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Equivalent hyperon-nucleon interactions in low-momentum space
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Equivalent interactions in a low-momentum space for the �N, �N , and �N interactions are calculated, using
the SU6 quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the
two-body scattering data has not been accumulated sufficiently to determine the hyperon-nucleon interactions
unambiguously, the construction of the potential even in low-energy regions has to rely on a theoretical model. The
equivalent interaction after removing high-momentum components is still model dependent. Because this model
dependence reflects the character of the underlying potential model, it is instructive for better understanding of
baryon-baryon interactions in the strangeness sector to study the low-momentum space YN interactions.
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I. INTRODUCTION

A low-momentum space nucleon-nucleon (NN ) interaction
has been extensively studied in recent years [1,2]. If we start
with the full-space realistic NN interaction, the discussion is
focused on the evaluation of an effective NN interaction in
a low-momentum space that reproduces the same eigenvalues
or T matrices in the low-momentum space as those of the
original interaction. In this article, we call such an effective
interaction in a restricted space an equivalent interaction. It
was demonstrated [1] that after the high-momentum compo-
nents corresponding to short-range repulsion are renormalized,
various NN potential models give essentially the same low-
momentum NN interaction.

The construction of an energy-independent equivalent
interaction in a model space has been one of the main
subjects in effective interaction theories in various field.
In the 1950s Okubo [3] proposed a unitary transformation
method to eliminate meson degrees of freedom to obtain
the NN potential. Through the 1950s to 1970s, numerous
theoretical works [4–6] were devoted to nuclear many-body
problems starting from realistic nucleon-nucleon interactions.
In the context of the shell-model effective interaction, Suzuki
and Lee [7,8] formulated a decoupling condition method
using a similarity transformation and an iterative procedure
to solve the decoupling equation. The theory behind recent
developments is closely related to this viewpoint.

On the two-body level, the collapse of various realistic NN

interactions to the universal interaction in a low-momentum
space k � � with � � 2 fm−1 seems not to be surprising
because of abundant NN -scattering data in the corresponding
energy region. In the strangeness nonzero sectors the scattering
data are scarce at present, although studies of the hyperon-
nucleon (YN ) and hyperon-hyperon (YY ) interactions have
been accelerated with the experimental progress in hyper-
nuclear physics. Thus the construction of the YN and YY

potentials has to rely on a certain theoretical framework to a
large extent. The Nijmegen group [9–11] has been revising the
YN potentials on the basis of the one-boson exchange potential
(OBEP) picture since the end of 1970s. The initial hard-core

models [9] were replaced by the soft-core parametrization
[10,11]. The Jülich group [12–14] has also been developing
another OBEP model. In spite of the basic flavor SU3 relations,
there are still much uncertainties in the construction of the YN

and YY potentials.
A different unified description was proposed for the octet

baryon-baryon interactions by the Kyoto-Niigata group [15,
16] on the basis of an SU6 quark model, in which the gluonic
interaction in the resonating group method (RGM) for two
composite nucleons composed of three quarks is supplemented
by the long-ranged one-boson exchange interaction between
quarks. The most recent model fss2 [17] achieves comparable
accuracy in the NN sector to modern realistic NN potentials.
The advantage of the SU6 quark model is that the extension
of the potential parameters determined in the NN sector to
the strangeness S = −1 and −2 sectors seems to be less
ambiguous than the OBEP models. Recently, a novel method
based on the chiral effective field theory has been applied to the
strangeness S = −1 and S = −2 baryon-baryon interactions
[18,19].

Because the present potential models for the YN interaction
are not well regulated by experimental data, the equivalent
interaction after removing the high-momentum components
can still be model dependent. In other words, properties
of these equivalent interactions reflect the character of the
underlying potential model. Thus, it is interesting to compare
the low-momentum space YN interactions obtained from
different bare potential models.

