000) (<DEF>from 1,5) (<INDEF>from )

[Q,11=>[T, 3] (maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,
maxacc<INDEF>=1.000) (<DEF>from 5) (<INDEF>from 1)

[R,3]1=>[T, 3] (maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,
maxacc<INDEF>=1.000) (<DEF>from 1) (<INDEF>from 4)

[S,2]1=>[T,3] (maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,
maxacc<INDEF>=1.000) (<DEF>from 1) (<INDEF>from 4)
EXEC_TIME=0.0000000000 (sec)

According to this execution, we know
Rule(0.3,0.8, LA)={[P,3] = [T, 3],[Q,1] = [T, 3],[S, 2] = [T, 3]},
Rule(0.3,0.8,UA)={[P,3] = [T, 3],[Q,1] = [T, 3],[S,2] = [T, 3], [R, 3] = [T, 3]}
The possible implication [R, 3] = [T, 3] € Rule(0.3,0.8,UA) — Rule(0.3,0.8, LA)
depends upon the information incompleteness. This can not be obtained by
the lower approximation strategy, but this can be obtained by the upper
approximation strategy.

4.4 Main program for Lower Approximation Strategy

A program nis_apriori is implemented on a Windows PC with Pentium 4 (3.40
GHz), and it consists of about 1700 lines in C. This nis_apriori mainly consists
of two parts, i.e., a part for lower approzimation strategy and a part for upper
approzimation strategy.
As for lower approximation strategy, a function GenRuleByLA() (Gener-
ate Rules By LA strategy) is coded.
GenRuleByLA (table.obj,table.att,table.kosuval,table.con_num,
table.dec_num,table.con,table.dec,thresh,minacc_thresh);
In GenRuleByLA(), a function GenCandByLA() is called, and generates a can-
didate CANDIDATE(n).
GenCandByLA (desc,cand,conj_num_max,ob,at,desc_num,c_num,
d_num,co,de,thr,minacc_thr) ;
At the same time, minsupp(r) and minacc(r) are calculated according to Propo-
sition 3 and 4. As for upper approximation strategy, the similar functions are
implemented.

5 Computational Issues in Algorithm 1

This section focuses on the computational complexity of Algorithm 1. As for
Algorithm 2, the result is almost the same as Algorithm 1.



5.1 A Simple Method for Lower Approximation Strategy

Generally, a possible implication 7* depends upon the number of derived DIS's,
i.e, [l.com acarl9(z, A)], and condition attributes CON (CON C 2AT-DEC)
Furthermore, minsupp(7®) and minacc(r*) depend on DD(7*,xz, CON, DEC),
whose number of elements is [[ yccon Beppc ey 19(Y> A)I|9(y, B)|. Therefore, it
will be impossible to employ a simple method that we sequentially pick up every
possible implication 7* and sequentially examine minsupp(7®) and minacc(t").

5.2 Complexity on Extended Apriori Algorithm for Lower
Approximation Strategy

In order to solve this computational issue, we focus on descriptors [A, (] (A € AT,
¢ € VAL,). The number of all descriptors is usually very small. Further-
more, Proposition 3 and 4 show us the methods to calculate minsupp(7®) and
minacc(r*). These methods do not depend upon the number of element in
DD(r*,z,CON,DEC).

Now, we analyze each step in Algorithm 1.
(STEP 1) (Generation of Descinf, Descsup and CANDIDATE(1) )
We first prepare two arrays Descinfa yai[|] and Descsupa yai[] for each val €
VAL4 (A € AT). For each object € OB, we apply (1) and (2) in the follow-
ing:
(1) If g(z, A)={val}, add z to Descinfa vai[] and Descsupa vail]-
(2) If g(z, A) # {val} and val € g(x, A), add x to Descsupa vail]-
Then, all descriptors satisfying either (CASE A) or (CASE B) in Algorithm 1
are added to CANDIDATE(1). For each A € AT, this procedure is applied,
and the complexity depends upon |OB| x |AT)|.
(STEP 2) (Generation of CANDIDATE(2) )
For each [A,val4],[DEC,valpgc] € CANDIDATE(1), we produce [A,val ] A
[DEC,valpgc], and generate

Descinf([A,vala]l AN [DEC,valpgc])
=Descinf([A,val4]) N Descinf([DEC,valpgc]),
Descsup([A,vala]l N [DEC,valpgc])

=Descsup([A,val 4]) N Descsup([DEC, valpgc]).
If [A,vala] A [DEC,valpgc] satisfies either (CASE A) or (CASE B) in Algo-
rithm 1, this descriptor is added to CANDIDAT E(2). Furthermore, we exam-
ine minacc([A, valsA] N\[DEC,valpgc]) in (Proc 2-2) according to Proposition 4.
The complexity of (STEP 2) depends upon the number of combined descriptors
[A, valA] A [DEC, ’UalDEc].
(STEP 3) (Repetition of STEP 2 on CANDIDATE(n) )
For each DESC, and DESCs in CANDIDATE(n), we generate a conjunc-
tion DESCy, A DESC5. For such conjunctions, we apply the same procedure as
(STEP 2).

In the execution, two sets Descinf([CON,(]) and Descsup([CON,(]) are
stored in arrays, and we can obtain Descinf([CON,(] A [DEC,n]) by using



the intersection operation Descinf([CON,(]) N Descinf([DEC,n]). The same
property holds for Descsup([CON, (JA[DEC,n]). Therefore, it is easy to obtain
CANDIDATE(n + 1) from CANDIDATE(n). This is a merit of employing
equivalence classes, and this is the characteristics of rough set theory. In Apriori
algorithm, such Descinf and Descsup([CON, (]) are not employed, and the total
search of a database is executed for generating every combination of descriptors.
It will be necessary to consider the merit and demerit of handling two sets
Descinf([CON,(]) and Descsup([CON,(]) in the next research.

