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Abstract 

As the technique of electroencephalogram (EEG) developed for such many years, its 

application spreads and permeates into different areas, such like, clinical diagnosis, 

brain-computer interface, mental state estimation, and so on. Recently, using EEG as a 

tool for estimate people’s mental state and its extensional applications have jump into 

the limelight. These practical applications are urgently needed because the lack of 

subjectively estimating methods for the so called metal states, such as the concentration 

during study, the cognitive workload in driving, the calmness under mental training and 

so on. On the other hand, the application of EEG signals under daily life conditions 

especially when eye movements are totally without any constrains under a ‘fully 

free-view’ condition are obedient to the traditional ocular artifact suppression methods 

and how it meets the neuroscience standard has not been clearly expounded. This cause 

the ambiguities of explaining the obtain data and lead to susceptive results from data 

analysis. 

In our research, based on the basic idea of employing and extending EEG as the main 

tool for the estimation to mental state for daily life use, we confirmed the direction 

sensitivity of ocular artifacts induced by various types of eye movements and showed 

the most sensitive areas to the influence from it by multi zone-of-view experiment with 

standard neuroscience-targeted EEG devices. Enlightened from the results, we extended 

heuristic result on the use of more practical portable EEG devices. Besides, for a more 

realistic solution of the EEG based mental state estimation which is supposed to be 

applied for daily life environment, we studied the signal processing techniques of 

artifact suppression on low density electrode EEG and showed the importance of taking 
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direction/eye position information into account when ocular artifact 

removal/suppression. 

In summary, this thesis has helped pave the practical way of using EEG signals 

toward the general use in daily life which has irregular eye movement patterns. We also 

pointed out the view-direction sensitivity of ocular artifact which helps the future 

studies to overcome the difficulties imposed on EEG applications by the free-view EEG 

tasks. 
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Chapter 1  Introduction 
 

1.1. Research background  

As time goes by, EEG device and EEG measurement are not the exclusively used 

appliances any more. More and more EEG application has been expected to help and 

provide convenience to our everyday life. Especially after the portable EEG device has 

been invented, researcher and engineers proposed many creative applications of EEG in 

daily life, for instance, the combination with smart phones to display users’ brain 

activities and EEG spectrums. Moreover, based on the evidences from neuroscience 

studies, the use of EEG and be expected as hopeful tool for monitoring study efficiency, 

cognitive workload, patients’ home life state and their needs for medical care and so on. 

The basic ideas of those applications are all based on the portable EEG use concept. 

Recently, new applications of EEG signals are extensively proposed. They popularity of 

those new EEG application concepts depends on their needs. As an example, one of the 

hottest topics in this field is driver’s mental state estimation because car accidents have 

been a serious safety problem in our everyday life. As reported by the National 

Highway Traffic Safety Administration (NHTSA), over 25% percent of the crashes are 

related the driver’s mental state problems [1]. From another report, it is announced that 

over all the car crash accidents, driver’s mental state actually played a very significant 

role in all the crashes and near crashes, and this percent can be seem as main factor 

(78%) [2]. As is shown as typical examples above, the use of EEG to estimate people’s 

brain state has in fact become a huge and highly attractive field. However, every 

application has its own particularity (e.g. under the condition which is during body 

movements, or in an almost still state without any motion but intensive brain activities). 
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Understanding the features used for EEG analysis for that was applications is 

crucial.However, it is very difficult to work out a general framework which overcomes 

all the application fields, and including more applications means the meaningful 

features from EEG signals are not clearly identified, such as which frequency band use 

or what ERP to test during the practical implications. So it is very important to spacify 

the original purpose before talking about EEG applications although there may exist 

some common point between those applications. Drivers’ workload estimation is one of 

the best examples of portable EEG use as it moderately balanced the body movements 

and brain activities during the EEG recording. So, to clearly identify the daily use 

condition and avoid the ambiguities, we selected the use of EEG for driver’s mental 

state estimation as the typical example and discussed the issues brought by it in EEG 

measuring and analysis in the coming parts of this thesis. 

On the other hand, the estimation of mental state for daily use is a difficult issue, 

because usually the mental state is subject was supposed to be a subjective problem 

which is done by subjects (in our case, drivers) themselves. However, there exists a very 

big variance by using subjective estimation. The subjective estimation relies on 

individual judgment and shows a big variance from different subjects, even if they are 

putting into the same driving environment. Besides, subjective estimation faces the 

problem of quantitative difficulties. These reasons lead to the necessity of assessing the 

brain state by means of bio-signals reflecting the inner status concealed beyond the 

precise assesses by subjective determinations. 

The aim of bio-signal based mental state estimation contains the following main 

tasks: 

a) Finding and extracting features representing the metal state changes 
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b) Quantitatively analyzing the features with predefine metal states or state changes 

c) Metal states estimation by the obtained features from real-life data recording 

The bio-signal applied for mental state estimation must satisfy the high usability 

(easy to acquire) and quantitative functions to subjects’ inner states or their changes. If 

the mental state estimation exceeds a certain level of safety concerns, system can alert 

or provide automatic assistances to the in danger conditions. 

The so-called mental state actually comprises a number of factors, for instance, 

mental workload, fatigue, drowsiness, cognitive distraction and so on. Therefore, it 

comes with the challenge to deal with the multiple estimation problems, in which it is 

required to assess as many as the mentioned factors at the same time. As an example, 

during driving the typical relationship between driver’s mental states and the operative 

performance can be described as the figure below: 

 

 

 

Figure 1.1 An example of the typical relationship between mental state and driver’s operative 

performance. The symbols ‘-’ and ‘+’ represent the relationship (negative correlation and 

 positive correlation) between factors in driving tasks. 

 

As we can see from the Figure 1.1, the mental workload is actually acting as a 

precursor of for the operative performance, but is doesn’t affect the operative 

performance directly. In fact, the situation is one of the straight-forward factors of 

operative performance. However the deterministic relationship in between bring us the 

possibilities to setup a measuring system to assess operative performance from brain 
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actives. According to the negative and positive correlations between mental workload 

situation awareness and operative performance, an increase in mental workload results 

in a decrease in situation awareness, then the operative performance decreases with the 

situation awareness together when the linear constrain holds on. Note, whether their 

relationship is linear or not and when their relationship can be considered as linear is 

still not clear. There is a high probability of the existence of non-linear factors and 

saturation stages. Yet, as shown in the review paper [3], in spite of those doubtable 

points, the detection of mental stats by bio-signals has been demonstrated with a pretty 

high precision up to around 90% for off-line use, although the on-line use seems still 

have a bit far way to go until it can generate satisfactory results. But successful 

achievements from those off-line systems greatly encourage researchers and the on-line 

related studies have already caught the tremendous attentions in car-safety system 

design and related fields. 

Therefore, the application of bio-signals in mental state estimation is an 

extraordinarily hopeful technique which may lead to revolutionary innovations and 

highly expected to form a practical use system to decrease the accident rate with the 

necessary alert to drivers or help the intelligent car systems to determine the 

corresponding operations in time. In another word, this technique places our hope on 

providing a smart life protector in our developing on-the-car life. 

 

1.2. Bio-signal based mental state estimation 

Indeed, mental state estimation can be done from many kinds of bio-signals. The 

bio-signals has been employed in the mental state estimation include: 

Electroencephalogram (EEG), Electrooculography (EOG), eye trace, heartbeat rate, 
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Electromyography (EMG) and so on. Recent researches suggested that many kinds of 

bio-signals fit the purpose of detecting human brain state, while some of them such as 

pupil size and skin conductance applied techniques greatly rely on the surrounding 

environments (e.g. quietness, darkroom, keeping still when testing and so on) and only 

works for in-lab psychological experiment, the others were able to be extended to the 

real-life use for state estimations. Some of the popular bio-signals are listed below, as 

mentioned above the examples are shown with respect to drivers’ mental state 

estimation: 

 

1) Electroencephalogram  

It has been as of now exhibited by a few studies that EEG is touchy to fluctuations in 

carefulness or vigilance and has been suggested as a method to make predictions about 

the decrease of efficiency or performance because of continuous mental work in 

operative tasks [4][5].  

Relationship between an abatement of human alertness and a kind of degeneration in 

carefulness and weakness has been found to produce significantly obvious signs in 

on-going EEG recordings. Those signs are particularly and clearly shown in alpha and 

theta waves bands [6][7]. With respect to the band power changes, it has been 

demonstrated that a process of decreasing in vigilance and a gradual decline in operative 

performance are brought into relation with the spectra increment of EEG band power in 

theta band and a change in EEG alpha power [8]. 

In addition, the study of Okogbaa et al. [9] suggested that arousal and alertness have 

a correlation with an increase phenomenon take place in the EEG power spectrum. And 

the increase they found was in beta band. They also pointed out that the alpha band’s 
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power increase happens when the subjects were in relaxed conditions, with decreased 

attention, and suffer from drowsiness. However, during the wakeful stage, no significant 

alpha features were found. In comparison to alpha wave, theta waves show a strong 

tendency of occurring when sleeping. Conversely, an observation that the alpha activity 

shows at the parietal area decreases with the change of the predefined gradually 

increasing working memory load or multi task level [10]–[12]. 

It is also necessary to note that at parietal areas an increase of theta power has also 

been reported as a response to increased task demands [13]. With respect to the tasks in 

which attention level goes up, theta activities also can be observed in frontal head [14]. 

This provides a very good clue to measure mental stress or workload in driving 

conditions for drivers. 

Previous researches also studied the relationship between time pressure task and 

EEG power. As an instance, in the research of Slobounov’s [15], they found an increase 

in theta band during the time pressure task. The electrodes clearly showing the tendency 

were located in frontal head and central scalp. Boksem [12] testify the influence from 

fatigue accumulation. They also found theta band power increase by comparing the 

theta power at the end and the started time of tasks. 