The evaluation of low-momentum �N and �N interactions
was recently reported by Schaefer et al. [20] for the momentum
cut-off value of � ∼ 2.5 fm−1, using several Nijmegen NSC
potentials [11]. The new feature in the YN interactions is
the presence, in most cases, of the coupling between two or
three baryon-channels, such as �N -�N,�N -��-��, and
�N-��-�� couplings. In this article, we present equivalent
interactions in the low-momentum space with � = 2 fm−1

for the �N,�N , and �N potentials starting from the SU6

quark model bare potentials [17]. We choose this cut-off value
as a typical low-momentum scale for which the potential
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model dependence is almost eliminated in the case of the NN

interaction [1].
The naive definition of the potential based on the RGM

formalism leads to an energy-dependent potential through
the norm kernel. Such energy dependence is not suited for
the equivalent interaction theory. Recently, the method to
eliminate the energy dependence has been developed [21],
using a renormalized RGM formalism. We use this prescription
for the quark model potential. There is another complexity
inherent in the RGM formulation of the baryon-baryon
interaction, which is the presence of a Pauli forbidden state
in certain channels. The interaction has to be applied in the
space in which the Pauli forbidden state is projected out. In
other words, an orthogonal condition to the forbidden state has
to be imposed when solving the Schrödinger equation. This
condition is not removed even if the energy dependence is
eliminated. Fortunately, however, on-shell and half-on-shell T

matrices are not influenced by the redundant component [22].
It is noted that the Pauli forbidden state appears only in
the 1S0 (11)s state in the model space of the baryon-octet
baryon-octet interaction, specified by the Elliott notation
(λµ).

For the �N and �N cases, we also employ the Nijmegen
NSC97f model. Our results with the NSC97f potential are
mostly in accord with those shown by Schaefer et al.
[20]. After removing high-momentum components, we still
observe model dependence, in particular in �N channels. The
comparison of the results with the quark model and the OBEP
model demonstrates different characters of these potential
models.

In Sec. II, we recapitulate the basics of the equivalent
interaction theory in a model space. In the framework that
was initiated by Suzuki and Lee [7,8] and developed afterward
by collaborators [23,24], including the generalization [25]
to the case that the unperturbed model-space energies are
nondegenerate, the mapping operator ω that connects the
model space P and the rest Q space plays an essential role in
explicitly calculating the equivalent interaction. The mapping
operator ω is determined by the decoupling condition, which
leads to a nonlinear equation for ω. This operator ω can also
be obtained by a linear equation by using the knowledge of the
half-on-shell T matrices, as derived by Epelbaum et al. [2]. We
show, in Sec. II, a compact derivation of the linear equation.
The actual evaluation of the equivalent interaction can be
carried out by discretizing the entire momentum space as was
argued in the article by Fujii et al. [26]. We extend this method
to the case of YN interactions, in which there are couplings
among several baryon channels.

Results of numerical calculations are presented in
Sec. III. We show only the diagonal matrix elements. Because
the single-particle (s.p.) potential of the hyperon in infinite
nuclear matter is determined by them in the lowest order,
they can provide useful information about properties of the
hyperon-nucleon interaction. We first give the results for
the NN interaction for comparison, then present �N and
�N equivalent interactions in the low-momentum space with
� = 2 fm−1 calculated both for fss2 and NSC97f. Equivalent
interactions for �N are evaluated only for fss2. Section IV
summarizes the results of the present article.

II. EQUIVALENT INTERACTION

We recapitulate basic elements of the equivalent interaction
theory, following the method by Suzuki and Lee [7,8]. Let us
denote the original Hamiltonian in the entire space by H =
H0 + V and divide the full Hilbert space into a model space
and the rest which are denoted by their relevant projection
operators P and Q, respectively; P + Q = 1. In particular,
the low-momentum space in the two-body problem is defined
as P = ∫

|k|<�
dk |k〉〈k|. The problem is to find the equivalent

operator Heff in the model space P , which reproduces the
eigenvalue as those of the original H . A formal approach has
been well known as the Feshbach projection method [5]. It is
instructive to present the Schrödinger equation H |�〉 = E|�〉
in a matrix form(