Apriori algorithm employs an equivalence class for each descriptors, and
handles only deterministic information. On the other hand, Algorithm 1 em-
ploys the minimum and the maximum sets of an equivalence class, i.e., Descin f
and Descsup, and handles non-deterministic information as well as determin-
istic information. In Algorithm 1, it takes twice steps of Apriori algorithm for
manipulating equivalence classes. The rest is almost the same as Apriori al-
gorithm, therefore the complexity of Algorithm 1 will be almost the same as
Apriori algorithm.

6 Concluding Remarks and Future Work

We proposed rule generation based on lower approzimation strategy and upper
approximation strategy in N1Ss. We employed Descinf, Descsup and the con-
cept of large item set in Apriori algorithm, and proposed two extended Apriori
algorithms in NISs. These extended algorithms do not depend upon the num-
ber of derived DIS's, and the complexity of these extended algorithms is almost
the same as Apriori algorithm. We implemented the extended algorithms, and
applied them to some data sets. According to these utility programs, we can
explicitly handle not only deterministic information but also non-deterministic
information.

Now, we briefly show the application to Hepatitis data in UCI Machine Learn-
ing Repository [37]. In reality, we applied our programs to Hepatitis data. This
data consists of 155 objects, 20 attributes. There are 167 missing values, which
are about 5.4% of total data. The number of objects without missing values is
80, namely the number is about the half of total data. In usual analyzing tools,
it may be difficult to handle total 155 objects.

We employ a list for expressing non-deterministic information, for example,
[red,green], [red,blue] for {red, green} and {red,blue} in Table 2. This syntax
is so simple that we can easily generate data of NISs by using Excel. As for
Hepatitis data, we loaded this data into Excel, and replaced each missing value
(? symbol) with a list of all possible attribute values. For some numerical values,
the discretized attribute values are also given in the data set. For example, in the
15th attribute BILIRUBIN, attribute values are discretized to the six attribute
values, i.e., 0.39, 0.80, 1.20, 2.00, 3.00, 4.00. We employed these discretized val-
ues in some attributes. The following is a part of the real revised Hepatitis data
in Excel. There are 78732 (=2 x 6 x 9*) derived DISs for these six objects. Prob-



ably, it seems hard to handle all derived DIS's for total 155 objects sequentially.

155 //Number of objects

20 //Number of Attributes

2302122221222220.880 13 3.8 [10,20,30,40,50,60,70,80,90] 1

2501121221222220.8 120 13 3.8 [10,20,30,40,50,60,70,80,90] 1

2701221222222220.880 13 3.8 [10,20,30,40,50,60,70,80,90] 1

2301 [1,2112222222220.833133.8801

2301222222222220.8 [33,80,120,160,200,250] 200 3.8 -
[10,20,30,40,50,60,70,80,90] 1

23012222222222220.88

013 3.8 70 1

The decision attribute is the first attribute CLASS (1:die, 2:live), and we fixed
a=0.25 and $=0.85. Let us show the results of two cases.

(CASE 1) Obtained Rules from 80 Objects without Missing Values

It is possible to apply our programs to the standard DISs. For 80 objects, it

took 0.015(sec), and 14 rules including the following are generated.
[AGE,30]=>[Class,live] (support=0.287,accuracy=0.958),
[ASCITES,yes]=>[CLASS,live] (support=0.775,accuracy=0.912),
[ALBUMIN,4.5]=>[CLASS,live] (support=0.287,accuracy=0.958).

(CASE 2) Obtained Rules from 155 Objects with 167 Missing Values
Due to two strategies, 22 rules and 25 rules are generated, respectively. It took
0.064(sec). Let us show every rule, which is obtained by upper approzimation
strategy but is not obtained by lower approximation strategy. Namely, every
rule is in boundary set Rule(0.25,0.85,UA) — Rule(0.25,0.85, LA). There are
three such rules.
[Alk PHOSPHATE,80]=>[CLASS,live]
(minsupp=0.25,minacc=0.841,maxsupp=0.348,maxacc=0.857)
[ANDREXIA,yes]&[SGOT,13]1=>[CLASS,live]
(minsupp=0.25,minacc=0.829,maxsupp=0.381,maxacc=0.855)
[SPLEEN_PALPABLE,yes]&[SGOT,13]=>[CLASS,1live]
(minsupp=0.25,minacc=0.848 ,maxsupp=0.368,maxacc=0.877)

In the 17th attribute SGOT, there are four missing values. The above two
rules with descriptor [SGOT,13] depend upon these four missing values. These
rules show us the difference between lower approximation strategy and upper
approximation strategy.

We are also focusing on the difference between rule generation in DISs and
NI1Ss. Let us suppose a NIS. We remove every object with non-deterministic
information from the NIS, and we obtain a DIS. We are interested in rules,
which are not obtained from the DIS but obtained from the NIS.

According to some experiments including Hepatitis data and Mammographic
data in UCI repository, we verified our utility programs work well, even if there
are huge number of derived DISs. However, we have not analyzed the meaning



of the obtained rules. Because, the main issue of this paper is to establish the
framework and to implement algorithms. From now on, we will apply our utility
programs to real data with missing values, and we want to obtain meaningful
rules from NISs. Our research is not toward rule generation from data with a
large number of objects, but it is toward rule generation from incomplete data
with a large number of derived DIS's.

This paper is a revised and extended version of papers [31, 32].
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