It has been reported that during a task with complex and high cognitive demands the 

EEG power in alpha band decreased. The power decrease was proved to appear in 

different areas over scalp, and the regions of frontal-central and parietal were suggested 

showing stable decreasing patterns [13][15].  

During the change process from a common state to a fatigued state, EEG also shows 

corresponding changes. This kind of power change was observed increasing in delta 

band [16]. As is reviewed by Borghini [3], in many studies, the EEG power decrease in 
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alpha band and the increase in theta band were usually paired in tasks.  

Recently, the increase in theta band was also found during the well-designed tasks 

that attracts subjects’ sustained attention. The same pattern were reported via 

simultaneous multi task based EEG measuring experiments as were mentioned in 

[10][13]. However, in multi task experiments, whether the sensitivity of EEG power 

changes is adequate enough to make a complexity level estimation are still staying 

unclear. 

EEG studies on pilots’ training and real-driving have done as well as car drivers’ 

recently. The interesting conclusion was that during the training sessions, pilots’ theta 

power was not affected, whereas the changes in real-driving were significantly 

observed. 

 

2) Heart rate 

The cardiovascular response can thus be used to evaluate the mental load of a task in 

aviation. However, the variation of HR is also linked to different factors besides mental 

workload, including the fatigue of the subjects (in terms of muscular efforts). Another 

important variable that can be linked to mental fatigue using cardiovascular responses is 

the Fourier transform of the HR signal, known as Heart Rate Variability (HRV). 

Several studies have shown that if the internal, external and initial conditions are 

kept constant, HR and HRV are measures of task demands, since such variables 

demonstrated a very high correlation with questionnaires and behavioral tasks [17][18]. 

 

3) Electrooculography 

It is a common experience that when a particular task involves the use of visual 
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attention, subject becomes more concentrated and decreases the time spent with the eye 

closed for blinking, i.e., their blink frequency decreases. Researchers have investigated 

whether such phenomena could lead to valid indications about the mental workload for 

tasks requiring high visual attention, such as driving. As a result, eye blink data has 

been collected in highly realistic settings of driving. Different parameters characterizing 

the blink, such as the Blink Rate (BR), the Blink Duration (BD), and the Blink Latency 

(BL) have been analyzed and used as workload measures in a series of studies [19][20]. 

Blink patterns can be used to provide information about the subjects’ response to 

different stimuli and thus SA, and the latency measure has been found to increase with 

memory demands. A general conclusion that can be drawn is that 

A general conclusion that can be drawn is that the blink rate maybe most related to 

visual information requirements and fatigue. Blink duration and blink latency could be 

also measures of work-load. Wilson and Fisher [19] have demonstrated the advantage of 

using both HR and eye blink data in the analyses of pilots’ mental workloads. Fewer 

and shorter blinks have been associated with increased workload, in tasks such as city 

driving, reading and aircraft weapon delivery [21].  

In this study, our choice of bio-signal used to detect mental state is EEG. Among all 

the bio-signals, EEG is highly preferred as a powerful tool to assess inside brain neuron 

activities because EEG is directly related to the brain and neuron activities.  

Along with the hardware technology development, the portable EEG devices with 

high sampling frequency and long battery life are not only an assumption in theoretical 

research anymore. Portable EEG devices has already been invented and commercialized 

now. Its high usability of EEG gains the popularity in applications and is pushed to a 

real-life utilization stage. 
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However, here are some issues and limitations of EEG based mental state estimation. 

Those difficulties to real-life application induced the main objectives of this thesis: 

 

1.3. Thesis Objectives 

Although EEG based mental state estimation has been proved efficient and practical, 

it still suffers from some well-known problems, for instance, the most prominent 

problems of suppression of artifacts and lack of robust and stable algorithms for low 

density, low sampling frequency portable EEG devices. Another important issue is that, 

most of the experiments are done in laboratory environment with only EEG 

measurement. This is risky because of two reasons. The first, the information collected 

by a single system may not be able to provide adequate proofs to reflect the real 

inside-brain state. If there are some biases or systematic errors, it will be very difficult 

to realize by simply investigating the one-sided data recordings. A very good example is, 

when a potential level changed in a single-channel recording system, it is almost not 

possible to tell whether it belongs to eye movement artifact or induced by heartbeat or 

some other non-brain activities. The second, in-lab environment experiment, especially 

for EEG experiments, there are many factors cannot be well simulated. For example 

under driving condition ,the light condition, weather, passengers, and the vibrations in 

the cockpit, and relative speed caused by car acceleration and so on, all these factors 

occupy a considerable proportion of real driving, and there it is not necessarily that 

there are uncorrelated to EEG recordings and mental states. 

Taking aim at improving the practicability of EEG measuring for a real-world use, in 

this thesis, the study was focused on ocular artifact suppression under daily use 

conditions which is totally in a free-view working environment. The difference between 
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laboratory conditions and real life environment causes significant distinctions of ocular 

artifact in magnitude and amount. To solve the problem of such kind of free-view 

artifact suppression, the characteristic of free-view eye movements must be well 

analyzed. To improve the practicability of EEG with real-world environment, this thesis 

is mainly focused on the following crucial jobs: 

 

1) Prominent artifact (ocular artifacts) analysis with eye tracker by 

standard neuroscience research instruments 

Differing from the neuron science tasks which are basically performed in laboratory 

environment with well-designed stimulations and fixation instructions, it is impossible 

to avoid or restrain eye movements. The eye movements may also exceed the 

reasonably defined distance/angles in traditional EEG experiments. Furthermore, under 

conditions outdoor, subjects’ blink frequency may extremely overtake the common 

frequency measuring in a comfort environment where the common EEG or BCI 

experiments are carried out.  

In this way, the eye artifacts were constrained with the number of the limitations. For 

example, the eye movement frequency and the eye moment distance during the EEG 

measuring tasks. Before experiment, all subjects usually get instructed with some 

explanation that not to know their body and all eyes doing the experiment. Although 

many researchers investigated the relationship between eye movement and the invoked 

potentials over scalp for neuroscience experiments (e.g. ERP analysis) [22]–[24], BCI 

use [25], all of them were focused on data center fixed it EOG pattern, that the eye 

rotation happen in literal side or the random area have not been well researched yet. 

Maybe in the traditional neuroscience experiments, it doesn’t matter how the eye 
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rotations happen in a random area generate influence to EEG signals, because the eye 

rotation was constrained with some predefined limitations, for example the fixation 

cross in the center of the stimulation screen. In a real life environment, it’s crucial 

because there is no assurance that the users’ eyes stare at the predefined area. To 

overcome the problem of this, it is urgently necessary to know how the free eye 

movement the fact the EEG signals. In this part of our research is focused on this issue. 

The main target in this part is to investigate whether there are significant effects existing 

and which parts on the scalp or affected strongly or almost nothing not to be affected 

from the free eye moment. Hopefully, we can identify the areas being safe (not 

contaminated by strong ocular artifacts) under free view condition. The study for this 

purpose would be profound in-lab, and to get a precise data set, some limitations used it 

in neuroscience researches would be combined. 

In this section, the nature of ocular artifacts in EEG recordings would be analyzed 

combining an eye tracking system. In this way, the redundant data from eye tracking 

system would provide benefits for the analysis to EEG data. Provided the eye trace data, 

the EEG caused by eye moment can be more precisely identified and well segmented 

with the time information with respect to eye moments. 

 

2) Practical ocular artifact suppression method evaluations and finding out 

a smart method for portable EEG device 

The EEG measurement suffers from high amplitude artifacts such as the EMG, line 

noise which is caused by power supply, and ocular artifacts which induced by blink or 

eye movements. So, at certain, it is a very important task to solve the problem of artifact 

suppression. To reconstruct the true EEG signals or the EEG signals only contain a very 
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low level artifact, the algorithm ran for data analysis and de-noising is vital. There are 

many methods have been proposed recently [26], every of them were proved to be 

efficient in signal de-noising. However, because the true EEG signal and artifacts 

cannot be separated when measuring, there are no criterions and evidences of what is 

the actual EEG signal. 

However, it doesn’t mean that it is not necessary to analysis the factors which 

influence the artifact suppression process. Researchers are making great efforts to 

investigate the factors hidden behind the visible EEG recordings and it has been proved 

the methods developed under different assumptions or verification theories improved 

the visibility of the ‘under-ground’ neuron activates such as event-related potential 

(ERP), event-related synchronization (ERS) and event-related synchronization (ERD). 

So the study around the central topic of EEG artifact suppression is still one of the most 

important steps towering the practical use of EEG signals in real life. 

So, one of the main tasks of this research has been set on this purpose. Several 

existing techniques would be analyzed and evaluated for the use of artifact removal. 

Actually, there are many kinds of artifacts take place in EEG experiments, such as EMG, 

line noise, heartbeat, EEG level drifting caused by sweeting and so on. Because the 

ocular artifact is deemed as one of the most prominent artifact sources, we selected 

ocular artifact as the main topic in this thesis, and algorithms for suppressing or 

removing ocular artifacts would be studied too. 

In addition, we also study the complexity of all the algorithms, because in a real-life 

use not all the algorithms designed for theoretical research can be applied, one of the 

aims of the research was set to find out a simple but efficient method for the artifact 

suppression in low-density, low sampling frequency possible EEG devices. 
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3) Evaluation to EEG based mental state estimations with practical use 

with portable devices 

The aim of estimating mental state with the commercial level EEG instruments is not 

that easy. Because there are potential risks brought by the EEG instruments, in other 

words, whether the portable commercial EEG devices can provide enough signal quality 

for our purpose hasn’t been investigated or reported from recent researches. We would 

do the job ourselves by evaluating the performance of the commercial EEG devices 

with well researched psychological experiments with respect to human mental state in 

this thesis as well. The result of our research will probably push the EEG experiment 

from an in-lab environment to the real-life use, because of the on-purpose selected EEG 

device we used. The eye tracking system used for analyzing eye movements and its 

nature would also be combined in our EEG experiment. Hopefully, we can also get 

some other approaches which can help EEG analysis and mental state estimations. 