PHP, PHQ

QHP, QHQ

) (
P |�〉
Q|�〉

)
= E

(
P |�〉
Q|�〉

)
. (1)

It is straightforward to obtain the following equation in
the model space P by eliminating Q� in terms of Q� =

1
E−QHQ

QHP�:

P

{
H + HQ

1

E − QHQ
QH

}
P� = EP�. (2)

Thus Heff can be identified with

Heff = PH0 P + PV P + PV Q
1

E − QHQ
QV P. (3)

In this case we obtain the energy-dependent effective inter-
action in the model space. This expression is rather formal,
because it includes the energy E to be solved. It is pedagogical
to remark that if V has the property of QV P = 0 or PV Q =
0, PH0 P + PV P is nothing but Heff from the beginning.

Suzuki and Lee [7,8] proposed in 1980 the way to construct
the energy-independent equivalent potential in the context
of the similarity transformation. Their consideration serves
as the basic for the recent development of various effective
interaction theories. It is elementary to observe that the
eigenvalues of the original Hamiltonian H do not change when
H is transformed by a similarity transformation, namely by a
regular matrix X and its inverse X−1 as H ⇒ H ′ ≡ X−1HX.
As noted above, if QX−1HXP = 0 holds, PX−1HXP

becomes the equivalent interaction in the model space P . Thus
the task to find Heff is reduced to determine X, which satisfies
QX−1HXP = 0.

It is sufficient first to consider a regular matrix X in the
following form:

X =
(

1, 0
ω, 1

)
, then X−1 =

(
1, 0

−ω, 1

)
. (4)

The mapping matrix ω = QωP , which connects the P and Q

spaces, plays a central role in the following. The decoupling
condition QX−1HXP = 0 now reads:

QV P + QHQω − ωPHP − ωPV Qω = 0. (5)

Because this is a nonlinear equation for ω, we have to use some
iteration method to solve it. Determining the mapping operator
ω, we obtain an energy-independent equivalent interaction in
the model space P as PX−1HXP = PH0 P + PV (1 + ω)P .
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This equivalent Hamiltonian is not Hermitian at this stage.
If we utilize a unitary matrix X̃ in the following Okubo
form [3,23] constructed from ω of Eq. (5) to transform the
original H ,

X̃ =
(

1, −ω†

ω, 1

) (
1 + ω†ω, 0

0, 1 + ωω†

)−1/2

, (6)

the equivalent Hamiltonian is apparently Hermitian. The
general argument of constructing an Hermitian equivalent
interaction was given in Ref. [27]. It has to be stressed that
other operators corresponding to physical observables are also
transformed accordingly.

Although the equation [Eq. (5)] for ω is nonlinear, Epel-
baum et al. showed in Ref. [2] that the linear equation can
be set up for the mapping operator ω by the use of the
half-on-shell T matrices in the case of the two-body problem.
This linear equation for ω is easily derived in the above context
as follows. By definition, the equivalent interaction in the
P space H0 + PV (1 + ω)P is to reproduce the original T

matrices in the P space. Namely we expect that the following
equation should hold:

PT P = PV (1 + ω)P + PV (1 + ω)
P

ε − H0
T P, (7)

where ε is the on-shell energy and we are considering half-on-
shell T matrices. The original equation for T in the P space
is

PT P = PV P + PV
1

ε − H0
T P

= PV P + PV
P

ε − H0
T P + PV

Q

ε − H0
T P. (8)

Comparing Eq. (8) with Eq. (9), we obtain

PV ωP + PV ω
P

ε − H0
T P = PV

Q

ε − H0
T P. (9)

Taking out the common PV Q, we are led to the linear equation
for ω:

QωP = Q

ε − H0
T P − Qω

P

ε − H0
T P. (10)

III. RESULTS

When the role of the mapping operator ω is figured out,
we can devise a direct calculational procedure to determine
ω, as was explained as method-2 and used in Ref. [26]. The
extension to the case in which several baryon-channels couple
each other, e.g., the treatment of the �N -�N transition, is
straightforward. In principle, there is no difference in the
calculational method for the tensor coupling and the baryon-
channel coupling. We only have to enlarge the dimension of the
relevant Hilbert space. It is noted that in the hyperon-nucleon
interaction such a coupling between 1P1 and 3P1 channels also
appears through the antisymmetric spin-orbit interaction that
is absent in the NN case, although we do not examine the P

waves in the following.
We calculate equivalent �N,�N , and �N matrix elements

in the low-momentum space with the cut-off value of � =

2.0 fm−1 for the 1S0 and 3S1 partial waves, starting from
the Kyoto-Niigata SU6 quark-model potential fss2 [17]. This
momentum scale should be regarded as a representative one
for which the potential model dependence of the description of
high-momentum components has been shown [1] to disappear
in the case of the NN interaction. The Nijmegen NSC97f [11]
is also used for the �N and �N interactions. These two
potentials are especially different in the manner of constructing
the short-range part. The Nijmegen OBEP model is based on
the heavy meson exchange picture, whereas the quark model
uses a RGM framework for nonrelativistic quark-clusters. As
noted in the Introduction, the energy dependence from the
RGM kernel is renormalized to give an energy-independent
potential [21].

Although the calculational procedure is straightforward to
treat the baryon-channel coupling, we have to be careful to
interpret the matrix elements of the equivalent interaction in
the P space. To obtain physically meaningful quantities such
as hyperon single-particle energies in nuclear medium, we
have to further solve the baryon-channel coupling problem in
the P space. If the coupling effect in the P space is important,
the matrix elements before solving the coupling problem give
no clear physical insight. We encounter such a typical example
in the �N T = 1 channel.

A. N N interaction

Before showing the equivalent interactions in the low-
momentum space for the hyperon-nucleon sectors, we present
results of the NN interaction for comparison. Diagonal
matrix elements of the quark model potential fss2 [17] in
the low-momentum space with � = 2 fm−1 are shown by
solid curves in Figs. 1 and 2 for 1S0 and 3S1, respectively.
These results are very close to those of the Nijmegen potential
NSC97f depicted by dashed curves. It demonstrates that the
quark-model potential fss2 achieves the same level accuracy as
modern realistic NN interactions, although the description at
the short-range part is considerably different due to the RGM
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FIG. 1. Diagonal matrix elements of the equivalent interaction in
the low-momentum space with � = 2 fm−1 for the NN 1S0 partial
wave, using the quark model potential fss2 [17] and the Nijmegen
potential NSC97 [11]. Bare matrix elements are shown by dotted
curves.
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FIG. 2. Same as Fig. 1, but for the NN 3S1 partial wave.

treatment. The thin curves in Figs. 1 and 2 for the bare matrix
elements illustrate that the short-range repulsion of fss2 is
rather moderate.

B. �N interaction

Properties of the �N interaction has been known empiri-
cally to some extent, based on the scattering data from bubble
chamber experiments and the data of � hypernuclei from the
past 30 years. The central part is fairly well known from the
universal depth of the �-nucleus potential of about 30 MeV,
from light to heavy �-hypernuclei, whereas the noncentral
component is still ambiguous. Although the smallness of
the � single-particle spin-orbit splitting in hypernuclei was
established experimentally [28], its relation to the two-body
�N interaction has not been settled. One of the possible
explanations has been offered by the quark model [17,29] by
pointing out the role of the antisymmetric spin-orbit interaction
that can almost cancel the contribution from the ordinary
spin-orbit interaction. In this article, however, we do not
discuss this subject, because we present the results only for
S waves.