Finally, we would demonstrate that combining eye tracker may provide some extra 

benefits for mental state estimation by providing redundant information that related to 

the change of mental states. 

 

1.4. The organization of this thesis 

In chapter 2, the nature of EEG including the source and the electrical characteristics 

were studied the sources and properties of artifacts, especially for the ocular artifacts. 

The traditional way of dealing with ocular artifacts and its limitation in daily use were 

also discussed in this chapter. Chapter 3 focused on the signal processing methods of 

suppressing or removing artifacts. In chapter 4, we investigated the direction sensitivity 
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of eye moment related artifacts and their distribution on topographic maps by a novel 

systematic experimental design. We also discussed the possibility of improving existing 

ocular artifacts removal algorithms and opened a new viewpoint about free view EEG 

experiment design and data analysis. Moreover, our results suggested that by selecting 

intellectual positions, the problem of ocular artifact in driving experiments can be 

relieve, so that the common artifact removal algorithm may also get considerable good 

performance in the data analysis stage. In chapter 6, the performance improvement 

when taking view-field into account was shown and evaluated by correlation coefficient 

comparisons. Finally, in chapter 7, the contributions of this thesis and the prospective of 

conquering the artifacts induced by irregular eye movement in daily life use EEG was 

summarized.  
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Chapter 2  EEG measurements and ocular artifacts 
 

2.1. EEG signals, frequency band and EEG measurement 

 

1) EEG signal and collection: 

The Electroencephalogram (EEG) is the potentials which observed by noninvasive 

surface electrode over a head scalp. EEG can be seen as the biological expression in 

surface potential reflecting the inside brain activities including: oscillation, voltage 

fluctuations. This kind of signal registers the inside-brain spontaneous electrical 

changes which induce neuron’s firing under skull. The ionic current within the neurons 

of the brain is deemed as the source of EEG [27]. Whereas a single neuron can only 

generate very weak electrical changes, when a big cluster of neuron fire together, an 

observable electrical changes can be measured using an electrode over human’s scalp 

surface. Figure 2.1 and 2.2 show how the EEG signals were generated from neuron 

activities. So in a sense, EEG signals are the electrical expression of the brain activities 

under skull and actually the original EEG signals are very weak that without a high gain 

amplifier the potentials are difficult to obtain. From the pictures we can see, the EEG 

signals are highly related with cortex structures. Irregular folds of cortex surface may 

cancel the potential field of neuron activities greatly, thus the neuron activities with the 

same strength may lead into different EEG potentials depending on the EEG correction 

positions. Note that people’s brain folds are different from one another even on the 

same cortex. This leads to an ambiguity of explaining EEG signals, so that for the same 

brain activity, the EEG signals obtained may have differences between subjects. On the 

other hand, the propagation of EEG signals is actually in the form of spreading from the 

activity source to near areas over scalp, so that activities from the same source can be 
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observed in the area around the source position through the volume conductance of 

brain [28]. Taking this property of EEG into account, it is reasonable to believe that the 

EEG signals are statistically similar between subjects. This provides the availability of 

the using EEG signals from different subjects to assess and bring activities with respect 

to the same stimulation in experiments.  

When measuring the EEG signals, the position of electrodes is crucial. As mentioned 

before, EEG signals may show different tendencies depending on electrode positions, 

determining electrode positions becomes a vital step in EEG measurements. The most 

popular way to define electrode positions is international 10-20 system. Figure 2.3 

shows an example of international 10-20 system configuration. In this international 

electrode position configuration, all the electrode positions are defined using the 

distances of proportions of predefined total length on scalp, and basically the difference 

between two electrodes are set as 10% or 20% of the circumference of subjects scalp. 

This electrode position configuration method has been extended to international 10-5 

and 10-10 systems and so on four different purposes. 

 

 

Figure 2.1 an example of the pattern of electrical current flow 
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Figure 2.2 neuron cluster and surface electrical potential 

 

 

Figure 2.3 An example of electrode configuration of international 10-20 system 

 

As EEG signals are considerably weak, typically less than 10 µV~100µV [29] from 

scalp measurement, the acquisition of EEG signals are usually obtained by the amplifier 

before ADC input. To make the EEG signals observable, the gain of the amplifier is 

usually set to 10,000 or higher. Figure 2.4 shows a typical EEG correction system 

structure. Usually the collection device in this figure is flexible depending on 

implementations. For traditional in-lab in neuroscience researches, big and unhandy 

professional EEG measuring devices are used; whereas for possible EEG applications, 
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this part is generally realized by a single structure which contains both the amplifier and 

ADC functions but with a convenient and possible design so that subjects’ motion is not 

constrained. 

 

 

Figure 2.4 Typical EEG collection system 

 

2) Frequency band in EEG signal: 

As its oscillation nature of brain activities which is very complicated and usually 

investigated by dynamic models, EEG signals also show oscillation patterns in different 

defined events from low-frequency to the higher ones: Delta (<4 Hz), Theta (4~7 Hz), 

Alpha (8~15 Hz), Beta (16~31 Hz) and Gamma (higher than 31 Hz). In some researches, 

Mu band is defined as 8~12 Hz frequency band. This kind of definition is usually used 

for sensorimotor cortex related researches, which is commonly combined with BCI or 

ERD/ERS topics. 

Delta band signals are often detected in frontal head from adult humans and in 

posterior parts of head from children. EEG signals in this band usually show high 

amplitudes and relatively smooth changes in comparison to the other EEG signal bands, 

for instance, the research done by Kirmizi et al. [30]. In their research, the investigated 



21 
 

the potential changes in GO/NoGO tasks. They suggested that delta band power 

changes are related with continuous attention tasks under certain conditions. 

Theta wave is one of the most extensively investigated fields in many researches. In 

Zhang’s research, they reported the traveling theta waves take place in human 

hippocampus [31]. Because this nature of Theta wave, researchers often presume that 

theta wave is strongly related to memory process and recognition. It is reported that 

theta wave are related to working memory process, and its power is usually stronger in 

children than adults in frontal-midline locations [32]. Interestingly, the locations of theta 

wave are usually not related to tasks designs. Maglione [33] reported that the EEG 

spectrum of Theta band changes markedly during car driving tasks when workload or 

drowsiness varies. 

The famous alpha wave has a long history. It is deemed alpha wave was found by 

Hans Berger, one of the greatest researchers who opened the field of EEG. The easiest 

way to elicit alpha wave is just closing eyes during EEG recording. Posterior regions 

such as O1, O2, and Oz usually show the strongest alpha waves in this way of closing 

eyes. Alpha wave is very frequently used in neuroscience researches, especially is 

investigated as the main signal for sleeping related researches [34]–[36]. Recently, the 

relationship between pain and alpha power changes has also been reported [37]. In car 

driving related studies (e.g. fatigue, drowsiness, workload and so on), alpha wave also 

plays prominent roles [38]–[41]. 

Beta wave generally shows a low-amplitude characteristic in EEG signals. High 

alertness, stress, anxious state and focusing are highly related to the beta spectra 

fluctuations [42]–[45]. beta wave also had been found and applied to ERD/ERS studies 

[46]. As one of the most successful applications, most of the motor imagery based BCIs 
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employ beta wave as a crucial feature [47]–[49]. In addition, the Mu wave should be 

mentioned together here, because mu suppression is used as the indicator that monitors 

rest state when subject are not doing anything to elicit motor neurons activities. In most 

of the BCI applications, mu wave and beta wave are paired. 

The last EEG band is gamma band. Gamma band has the widest frequency range. 

Because the line-noise caused by power supply (usually 50 or 60 Hz) and EMG caused 

by muscular movements strongly contaminate gamma waves, in many preliminary 

researches, gamma band was usually only taken from 31 Hz to a frequency lower than 

50 Hz to avoid the line noise or abandoned when muscular movements are too much. 

Another practical method is notch filter with an extremely sharp block frequency band. 

Gamma band has also been investigated on its correlation with mental workload 

[50][51], but for car driving topics, it is not frequently mentioned. 

 

3) EEG measuring system 

There are several ways to classify EEG instruments because the use or application of 

EEG instruments differs from each other. Besides, the specifications also affect 

categorization. Generally, according to amplifier type, EEG measuring devices can be 

separated into two groups: AC EEG instrument and DC EEG instrument. 

In AC-amp systems, the large offset the low-frequency potential is reduced by using 

high-pass filters before handling the signals by an analog-digital-converter (ADC). In 

other words, the gain of low-frequency signals is very low, so that the high amplitude 

low-frequency components were filtered out before data recording. Most of the 

traditional EEG measuring devices are in this structure, because without a filtering stage, 

low-frequency signal which contains significantly high potentials may cause saturation 
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problems to EEG recordings. DC coupled amplifiers solve this problem by a filter 

techniques, in this way the dynamic range of the ADC can be most efficiently used. 

However, the negative part of this technique is losing the slowly drifting potential 

conflicts in EEG recordings. This technique was the only option for EEG acquisition up 

until approximately 15 years ago. An example of the AC EEG instrument recorded 

signal is shown below: 

 

 

Figure 2.5 EEG recordings collected by AC amplifier 

 

In DC EEG instruments, the amplifier works in a DC mode with a wide-range 

rail-to-rail the dynamic range so that the offset of the low-frequency components with 

high amplitude are not necessary to be filled out. Generally, this dynamic range is 

between +/- 300~450 mVs. DC EEG amplifier is recently developed it is more 

expensive than the AC EEG devices and has more power consumption at the same 

sampling rate of AC EEG instruments. But its powerful way to register low-frequency 

components in EEG experiments makes DC EEG systems the more preferable to collect 

EEG data. The figure below shows an example of the signals recorded by DC EEG 

instrument. 
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Figure 2.6 EEG recordings collected by DC amplifier 

 

The EEG signals are usually measure by silver electrodes (Ag/AgCl). But in this way, 

the electrodes should be used with paste or gel to be a media between data centers and 

them. The preparing stage of this costs a lot of time, and sometimes even causes 

uncomfortable feelings to subjects. Recently new EEG electrodes have been invented, 

for example needle electrode and felt electrode is showing below. The previous one is 

actually a kind of dry electrode which is efficient in touching the bare skin on subjects’ 

head surface, whereas the later one is a kind of semi-dry structure which employs the 

conductance of liquid media for electrically data collections. Figure 2.7 shows two 

typical examples of electrodes. 

 

 

Figure 2.7 Ag/Agcl electrodes and low cost half-dry electrodes 
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EEG instruments can also be categorized as standard EEG instrument and 

commercial EEG device. The standard EEG instruments usually has more EEG 

channels (from 16~256 or more) and higher sampling frequency (~2000 Hz or more). 

Experiments done with the standard EEG instruments are generally constrained in an 

in-lab environment; and subjects’ motions are extremely limited. While the commercial 

EEG devices usually have only a few EEG channels can be used sampling frequency 

(typically ~128 or 256 Hz), but the commercial version of EEG instruments is usually 

designed for entertainment or portable use. So it provides a more practical way to 

measure EEG signals in real-life environments. Figure 2.8 and Figure 2.9 display two 

kinds of EEG measuring devices, a standard EEG instrument and a portable one. 

 

 

Figure 2.8 Standard EEG device 
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Figure 2.9 Portable commercial EEG device 

 

According to the type of electrons, they can be separated into two groups: passive 

electrodes and active electrodes. The passive electrodes are the original type used for 

EEG instruments. Recently, the electrodes with a little amplifier near the electrode taps 

have been invented and called as active electrode. The active electrode can efficiently 

decrease the noise caused by line shakings and has been more and more popularly used 

in EEG measuring systems. 

 

2.2. Advantages and hindrances of EEG 

Because of its noninvasive property, EEG recordings gain the popularity among the 

brain activity observation technologies. With a long development history, 

Electroencephalogram (EEG) signal has become one of the most popular ways for 

observing brain activities. The first time that EEG signals and its properties were 

described is known as the great job done by Hans Berger, in 1929. 

The primary use of EEG was a tool for neuroscientists to investigate 
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neurophysiological phenomena with respect to brain activities. After so many years 

development, EEG has become a very popular tool and over the past decades researcher 

extensively investigated possible applications of EEG and boosted into a technique for 

various on-line monitoring system, such as brain-computer-interface (BCI), 

neuro-marketing [52], driver and pilot fatigue monitoring, and training [53]. 

The success of EEG is well-known, but for the same purpose of brain state 

observation, actually there are many other suitable techniques. For instance, functional 

magnetic resonance imaging which can provide precise information of activated brain 

or cortex area and magnetoencephalography which take advantages of the magnetic 

field change induce by the current flow. 

However, the two well-known techniques, although the functional magnetic 

resonance and the magnetoencephalography are able to specify activated brain regions 

deep inside, they have inevitable limitation in body movements and difficulties 

downsizing into a handheld tool. As they measure brain activities in another way by the 

magnetic field changes, they usually need power supply system and massive hardware 

components to assure data precision. Thus, the limitations with respect to those 

apparatus confine their applications greatly and prevent their use in daily life. 

Near-infrared spectroscopy (NIRS) is a new attempt and has been grown up to a popular 

technique for brain activity observation. NIRS employs optical imaging technology to 

reflect the blood-oxygenation-level of the blood flow, thus can avoid the electrical 

problems the other systems have for example, noise potentials. This technique is also 

safe to use. Because of this ascendant reason, it attracts researchers to study young 

infant’s brain activities [54] by using NIRS. However, with the advantage of 

interference-free with other electric activities, it also has the disadvantages of limited 
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spatial and temporal resolutions because of relatively slow blood circulation speed. 

Furthermore, all those instruments mentioned above are so extremely expensive that is 

impossible to be extended for brain state observation in daily use. 

Whereas, EEG can be obtain by considerably cheaper devices. Up to now, there have 

already existed many kinds of commercialized portable EEG devices, which are 

targeted to daily life use or for entertainment purposes. Besides, EEG provides high 

time resolution (typically more than 200 Hz) so that researchers have a strong tendency 

to combine EEG technique with MRI or MEG together for brain science or 

neuroscience studies, even for clinical diagnostics. Although its spatial resolution is 

relatively low, recently researchers reported an amount of evidences of its performance 

in source localization and source estimation [55] which support EEG as a general 

research tool in the future.  

However, extracting meaningful signals or features from EEG data are still an 

intractable problem. Extracting meaningful signals from EEG highly relies on the signal 

quality obtain by EEG devices. 

In the typical in-lab experiments, researchers basically impose constrains to subjects 

so that the signal quality can be improved, although the endogenous artifacts are 

impossible to be decreased, such as the artifacts generated by heart beats or spontaneous 

activities.  

Actually, the low qualities of EEG signals are caused by two main reasons: 

Hardware specifications and artifacts. 

Hardware problem is significantly prominent in portable EEG devices. The table 

below shows the difference between typical in-lab EEG instruments and commercial 

EEG devices: 
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For in-lab use, devices employed are usually professional EEG instruments; the 

electrodes used for data recording are usually Ag/Agcl electrode because they can 

provide high-quality potential collection; the technical sampling frequency is greater 

than 1000 Hz; the ADC resolution is usually more than 20 bits, and so on. 

Whereas for daily use/solutions, the device used are usually portable/commercialized 

EEG devices. They collect EEG signals by low-cost dry or felt electrodes; sampling 

frequency is usually less than 256 Hz; the ADC resolution is usually less than 16 bits. 

The relatively low specification of portable EEG devices determines the relatively 

inferior competence in signal quality and data sufficiency. But it is reasonable to believe 

that this problem can be overcome sooner or later according to the development of 

hardware technique. Contradictorily, the endogenous problems of various artifacts are 

more intractable. 

 

2.3 The artifacts in EEG 

Artifacts can be understood as the non-brain activities in EEG recordings. This does 

not mean the artifacts are caused by improper data acquisition or device problems. 

Artifacts can be grouped as the following two classes. 

 

a) Physiological artifacts: 

Ocular artifacts: induced by eye movements, blinks or muscular actions of eyes. 

EMG: originates from muscular activities. 

ECG: the heartbeat potential recorded in EEG data. 

And so on... 

b) Non-physiological artifacts: 
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Bad electrode connection: usually caused by unstable electrode montage and motion 

during experiments. 

D.C. drift: the change of direct current component in EEG recordings. 

Line noise: 50/60 Hz noise interference from power supply system. 

And so on... 

While the non-physiological artifacts may be avoided by adjusting and setting the 

experimental environment, the physiological artifacts which reflect subjects’ 

physiological activities are not possible to suppress. In spite of the fact that they are 

deemed not related to brain activities, their amplitude and power spectrum may greatly 

bigger than the original EEG signals collected from scalp. Future more, because they 

are non-separable, no one can tell how the true EEG signals look like and how they 

changes during brain activities. This obscure the meaning of obtained EEG signals a lot. 

The latter two physiological artifacts are usually called as ocular artifacts. Removing 

ocular artifacts is still a problem of EEG analysis for ERP experiments and frequency 

analyses. 

As mentioned before and the ocular artifacts are usually defined as the potentials 

caused by blinks and eye movements during EEG recordings. These artifacts have 

tortured EEG researches for many years. Ocular artifacts are usually more than 100 µV 

which is much higher than common EEG signals, covering the low-frequency band up 

to about 20 Hz in common [56].  

Ocular artifacts, especially the ones happened near stimulation onset distort baseline 

and the invoked potentials greatly. Although signal averaging can improve 

signal-to-noise rate, the invoked potentials are usually very weak (e.g. less than 10 µV). 

Furthermore, ocular artifacts usually do not follow a certain statistical distribution. If 
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ocular artifacts are involved, much more trials are needed to average out the influences 

of them. 

Because their frequency band is overlapped, during EEG spectrum analysis, it is 

unclear that the low-frequency changes are caused by ocular artifacts or predefined 

stimulations. 

This problem becomes even more serious in daily EEG applications, because in daily 

EEG applications eye movements are irregular. In comparison to in-lab experiments, 

daily EEG applications are special because subjects are not put into a highly constrained 

environment (e.g. construing of view sights or ranges). In another word, daily EEG 

applications are basically performed in a completely free-viewing experiment without 

any fixation lockers/points to guide the subjects’ viewing actions. The frequency and 

magnitude of ocular artifacts may be greatly higher because of the more complicated 

stimulations from the real-life environment. This problem becomes one of the biggest 

challenges to boost in-lab EEG achievements to the reliable applications in daily life. 

 

2.4 Electrical model of eyes 

In human eyeballs, there exists a potential between the front and the back part. This 

potential is usually defined as the potential difference between cornea and retina [57]. 

The electrolysis process is deemed as the reason why this potential exists. When lights 

pass through eyeballs, the cornea and racial parts of eyeballs are charged positively and 

negatively respectively, so that the electrical potential difference can be measured 

between the frontal and back sides. To make it easy to understand, we can describe this 

model as a charge the battery in a 3-D dimension. Whereas, the potential difference 

between cornea and retina is far from static. This can be explained as the fact that the 
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lights passing through eyeballs are highly dependent of the environments and the 

electrolysis process taking place inside eyeballs. From now on, we use the terminology 

‘corneo-retinal dipole’ to describe this electrical model. This electrical model of eyes 

explains why the potential from eyeballs propagate is over scalp. It is deemed that the 

potential of corneo-retinal dipole propagates by volume conductance of brain [25]. Corft 

and Barry [22] suggested that the amplitude of the propagated potential is inversely 

related to the distance from eyeballs to the scalp electrode positions. In another word, 

the further the electrodes positions are, the weaker propagated potentials would be 

propagated to those electrode positions. Thus, this propagation rate/coefficient can be 

observed by collecting the EOG (obtained from the electrodes around eyes) and the 

propagated potentials from different scalp electrodes. 