Figures 3 and 4 show the low-momentum space diagonal
matrix elements of the equivalent �N interaction in the 1S0
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fss2
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FIG. 3. Same as Fig. 1, but for the �N 1S0 partial wave,
using fss2 [17] and NSC97f [11]. Thin curves are results without
�N -�N coupling. Thick and thin curves for NSC97f are hard to be
distinguished in the figure.

0 2 4

−40

−20

0

20

40

60

80

k  [fm−1]

<
k|

V
Λ

N
|k

>
  [

M
eV

 fm
3 ]

bare NSC97f

thin curve:
no ΛN−ΣN coupling

ΛN 3S1

bare fss2

fss2
NSC97f

FIG. 4. Same as Fig. 3, but for the �N 3S1 partial wave.

and 3S1 channels with � = 2 fm−1 together with bare matrix
elements, both for the quark-model potential fss2 [17] and
the Nijmegen potential NSC97f [11]. To see the effects of the
�N -�N coupling, we also present results with turning off the
coupling potential by the thin curves.

The Nijmegen potential and the quark-model potential
provide very similar matrix elements in the low-momentum
space, though the bare matrix elements differ from each other,
reflecting the different character in the short-range part. Again
the short-range repulsion of fss2 is moderate.

In the 1S0 channel, the effect of the �N -�N coupling is seen
to be negligibly small for NSC97f. Because the pion-exchange
is absent in this partial wave, the �N -�N coupling is expected
to be weak. In the quark-model description, the situation
is somewhat different. In the RGM treatment of the two
quark-clusters the Pauli forbidden state appears in this 1S0

�N -�N channel. When the �N -�N coupling is switched off,
the orthogonality to the Pauli forbidden state on the quark level
is not strictly satisfied, which may cause an artificial coupling
effect observed in Fig. 3. This feature deserves future investi-
gation. The 3S1 channel is free from the Pauli forbidden state.
Comparing the thick and thin curves in Fig. 4, we see that the
considerable amount of the attractive contribution comes from
the �N -�N coupling in the outer space beyond � = 2 fm−1.

It is remarkable to see that the two potential models
give almost identical diagonal matrix elements in the low-
momentum space both for 1S0 and 3S1 channels, though the bare
matrix elements are different. This implies that the potential
model for the �N S-wave interaction is now almost under
control. The study of P waves, in particular the magnitude
of the spin-orbit and antisymmetric spin-orbit components, is
an important future subject. The careful study of �N -�N

coupling effects, including those within the low-momentum
space, is also required, because hypernuclear γ -spectroscopic
measurements [28] with the accuracy of the order of keV are
beginning to provide the data of excitation spectrum of �

hypernuclei.

C. �N interaction

The �N interaction has been expected to have specific spin
and isospin dependences. Harada et al. [30] demonstrated that
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FIG. 5. Same as Fig. 1, but for the �N 1S0 partial wave, using fss2
[17] and NSC97f [11]. In this partial wave, there is no baryon-channel
coupling.

the net attractive interaction in the 1S0 T = 3/2 channel can
yield the bound 4

�He hypernucleus with Jπ = 0+, which cor-
responds to the experimental observation in the 4He(K−, π−)
reactions with the stopped kaon [31] as well as the kaon in
flight [32]. However, probably due to the repulsion in the
3S1 T = 3/2 channel, � bound states are unlikely in heavier
nuclei, which has been supported by experimental results on
targets 6Li and 9Be [33].

The quark-model picture has been known from the earlier
studies [29] to give a definite prediction that certain partial
waves such as the �N 3S1 T = 3/2 state should be strongly
repulsive due to the quark Pauli effect, which has no explicit
counterpart in the OBEP model. The character related to the
Pauli effect might be uncovered in the low-momentum space
equivalent interaction.