EOG potentials are not static because of the influences of lights and the dynamical 

electrolysis process taking place inside eyeballs and brain. Whereas, the relationship 

between EOG signals and the propagated signals over scalp are generally linear, so that 

it is possible to obtain the linear coefficient representing their relationship. This is the 

basis of the EOG propagation analysis. 

It is very important to know that the electrical model of eyes is also affected by 

eyelids. As we can see from Figure2.10, when eyelid moves the positively charged with 

cornea area would be covered partly and this directly based to the potential decrease of 

the cornea pole. However the decrease of the positive charges doesn’t mean that they 

were canceled out, on the contrary, the covered positive charges contribute to the 

potential increase of the electrodes located at higher positions. So, usually this effect or 

described as a kind of shortcut process. Because of shortcut effect from eyelid, the 

electrodes located higher than eyeballs are actually showing a positive drift after eyelid 
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goes downward with the constraint that the reference electrodes are not affected by this 

shortcut effect.  

 

 

Figure 2.10 eyelid movement and cornea potential 

 

The most typical of a moment is blink. Figure 2.11 shows link potentials during EEG 

recording. The shortcut effect of eyelid movement explains why the eye link potentials 

are positive peaks in most of the EEG recordings. Note in this figure, we can see in 

channel V1D and V2D, the potentials are actually negative. This is because those 

electrodes or below all eyes.  

To simplify the model, the eye movements are usually modeled as a sliding electrode 

in researches [25]. In summary, the electric model of eyes can be seen as a spatial 

dipoles which contain both position information and electrical characteristics. 
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Figure 2.11 Blinks in EEG recording 

 

The electrical model eyeballs considerably simplified propagation potentials in EEG 

recording. But eye moment processes are usually dynamic and taking place in the three 

dimension natural space. In this space eye moments can be described as a sum of three 

elements: horizontal component, vertical component and radial component. And 

theoretically, any eye moment can be separated into the eye movements of these three 

components. To model the eye moments consisting different components, Berg and 

Scherg [58] suggested a 3-D dipole model. In this model, they used six parameters to 

describe the spatial properties of eyeball dipoles. These six parameters are: x location, y 

location and z location of dipoles, with their orientation represented by two angular 

values, and the amplitude of dipoles. In this way, any dynamic changes taking place in 

eye moments can be described by the changes of those six parameters. In this model, the 

x,y,z coordinates defined the position of current-dipole in a 3-D space; the amplitude of 

the dipole is determined by the current strength; and the orientation of the dipole can be 
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determined by those two angular values. 

Indeed, brain activities can also be modeled as 3-D spatial dipoles [59] as suggested 

by Delorme’s research. They pointed out that independent EEG sources having different 

morphologies over scalp and they can be described by different current dipoles and 

EEG signals process by independent component analysis (ICA) could be directly 

modeled as spatial dipoles from those independent components. Although there are an 

amount of unclear factors such as non-even electrolysis and asymmetric spatial 

distributions in real EEG, the current-dipoles model can provide a theoretical frame of 

analyzing brain activities and eye moments efficiently. It also gives heuristic 

descriptions of how the EEG changes during dynamic processes. Following the 3-D 

dipole model, EEG potentials can be heuristically predicted morphologically as shown 

with the Figure 2.12. From the figure, we can see the areas affected by eye moment and 

speculate their effects on EEG recordings intuitively. Note that in this figure, with only 

showed the dipoles of the eyeballs. The current-dipoles of brain activities can be 

inferred similarly. 

Combining with the inversely related relationship between distance and the 

propagated potentials, the ocular artifacts propagated to EEG electrodes in the way 

expressed by Figure 2.13. 

As shown in the figures, the spatial pattern of propagation actually affects difference 

areas by different strength. In addition, the number of abstracted dipoles of eyeball also 

affects the patterns. Although it is possible to model the dipole into only one as long as 

there is not significant differences between the modeling methods. 
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Figure 2.12 3-dimension dipole movement 

 

Figure 2.13 ocular artifact propagation and diploe orientation  

 

However this is only the theoretical assumption of the potential propagation of ocular 
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artifacts. This model faces two problems: 

 

1) Head shape of subjects 

As every subject may have an individual head shape, the distance of the 

current-dipole and scalp electrodes may not be precisely defined. This problem can be 

solved by using fMRI the source localization technique [60]. However, obviously it is 

not possible or practical to obtain every subjects’ head structure before EEG 

experiments. Besides, this solution is over-expensive and inconvenient. Thus the dipole 

model is usually used to roughly estimate ocular artifacts propagation in practice. 

 

2) Unpredictable inside electrolysis process 

Without knowing the clear electrolysis process, there is no assurance that the 

potentials generated by eyeball and is moments propagate smoothly over scalp. 

In summary, the 3-D dipole model as a powerful tool for potential propagation 

estimation, but in practice it may not reflect the real dynamic processes precisely. Thus, 

the experiments based on the 3-D dipole model combining with a real obtained result 

would be more persuasive. 

 

3) Determining factors of eye ocular artifacts: 

Ocular artifacts can be generally grouped as eyeball movements which are also 

called cornea-retinal dipole moments, and eyelid movements (typically shown as 

blinks). 

Cornea-retinal dipole moment is the most common eye moment during EEG 

recordings. Human’s eyes never stop moving. This is the nature that keeps humans view 
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sight. Cornea-retinal dipole moment can be tiny when staring at the specified point (e.g. 

the fixation point) or very large when subject changes view sight from one to another. 

Movement direction is one of the most important factors of cornea-retinal dipole 

moment. But basically we used for kinds of moving directions to describe cornea-retinal 

dipole moment: upward, downward, leftward and rightward. Any oblique directions are 

possibly expressed as the combination of two of those four basic eye movement 

directions. 

Potential propagation that the every direction shows different morphology patterns as 

suggested by Picton et al. [61]. In their work, they collected eye movement data from 67 

subjects and obtained of the topographic pattern of potential propagation by principal 

component analysis (PCA). They suggested that different kind of eye moments generate 

different topographic patterns and those patterns can be used for determining ocular 

artifact types. This is the great progress in ocular artifact removal. After this technique 

had been developed, component based at techniques jumped into the limelight in ocular 

artifacts removal/suppression. From EEG recordings, without considering the 

propagation patterns, eye movement information is usually difficult to determine so that 

the artifact removal also faces ambiguities at a certain level. Component based methods 

got a great benefit from Picton’s work. As an instance, independent component analysis 

(ICA) takes advantages of the propagation patterns to determine the corresponding 

components of ocular artifact. 

Eyelid movements are another kind of typical ocular artifact. Principally, the artifact 

generated by eyelid movement can be seen as a change of the resistance between Ford 

had and cornea. Eyelid movement causes three kinds of related artifacts: blinks, saccade 

of eyelids, and another kind of saccadic eyelid movement called post-saccadic 
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movement. There are generated from the same mechanism. 

Blinks may not relate to eye moments, but the other two kinds of the eyelid 

movements are both highly related to cornea-retinal dipole moment. Eyelid saccade is 

the process of eyelids’ moment along eyeball rotations. The saccade direction depends 

on the direction of the eyeball rotations. As literally described, the post-saccadic eyelid 

movement represents the process of the eyelid movements after the rotation of eyeball 

stopped. This process is reported as a slow slide of eyelid lasting from 30ms to 300ms 

after eyeball rotation finished [62]. 

In summary, eye movements are actually a combination of eyeball rotations and 

eyelid movements. These two parts are the key to analyze ocular artifacts.  

Whereas obtaining eyelid movements in practice is a challenge. Although by means 

of high-speed camera, eyelid movements can be recorded, the recording process usually 

employs markers pasting on subjects eyelids. Those markers may cause uncomfortable 

feelings to the subjects and make the recording data biased. As the purpose of this thesis 

is to establish a way to understand the characteristic of eyeball rotations/saccades in 

free-viewing environment and their influence of potential propagation, we do not deeply 

discuss and solve the problem of eyelid movements, and leave this topic as a future 

work to solve so that we can focus on our main target. 

 

2.5 Suppression/removal of ocular artifacts 

Ocular artifacts are endogenous. As mentioned before, small potential changes 

caused by eyes can also be induced by light conditions or other phenomenon. This 

implies that it is difficult to separate ocular artifacts from EEG recordings or to obtain 

an absolutely pure EEG data set without any ocular potential. How to obtain a pure 
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EEG dataset is still an ongoing problem. But EEG measurements may obtain a data set 

which does not contain any eye movement or blink in it. Providing an experimental 

condition with temperature, brightness and other factors kept constant helps suppress 

artifacts, thus a relatively ocular-artifact-free EEG signal is possible to easily obtain. 

Researchers often use the following methods to suppress ocular artifacts during EEG 

experiment or to improve the cleanness of EEG signal before data analysis: 

 

1) Eye fixation 

Eye fixation is a very common strategy to constraining subjects eye moment during 

EEG experiments. During EEG recording, subjects are usually asked it to stare at the 

fixation point in a predefined position on stimulation screen. The picture below shows 

an example of fixation cross during EEG experiment. Figure2.14 shows a typical 

appearance of eye-fixation stimulation screen. 

 

 

Figure 2.14 An example of fixation-cross on stimulation screen 

 

This strategy guarantees that no big eye movements happen during EEG recording. 

Most of the in-lab EEG experiments utilize the fixation strategy to suppress ocular 

artifacts. Especially for ERP experiments, to decrease ocular artifacts and its influences, 
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fixation is generally used. 

The disadvantage of this method is: not all that EEG tasks are compatible without 

eye moment performed. To extend the use of EEG for measuring subjects’ mental state 

during natural actions, eye movement cannot be constrained because it’s one of the most 

prominent factors influence subjects natural actions. Therefore the uses of the eye 

fixation method are usually not practical in EEG experiments. 