The T = 3/2 channels have no �N -�N coupling because
the � hyperon is isosinglet. Figure 5 shows the diagonal
matrix elements of the low-momentum space equivalent �N

interaction in the 1S0 T = 3/2 channel. Results for fss2 [17]
and NSC97f [11] are shown by the solid and dashed curves,
respectively, whereas bare matrix elements up to k = 4 fm−1

are shown by the dotted curves. The tendency of how high-
momentum components are renormalized is similar to the
NN 1S0 case. The attractive interaction in this channel is
important for the existence of the bound 4

�He state. The quark
model potential is sufficiently attractive to yield the bound state
as the Nijmegen potential does. In the viewpoint of the quark
model [17], the flavor SU3 symmetry tells that this channel
is dictated by the (22) symmetric component of the Elliott
notation (λµ). This component is the same as in the 1S0 (T = 1)
NN state, and thus the rather strong attractive character after
renormalizing high-momentum components is reasonable.

Quantitatively different results are obtained between fss2
and NSC97f in the 3S1 T = 3/2 channel, which are shown
in Fig. 6. The quark-model potential predicts repulsive
interaction, which comes from the quark Pauli effect. The
correlation due to the Pauli effect is not so short ranged, as
the magnitude of the matrix element at k = 4 fm−1 indicates.
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FIG. 6. Same as Fig. 5, but for the �N 3S1 T = 3/2 partial wave.
In this partial wave, there is no baryon-channel coupling.

The repulsive character persists in the low-momentum space.
However, the NSC97f model does not have strong repulsion
and the low-momentum equivalent interaction is attractive.
Owing to the spin and isospin weight factors, this 3S1 T = 3/2
state dominantly contributes to the � single-particle potential
in nuclear medium. Analyses [34–36] of the (π−,K+)�
formation inclusive spectra [34] have indicated that the �-
nucleus mean field is repulsive.

Figure 7 shows results for the 1S0 T = 1/2 state. The
thin solid curve presents the result for which the �N -�N

channel-coupling is neglected. The corresponding result for
NSC97f is shown by the dashed curve. Bare matrix elements
are also shown up to k = 4 fm−1. Both potential models predict
repulsive interaction in this channel. As we have already seen
in the �N interaction, the �N -�N channel-coupling effect is
very weak in NSC97f. It is noteworthy that the diagonal matrix
elements in the low-momentum space become more repulsive
in NSC97f when renormalizing the high-momentum attractive
components.
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FIG. 7. Same as Fig. 5, but for the �N 1S0 T = 1/2 partial wave.
Thin curves are results without the �N -�N coupling.
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FIG. 8. Same as Fig. 5, but for the �N 3S1 T = 1/2 partial wave.
Thin curves are results without the �N -�N coupling.

Figure 8 shows results for the 3S1 T = 1/2 state. Here we
see characteristic difference for the prediction of the �N -�N

coupling effect between fss2 and NSC97f. The behavior of
the diagonal matrix elements with fss2 resembles that of the
NN 3S1 state given in Fig. 2. In fact, from the flavor SU3

symmetry this channel has a (03) component by 50%, which
is the component of the NN 3S1 interaction. Because the other
half component of the (11)a gives a minor contribution, the
�N interaction in the 3S1 T = 1/2 state should be similar
to the NN 3S1 interaction in the quark-model description.
In contrast, weakly repulsive matrix elements are seen for
the 3S1 T = 1/2�N -�N interaction from NSC97f. It has to
be remarked, however, that the �N -�N coupling in the P

space, which is not yet taken into account, can change even
the sign of the diagonal matrix elements. In fact, G-matrix
calculations [37] in symmetric nuclear matter with using
NSC97f tells that the contribution from this channel to the
� single-particle potential in nuclear medium is attractive and
becomes repulsive if we switch off the �N -�N coupling. This
fact simply means that we have to be careful to interpret the
matrix elements in the case that there exist coupling channels
and the coupling effect is important in the low-momentum
space. We encounter such a situation also in the �N 1S0 T =
1 state.

D. �N interaction

There are two kinds of sources for the experimen-
tal information about the baryon-baryon interaction in the
strangeness S = −2 sector. One is the estimation of a �-
nucleus single-particle potential from DWIA analyses [38]
of the (K−,K+)�− formation spectra on 12C. The tentative
conclusion is that the depth of the single-particle potential
is about 14 MeV. The other clue is the strength of the ��

attraction through binding energies of double-� hypernuclei.
The recent discovery of 6

��He [39] has indicated that the
attraction of the �� interaction is rather weak. There is also
an attempt [40] to measure the �N → �� inelastic cross
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FIG. 9. Diagonal matrix elements of the equivalent interaction
in the low-momentum space with � = 2 fm−1 for the �N 1S0 T = 0
partial wave, using fss2 [17]. Bare matrix elements are shown by a
dotted curve. The thick and thin curves are results with and without
taking into account the �N -��-�� channel coupling, respectively.

section and deduce the �� correlation in the � formation
reaction. Nevertheless, all these experimental data are in the
rudimentary stage and far from sufficiently constraining the
interactions that have a variety of baryon-channel couplings.
Thus the investigation using theoretical models of the �N

interaction is important.
Because the computer code for the Nijmegen �N inter-

action was not available, we present results only with the
Kyoto-Niigata quark model potential fss2 [17]. Figure 9 shows
the low-momentum space equivalent �N interaction in the
1S0 T = 0 state with � = 2 fm−1 together with the bare
matrix elements up to k = 4 fm−1. If the coupling to the
��-�� channel is neglected, the diagonal matrix element
of the equivalent interaction in the low-momentum space is
close to that of the bare interaction, which indicates that
the correlation in the �N-�N channel itself is rather weak.
The result of the large attraction in the �N interaction in
the low-momentum space originates from the baryon-channel
coupling effect. Among other S waves, this channel turns out to
be most attractive. As noted in the previous section, however,
it is necessary to explicitly treat the �N-��-�� coupling in
the P space to obtain more physically meaningful information.

The 1S0 T = 1 state is shown in Fig. 10(a). In this state
the �� channel is not allowed and the �N state couples
only with the �� state. Looking at the matrix elements at
large k, we observe that the short-range repulsion is weak
in this �N-�N channel. It is found in this channel that
because the baryon-coupling effect is strong, the sign of the
diagonal matrix elements does not indicate the property of the
interaction. For example, we show, in Fig. 10(b), the diagonal
matrix elements of the low-momentum equivalent interaction
with the cut-off value of � = 3 fm−1. In this case �N-�N

diagonal matrix elements are mostly positive. In between
� = 3 fm−1 and 2 fm−1, the diagonal matrix elements change
sign, which suggests that the baryon-channel coupling effects
in the P space are decisively important, and thus the �N and
�� states are strongly mixed.

The 3S1 T = 0 state is classified to the pure (11)a state
in the flavor SU3 symmetry and no baryon-channel coupling
appears in this state. The quark model [17] predicts that the
bare �N interaction is already weak. Figure 11 shows that the
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FIG. 10. Same as Fig. 9, but for the �N1S0 T = 1 partial wave.
(a) with � = 2 fm−1 and (b) with � = 3 fm−1. The thick and thin
curves are results with and without taking into account the �N -��

channel coupling, respectively.

low-momentum equivalent �N interaction in this partial wave
becomes slightly attractive.

As is shown in Fig. 12, the quark-model potential fss2
predicts that the �N interaction in the 3S1 T = 1 state is
also not so strong. Due to the �N-��-�� coupling the
diagonal matrix elements of the low-momentum equivalent
�N interaction can be slightly negative.

Altogether, the quark model potential fss2 [17] predicts
that the �N interactions in 3S1 channels are weak. For
the estimation of the �-nucleus single-particle potential in
nuclear medium, we expect an attractive contribution from the
1S0 T = 0 state but a repulsive contribution from the 1S0 T =
1 state. Higher partial waves may play an important role for the
�-nucleus single-particle potential.
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FIG. 11. Same as Fig. 9, but for the �N 3S1 T = 0 partial wave.
In this partial wave, there is no baryon-channel coupling.
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FIG. 12. Same as Fig. 9, but for the �N 3S1 T = 1 partial
wave. The thin curve shows results without taking into account the
�N -��-�� channel coupling.