 

2) Sophisticated experimental design 

In well-designed EEG experiments, at a certain ocular artifacts can be suppressed. 

Using cues to attract subjects’ attention, using softer background light to reduce subject 

eye tiredness are two basic examples of them. The selection to stimulation scenes also 

plays a very important role in experimental design. Following figures show two 

examples of experimental designs. 

These two figures are picked out from our experiments of driver mental state 

estimation. In those experiments subjects were asked it to perform driving tasks with 

voice distractions. The eye tracker was employed to record subjects’ eye moments 

during the whole tasks. Eye movement data was shown by blue points over the figures. 

As we can see from these figures, using a simple driving scene subjects’ eye moments 

can be concentrated to the center of the stimulation screen. Whereas, when a 

complicated driving scene was selected, the blue points spread considerably. In this case, 

ocular artifacts appeared with higher amplitudes in our EEG recordings because of 

larger saccades. 

As shown before the sophisticated designed experiment can greatly suppress ocular 

artifacts. However, before that EEG experiments performed in natural environments, it 
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is not possible to change all the things following designers’ requests, furthermore for 

practical use the natural view is one of the factors influence subject reactions. 

 

 

Figure 2.15 An example of good experimental design 

 

 

Figure 2.16 An example of bad experimental design 

 

3) Data rejection 

Data rejection is a simple strategy to improve the cleanness of EEG data by rejecting 

all the data sacraments suspected of being contaminated by ocular artifacts. Figure2.17 

shows an example of data rejection process. Usually the data sacraments being rejected 

are selected by eye manually. 
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As shown in the figure all the suspected data segments were marked by blue color. 

Before data analysis on the market data sacraments would be deleted to make sure the 

data set used for EEG analysis are clean enough. 

 

 

Figure 2.17 An example of data rejection 

 

A skilled EEG analyzer can greatly improve data quality by rejection method. 

However as shown in Figure 2.17, this method causes a great amount of data loss, 

which may cause the problems the statistical analysis. 

 

4) Filtering 

Filtering method is inclined to be a data processing strategy. It can also be realized in 

the data recording stage by enabling a hardware filter before data collection. This 

method can filter out all the frequency components contaminated by ocular artifacts. 

However because of the overlapping property of ocular artifacts in original EEG signals, 

the filtering method also keeps low-frequency EEG signals out. 

All these disadvantages of the above ocular artifact suppression methods lead to the 
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way of the dealing with this problem by signal processing techniques. Actually most of 

the recent researches are focused on this field. Various signal processing techniques 

have been developed in the purpose of the ocular artifact suppression/removal [26]. 

Some techniques like to regression-based methods [22][63] and data ICA can be used 

for general purpose. On the other hand, other signal processing techniques have been 

developed for special purposes such as adaptive filtering techniques for monitoring 

bring activities online [64]; single-channel EEG analysis technique for monitoring 

stages of sleep [65]; singular spectrum analysis (SSA) the trending and frequency 

extracting [66] and so on. These signal analysis techniques opened a new era of 

constraint-free EEG measurements. 

On the other hand, these techniques are still in the ongoing state because of the 

complicated physiological principles of artifacts. 

One of the problems is that after ocular artifact removal, because of lack of standard 

reference, it is difficult to estimate the performance of the artifact removal process. Up 

to now, unfortunately, there is no standard reference can be used to compare how much 

ocular artifact is contained in an EEG data set. Furthermore, there are no any efficient 

methods can extract artifact-free EEG signals during recording the stage. Thus, most of 

the researches use simulated data to evaluate the performance of the ocular artifact 

removal processes and algorithms or by visual inspections to the corrected EEG data. 

Moreover, there is generally no report about quantitatively verified assessment to how 

much the ocular artifacts should be removed and how much the residual of ocular 

artifacts distort recorded EEG signals. This causes a problem of estimating the real 

underlying brain sources from EEG data. 

However, it doesn’t mean that it is not necessary to analysis the factors which 
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influence the artifact suppression process. Researchers are making great efforts to 

investigate the factors hidden behind the visible EEG recordings and it has been proved 

the methods developed under different assumptions or verification theories improved 

the visibility of the ‘under-ground’ neuron activates. In addition, by means of summing 

and averaging, the signal-to-noise rate can be improved depending on the number of 

trials used for averaging procedure. If the number of trials exceeds a significant value, 

the nonrelated signals can be canceled out whereas time locked information of EEG 

signals would be unscrambled. Although this is a traditional method, it still plays an 

important role in EEG analysis. By using this method, we can also estimate artifacts and 

their properties stochastically. 

According to our previous research review, we found a common point of all the 

previous researches. Except some techniques based on adaptive strategies, all the signal 

processing techniques supposed to that the coefficient or propagation pattern of ocular 

artifacts does not change during the whole EEG recording procedure, but only rare 

works of them clearly explained the reason why to assume those constant coefficients 

and propagation patterns. This fact motivated us to investigate the nature of eye 

moments and whether ocular artifacts propagated constantly for all conditions. 
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Chapter 3  Regression based solutions to ocular artifact 

suppression or removal in EEG 

 

So far, EEG still is ones of the most prominent and dominant technologies to observe 

the brain activity under natural conditions reproduced as an activity of daily life. 

Contamination of artifacts and unintended signal resources, are inevitable in any 

measurement method and principle and ocular and myographic potentials are major 

artifacts in EEG measurements. Since EEG signals are considerably weak to exhibit the 

potentials in micro-voltage level, which are far less than muscular potentials, and ocular 

potentials induced by eyeball and eyelid movements, the removal of ocular artifacts has 

been studied intensively. As a practical treatment in experiments in neuroscience studies, 

subjects are requested to gaze at a fixed point with the head clamped for the sake of 

reduction of a certain level of ocular artifacts. On the other hand, recently highlighted in 

neuro-engineering studies, the applications of EEG such as brain-machine-interface 

(BCI), EEG signals are recorded under constraint-free conditions. Thus it is highly 

expected in the purpose of analyses on-going brain states [67]. Yet the complete ocular 

artifact removal still remains unsolved especially in free-viewing EEG studies [68]–

[70].  

Several simple but efficient methods have already existed. Filtering method of 

specific frequency bands is the simplest way to remove low frequency components 

involving ocular artifacts from recorded signals, which has a risk of deleting target EEG 

components involved in the same frequency range [56]. Similarly, epoch rejection 

method removing the data fragments suspected of severe contamination of ocular 
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artifacts also has a serious risk of losing large amount of recording data for statistical 

analysis. 

Because of the disadvantages and difficulties of those traditional methods (e.g. eye 

fixation, sophisticated experiment design, data rejection and filtering) in practical use, 

researchers recently started focusing on the way the signal processing to suppress or 

removal of ocular artifacts from EEG recordings. 

According to the morphology of eyeballs and the electrophysiology of extraocular 

muscles, the cornea-retinal potential is charged with tens millivolt range [71] and 

monitored as hundreds micro-voltage level from electrodes attached around eyes known 

as electrooculography (EOG) recording [72][73]. In spite of the low pass filter effect in 

the measurement equipment, the ocular potential ideally stays at the certain level 

depending on the degree of eyeball rotations, which was examined in saccade tasks [74] 

and demonstrated in an approximately linear relationship between the rotation degree 

and the ocular potential [73]. With respect to those electrophysiological evidences, the 

impact of ocular artifacts on EEGs were explained in the dipole model that is spatially 

located inside the scalp to provide a non-negligible influence to extracranial EEG 

recordings [58], and the measured EEGs were conventionally modeled as a linear 

summation of true EEGs and EOGs multiplied by coefficient values as the ratio of the 

contamination [22][23] under the assumption of signal independence with each other, 

i.e. less nonlinear interferences. The mechanism of ocular artifacts were considered to 

be different depending on types (saccade eye movements or blinks), which were 

respectively caused by a change of ocular dipoles’ orientation or the interaction between 

eyeballs and eyelids which can be seen as a sliding electrode [61].  

Current ocular artifact correction methods mainly consist of two prominent 



48 
 

approaches, regression based methods and component based methods [26]. Regression 

based methods have a long history in research on signal processing and ocular artifact 

correction [22][23][75][76]. Based on the linear model to describe recorded EEG 

signals as a linear combination of true EEGs and artifacts, the target problem is the 

calculation of the ocular artifact propagation coefficients. Providing the coefficients are 

successfully obtained in the calibration stage in prior to the main observation stage, this 

correction procedure can be a simple and powerful tool to estimate real EEGs for online 

monitoring by subtracting the product of EOGs and the obtained propagation 

coefficients, without any complicated statistical treatments. The technique to calculate 

the coefficients is an important issue, such as the mean slope algorithm [23], 

aligned-artifact average (AAA) solution [77], Bayesian adaptive regression splines 

(BARS) [78]–[80] and so on. Component based methods or blind source separation 

(BSS) is employed to deal with problems of general signal decomposition with 

knowledge of probabilistic models in the framework of matrix factorization [81]. 

Component based method is a way to find a new reduced and structured representation 

for the observed signal that can be interpreted as meaningful and minimized (subspace) 

coding, such as independent component analysis (ICA) and principle component 

analysis (PCA). In the purpose of EEG de-noising, PCA and singular value 

decomposition (SVD) algorithms correct artifacts by removing components suspected 

as artifacts based on orthogonalization calculated in the framework of matrix 

factorization [82]. It has been effectively used for large amplitude EOG artifacts 

removal and topographic pattern analysis [61]. Independent component analysis (ICA) 

[83]–[85] is a more reasonable way based on a widely accepted assumption that the 

sources forming the measured EEG recordings are independent from each other. If EEG 
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data is obtained from enough number of channels, independent components can be 

effectively separated using this method, but after the separation process the specification 

of which components are artifacts is the issue. The discrimination can be done using 

topographic distribution and morphological differences manually or automatically [86]. 