IV. CONCLUSIONS

We have calculated low-momentum-space-equivalent in-
teractions for hyperon-nucleon interactions, starting from two
models of the bare potentials, the quark-model potential
fss2 [17], and the Nijmegen OBEP model NSC97f [11]. An
effective interaction in a restricted space that reproduces the
same eigenvalues or T matrices in that space as those of
the original full-space interaction is named as an equivalent
interaction in this article.

The quark-model potential uses a RGM framework, thus the
naive definition of the baryon-baryon interaction on the basis of
the RGM Born kernel is energy dependent. Recently, the tech-
nique to eliminate the energy dependence was developed [21].
We have used this prescription for the quark model potentials
for the octet baryon-baryon interactions. The calculation of
the low-momentum-space-equivalent interaction for the quark
model potential is interesting in two aspects. One is related
to the different nonlocal character from that of the one-boson
exchange picture, especially at short distance due to the RGM
treatment of two quark-composite clusters. Another point is
that the extension of the potential to the strangeness S = −1
and S = −2 sectors based on the parameters fixed in the NN

sector has been shown [17] to be less ambiguous than the
OBEP model. It is useful to elucidate the similarity and
the difference in the �N,�N , and �N interactions between
the quark model and the Nijmegen model. As the representative
potential for the latter model, we have employed the NSC97f
[11], which was used in the similar calculations recently
reported by Schaefer et al. [20].

The merit of considering the low-momentum-space-
equivalent interaction for the YN interactions is to eliminate
the model-dependent characters at short distance, as has been
demonstrated for the NN case by Bogner et al. [1]. Thus we
can concentrate on features of the YN interaction relevant to
low-energy experimental hypernuclear observables.

First we have presented the NN results for the sake of the
comparison. The quark-model potential gives almost the same
results as other modern realistic NN potentials, as it should.
The �N equivalent interaction in the low-momentum space
turns out to be almost identical in the quark model and the
OBEP model. This is probably because we have some amount
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of constraints from � hypernuclear data in addition to old
scattering data.

Experimental data for the �N interaction is very limited.
Thus the model dependence in the theoretical construction
of the �N potential is large. In fact, the quark model
and the Nijmegen OBEP model provide different equivalent
interactions in the low-momentum space. In particular, we note
that the quark model predicts repulsion in the 3S1 T = 3/2
state that originates from the Pauli effect on the quark level,
whereas the NSC97f potential expects attraction. However, the
repulsive contribution of NSC97f in the 1S0 T = 1/2 state is
rather strong.

The �N interaction is less known experimentally. This
subject is one of the primary subjects of the ongoing J-PARC
project [41]. The matrix elements in the low-momentum space
from the quark-model potential suggests that the �-nucleus
single-particle potential is probably attractive due to the
interaction in the 1S0 state in the isospin T = 0 channel,
but weak. It is expected that there are strong baryon-channel
coupling effects both in the high-momentum space and in
the low-momentum space. In this article, we do not consider
higher partial waves. Actually they may be important for the

quantitative discussion of the � hyperon in nuclear medium.
These are the future subjects to study.

In hyperon-nucleon interactions, baryon-channel couplings
appear in most cases. If the coupling effect is important, as
in the case of the �N 3S1 T = 1/2 state in the Nijmegen
NSC97f model and the �N 1S0 T = 1 state in the quark
model, we have to solve the channel-coupling problem in
the low-momentum space to obtain physically meaningful
quantities. When considering hyperons in nuclear medium,
we also have to take into account the Pauli exclusion effect on
the hadron level in a nuclear many body system. The effect of
the three-body correlation through the coupling of the Pauli
effect and the elimination of the high-momentum components
of the interaction may be important for hyperons in nuclear
medium.
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