Although many approaches have been proposed and applied in ocular artifact 

removal up to now, whether they fit the purpose of daily life EEG applications 

(free-viewing EEG recording conditions) is still unclear yet. To determine the suitability 

of the proposed approaches and how to revise them for real-life applications, it is 

extremely crucial to understand the basic principles of them. In this chapter, the basic 

principles of the several prominent methods are introduced as examples. There are 

advantages and disadvantages are also analyzed to make a comprehensive evaluation to 

their availabilities in daily life EEG applications. 

 

3.1 General model of EEG signals 

All the signal processing techniques for ocular artifact removal are based on a widely 

accepted mathematic model of EEG. In this model EEG signals are described as the 

linear combination of a number of components. 

௠ൈ௡ܩܧܧ݉ ൌ 	 Ԧܽ௠ൈଵ ∗ 1ଵൈ௡݌݉݋ܿ ൅	 ሬܾԦ௠ൈଵ ∗ 2ଵൈ௡݌݉݋ܿ ൅	 Ԧܿ௠ൈଵ ∗ 3ଵൈ௡݌݉݋ܿ ൅ ⋯ (3-1) 

Where ݉ܩܧܧ is an m-by-n matrix representing the ݉-hannel measured EEG signals 

with data length ݊. The coefficient vectors Ԧܽ,	 ሬܾԦ,	 Ԧܿ and so on represent the weights of 

projection from components space to EEG channels. Every component in this formula is 

a 1-by-n vector according to data length. These components can be grouped as brain 

activity components and non-brain activity components. Whereas brain activity 

components represent the ‘true underlying EEG signals’, non-brain activity components 
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represent the recorded data that are not related to bring activities such as the potential 

changes caused by various physiological artifacts, line noise, potential shifting induced 

by sweating and so on. The physiological artifacts here include ocular artifacts, EMG, 

amplifier saturation and so. In our research, because we’re focusing on ocular artifact 

removal, other kinds of artifacts are assumed to be zero for simplifying the problem 

framework. 

 

3.2 Regression based approaches 

Regression approaches are similar to the work of analog ocular artifact removal done 

by Girton and Kamiya in 1973 [87]. In their research, they realized an analog circuit to 

correct ocular artifacts online. They used attenuators connecting to EOG channels, and 

then the direct feedbacks (EOG potentials) of those attenuators were used as the 

reference for artifact removal. They asked subjects to perform extremely large eye 

moments while adjusting the transfer rate (correction coefficient) by subtracting the 

output from the attenuator (i.e. EOG) from EEG signals via an analog subtracting circuit. 

They tuned the parameters of the subtracting circuit until no eye movement related 

potential changes can be visually observed. This method is a great try of ocular artifact 

removal, although it is inferior to the modern digital signal processing techniques. 

Lately proposed regression-based ocular artifact removal approaches made a 

significant improvement to the criterion for determining correction coefficients, which 

are also called as propagation coefficients. Under the framework of linear regression, 

the measured EEG signals can be expressed by the sum of assumed real EEG signal and 

the products of EOG components and their propagation coefficients. The following 

formula shows their mathematical expressions: 
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௠ൈ௡ܩܧܧ݉  ൌ 	 ௠ൈ௡ܩܧܧݎ ൅	∑ ܾపሬሬሬԦ௠ൈଵ
ெ
௜ୀଵ ∗  ௜ଵൈ௡           (3-2)ܩܱܧ݉

where ܩܧܧݎ௠ൈ௡ represents the true underlying EEG signal without any contamination 

from ocular artifacts (i.e. propagated EOG potentials). M represents how many EOG 

components are used in this regression model. M is usually set to 1 or 2 depending on 

model selection. For instance, when only the vertical EOG is taken into account, M 

equals one and ܾపሬሬሬԦ corresponds to the propagation coefficients of vertical EOG to all 

EEG channels. Usually, both vertical EOG (vEOG) and horizontal EOG (hEOG) are 

utilized during ocular artifact correction. Oblique eye movements can be treated as the 

combination of vertical eye movements and horizontal eye movements, so does the 

relationship between EOG potentials. Only in few researches, decomposition of EOG 

into vertical, horizontal and radial totally three components are proposed [22][76][77] 

based on the fact that eye movements take place in a 3-D space. However, theoretically 

the collection of radial EOG component is considerably difficult as mentioned in [25]. 

On the other hand, Plöchl et al. [68] reported that actually the usage of the radial 

component cannot improve the performance of regression method, inversely when the 

radial component were added into the regression model performance even got worse. In 

summary, it is a wise choice to use to component based the regression method for ocular 

artifact removal. 

The criterion used in regression approaches was ‘least square’. In stochastic analysis, 

this criterion is also called as ordinary least squares (OLS) method. Figure 3.1 shows 

the basic principle of least square method by a one dimension (i.e. only one regressor 

used) example. 
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Figure 3.1 An example of simple one-regressor linear regression 

 

Given a training dataset (output value and regressor) with a linear model (in this 

example 	ൌ 	a ∗ x ൅ b ), OLS can lead to a line fit the training dataset optimally in a 

sense of least square. This best fit line minimizes the sum of squares of all error terms 

(shown as e1~e8 in this example).  

Applying this linear model to ocular artifact removal faces the problem. As we can 

see from the linear model, the output data is actually expressed as some products of 

coefficients and regressors plus a constant term. In EEG model the term is not constant; 

instead, it is the real EEG signals we are going to estimate. So, there are some 

limitations of using regression method to obtain propagation coefficients. Croft and 

Barry [22] pointed out that it is possible to apply a similar linear model in form of  

y	 ൌ 	b ∗ x ൅ d  directly, where b is a vector and d ൌ estEEG ൅ C , where estEEG 
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represents the estimated EEG and C is a constant. But the dataset should be collected 

only during large eye moments, otherwise the estEEG and b would be biased. This 

means, when the real EEG signal is very weak, and EOG is considerably large, the 

propagation coefficients b can be calculated by sample data and their mean values as the 

formula shown below: 

 ܾ ൌ
∑ሺ௫೔ି௫̅ሻሺ௬೔ି௬തሻ

∑ሺ௫೔ି௬തሻమ
                             (3-3) 

Where ݔ௜  and ݕ௜ represent the EOG and EEG potential at time i; ̅ݔ and ݕത are the 

mean values of EOG and EEG respectively. In a more intuitive way, the formula can be 

reformed by: 

ܾ ൌ ௫௬ݎ ∗
௦௧ௗ೤
௦௧ௗೣ

                              (3-4) 

Where ݎ௫௬ stands for the co-relation coefficient between EOG and EEG; ݀ݐݏ௬ and 

 ,௫ represent the standard deviation of EEG and EOG. Following the above formula݀ݐݏ

all the propagation coefficients can be obtained for a single EOG component regression 

model channel by channel. Then the estimated real EEG signal can be obtained: 

ܩܧܧݐݏ݁  ൌ ܩܧܧ݉ െ	 ሬܾԦ ∗ ܩܱܧ െ  (5-3)                    ܥ

Obtained ݁ܩܧܧݐݏ is the optimal estimation in the sense of least square. ܥ in this 

formula stands for the constant term ( also called slope ) in regression model, which is 

calculated as: 

ܥ ൌ തݕ	 െ ሺ̅ݔ ∗ ܾሻ                             (3-6) 

To be more practical, the calculation of propagation coefficients is usually done with 

two EOG components, as mentioned previously, vertical eye movement component 

(vEOG) and horizontal eye movement component (hEOG). In this case, the calculation 

of coefficients should be done as follows: 
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ܾଵ ൌ ൬
௥೤,ೣభି	௥೤,ೣమ	௥ೣ భ,ೣమ

ଵି௥ೣ భ,ೣమ
మ ൰ ∗ ቀ

௦௧ௗ೤
௦௧ௗೣభ

ቁ                    (3-7) 

    ܾଶ ൌ ൬
௥೤,ೣమି	௥೤,ೣభ	௥ೣ భ,ೣమ

ଵି௥ೣ భ,ೣమ
మ ൰ ∗ ቀ

௦௧ௗ೤
௦௧ௗೣమ

ቁ                    (3-8) 

In this equation set: 

 .ଶ: vEOG and hEOGݔ ଵ andݔ

ܾଵ and ܾଶ: the coefficients corresponding to the vEOG and hEOG respectively. 

 ௬,௫ଶ: the correlation coefficients between measured EEG and two EOGݎ ௬,௫ଵ andݎ

components. 

 .௫ଵ,௫ଶ: the correlation coefficient between vEOG and hEOGݎ

,	௬݀ݐݏ  : the standard deviation of measured EEG signals, vEOG and	௫ଶ݀ݐݏ	݀݊ܽ	௫ଵ݀ݐݏ	

hEOG. 

 

While the single component regression can be expressed by a line in a 2-dimensional 

space, the regression with two components is corresponding to a square in a 

3-dimension space. Figure 3.2 shows a graphical description of two components 

regression with simulation data. In this figure the red lines indicate the points are under 

the optimal fit square; the green lines indicate the corresponding points are over the 

optimal fit square. Coefficient calculation followed the general multivariate linear 

model: y	 ൌ 	a ∗ x1 ൅ b ∗ x2 ൅ c. In this model, c is a constant value, x1, x2 and their 

coefficients a and b span a square under constraint of OLS. 
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Figure 3.2 An example of 2-D regression (two regressors) 

 

There is another way to explain the calculation of the linear regression by matrices. 

The base model can be expressed as: 

yሬԦ ൌ SሬԦ ൅ ∑ పሬሬሬԦݔ ∗ ܾ௜
ெ
௜ୀଵ                          (3-9) 

in which yሬԦ is the output data, ݔపሬሬሬԦ is input variable (regressor) and ܾ௜ represents the 

coefficients of regressors. And yሬԦ, ݔపሬሬሬԦ and SሬԦ are column vectors. So, this equation can 

be rewritten to: 

yሬԦ ൌ SሬԦ ൅ X ∗ bሬԦ                             (3-10) 

where X is a matrix whose columns are the same vectors as ݔపሬሬሬԦ. 

Unlike the general model used to in previous explanations, in this model, the extra 

term S can be a variable other than a constant. But to make this equation solvable, S is 
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assumed nonrelated to input variables so that X୘ ∗ S	ሬሬԦ ൌ 0. 

It is easy to get the following derivation: 

X் ∗ yሬԦ ൌ X் ∗ SሬԦ ൅ X் ∗ X ∗ bሬԦ                      (3-11) 

and 

X் ∗ yሬԦ െ X் ∗ X ∗ bሬԦ ൌ X் ∗ SሬԦ ൌ 0                    (3-12) 

X் ∗ yሬԦ ൌ X் ∗ X ∗ bሬԦ                           (3-13) 

thus, the coefficient vector  

bሬԦ ൌ ሺX் ∗ XሻିଵሺX் ∗ yሬԦሻ                         (3-14) 

ሺX் ∗ Xሻିଵ  is the the auto-covariance measures of X and ሺX் ∗ yሬԦሻ  is the 

cross-covariance matrix of X and yሬԦ. In this example, yሬԦ and SሬԦ are vectors, and they 

can be extended into matrices by combining several channels of output yሬԦ and SሬԦ 

together. 

 

3.3 Limitations and issues of regression method 

 

1) Collinearity 

Collinearity is also called as multicollinearity in statistics. It is a phenomenon of high 

correlation between two or more regressors. In the worst-case, the correlation between 

regressors equals 1, which means one regressor can be expressed by another regressor 

times the constant K, the regressors used for the regression are actually decreased about 

one, because that regressor can be completely explained by the other one although they 

are different in amplitude. Collinearity may influence the convergence of OLS 

algorithm. bሬԦ ൌ ሺX୘ ∗ XሻିଵሺX୘ ∗ yሬԦሻ does not exist in case of a perfect collinearity 

happens. Although the perfect collinearity does not exist because of the noise in 
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recorded dataset, it may highly dilate the results of regression coefficients. 

An intuitive example in EEG is when vertical eye movements and horizontal eye 

movements take place at the same time. In this case, vEOG and hEOG which are used 

as the regressors in the regression model are highly correlated. Thus the propagation 

coefficients cannot be obtained correctly. For this reason, all the regression based 

methods utilize the calibration stage before real EEG experiments. In the calibration 

stage, subjects are usually asked to perform simple eye moments, such as upward, 

downward, leftward and rightward eye movement respectively. The recorded EOG and 

EEG signals in this stage are used for the calculation of propagation coefficients. 

Schlogl [45] proposed a new method to avoid collinearity. In his research, the subjects 

were asked to perform round eye movements instead of the simple direction eye 

moments. This method has been proved efficient in collinearity prevention and 

propagation coefficient calculations. In addition, this method has been integrated into 

the BioSig open source software library [88] for ocular artifact removal. 

 

2) non-constant property or correlation between regressors and the extra 

term in regression model 

If the actual term d and SሬԦ in previously described generally models does not stay 

in a relatively constant value or highly related to regressors, linear regression method 

faces another problem. These extra terms are actually responding to the sum of a 

constant value and the estimated EEG signals. Hence, the eye movements used for 

calibration must be large enough. In practice, usually the eye moments larger than 10° 

angular difference are used in the calibration stage. 
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3.4 Applications of regression method to EEG signal 

 

1) EOG collection  

As EOG signals are used as the regressor in regression model, the way of getting 

EOG signals are crucially important. Generally, there are two ways of obtaining EOG 

signals. 

A common way to obtain EOG signals advocate in many researches 

[22][63][68][77][89]–[91]. They utilize the seven electrodes structure to obtain EOG 

signals. 

In this electrode configuration, vEOG is usually defined as the average of left vEOG 

and right vEOG: 

vEOG ൌ 	 ሺሺV1u െ V1dሻ ൅ ሺV2u െ V2dሻሻ/2            (3-15) 

hEOG is defined as the potential difference between H1 and H2; 

hEOG ൌ H1 െ H2	or	H2 െ H1                 (3-16) 

Vz in this configuration is usually used for assistance, for example in case of obtaining 

radial EOG in some researches. Calibrations use vEOG and hEOG recorded from 

simple straight-line (i.e. upward, downward, leftward and rightward) eye movements, 

and then calculate propagation coefficients by linear regression. Electrode positions of 

pairwise bipolar electrode configuration are shown in Figure 3.3. 

Triangular configuration is proposed by Schlogl [25]. He suggested that the 

necessary number of eye electrodes should be no more than and no less than three, 

because eye movements can be decomposed into three components theoretically in a 

three dimension space. More electrodes might be better but may not be necessary, while 

lack of the electrodes cannot collect enough information for the decomposition. This 
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kind of configuration is shown as by Figure 3.4. 

 

 

Figure 3.3 Pairwise bipolar electrode configuration 

 

 

 

Figure 3.4 Triangular configuration 

 

In his work, he did not separate EOG into components like vEOG and hEOG and 

perform simple straight-line eye moment for calibration. Instead, subjects were asked it 

to perform round eye movements, and the potentials of those electrodes were used to 

calculate propagation coefficients directly without considering eye movement 
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directions. 

The calibration stage and its flow can be described by Figure 3.5. Before the real 

EEG experiment, subjects are asked to perform simple eye movements with EEG and 

EOG signals collected. From the EEG and EOG recordings, the propagation coefficients 

(usually b୦ሬሬሬሬԦ  and 	b୴ሬሬሬሬԦ  for both vertical component and horizontal component) are 

obtained. These propagation coefficients will be used to remove the ocular artifacts in 

the coming real EEG experiments. 

 

2) Regression strategies  

Gratton proposed a regression strategy for ocular artifact removal in ERP recordings 

[23][24]. In this method, all the collect EEG and EOG trials were linked together 

respectively, forming two signal series of EEG and EOG. After that, those two series 

were sent to regression (calibration stage) to obtain propagation coefficients. Once the 

propagation coefficients were obtained, all the following EEG recordings use those 

coefficients to correct/remove ocular artifacts with predefined vEOG and hEOG 

collected from the electrodes. Figure 3.6 shows the example of one component 

calibration by Gratton style. 

Unlike Gratton’s method, Croft and Barry proposed a novel solution of calibration 

named aligned-artifact average(AAA) [77]. In AAA, contracted trial data are averaged 

firstly, and then send to regression. Croft and Barry suggested that calibrations done in 

this way can obtain better performance which has a smaller variance in propagation 

coefficient value by means of both simulation data and really EEG recordings. 

Figure3.7 shows the procedures of this method: 
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Figure 3.5 flow of calibration 
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Figure 3.6 Gratton style calibration 

 

 

Figure 3.7. Calibration in Aligned-artifact average(AAA) 

 

There are many alternative strategies can be used for calibrations. In fact, the only 

thing change is the way of generating data series for regression model, for example, 

lately developed Bayesian adaptive regression splines (BARS) [78]–[80] and so on. All 

these methods differ by the way of organizing calibration data/training data for 
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regression, while the basic flows are all the same. Because they are not the main topic of 

this thesis, the details of those specialized method are not stated here. 

 

3) Relationship between propagation coefficients and propagation patterns  

Propagation coefficients are directly related to propagation patterns suggested by 

Picton in 2000 [61]. Although in Picton’s work a component based method PCA was 

used to extract propagation patterns, if the propagation coefficient vectors which contain 

propagation coefficient to every channel are projected to a topographic head map, 

exactly the same or similar topographies can be obtained. Figure 3.8 shows an example 

of the upward eye movements topographic. The topographic pattern obtained from 

propagation coefficient vector demonstrates the appearance as the ones described by 

ICA and PCA research articles [84][86][92][93]. 

 

 

Figure 3.8 An example of topographic made from propagation coefficients (bs) 

 

As the real EEG is not possible to obtain, thus, using real experimental data is not 

convincible to explain whether the method work well or not. Here we show an example 
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made from simulated dataset in Figure 3.9. In this dataset the real EEG is a 10 Hz sin 

wave to simulate an alpha activity; the real EOG is double peak triangular wave 

simulating blink EOG. Figure 3.9, measured EEG is the linear combination of real EEG, 

real EOG and a white noise series; measured EOG is simply the sum of real EOG and a 

white noise. We can see the EEG signal distorted by blink EOG and white noise are 

corrected by regression method efficiently, although there is still a little distortion the 

influence from blink EOG are greatly decreased. Therefore, as shown here, regression 

based method is efficient for ocular artifacts removal/suppression. 

 

1.5 Why not component based methods? 

Recent years as the signal processing techniques’ development, component based 

methods have become more and more popularly in this field. For instance, principle 

component analysis (PCA) and independent component analysis (ICA). There is a 

common point among all those methods: there use spatial propagation pattern to 

distinguish brain activity related EEG and artifacts related EEG. Then reject the artifact 

components after they are identified.  

PCA acts as a foundation for present-day signal processing, however, it appears to be 

a method that was frequently used yet inadequately understood. PCA is being credited 

as one of the most precious result via applied linear algebra, and was amply applied in 

the field of neuroscience and image processing due to its effectiveness in obtaining 

pertinent information from huge groups of mystifying datasets. It minimizes composite 

data into significant pattern, which serves for better features understanding. 
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Figure 3.9 Regression on simulation data 

 

PCA is a statistical procedure that uses orthogonal transformation to convert set of 

observations of correlated variables in to set of values of linearly uncorrelated variables 

(Principle Components). Number of components is less than or equal to number of 

original variables. 

PCA makes one stringent but powerful assumption: linearity. Linearity vastly 

simplifies the problem by restricting set of potential bases and formalizing implicit 

assumption of continuity in dataset. PCA is now limited to re-express data linear 



66 
 

combination of its basis vectors. PCA was mainly expressed by the formula below. 

ܻ ൌ ܲ	 ∗ 	ܺ            (3-17) 

X is the original dataset; Y is the represented data while P is the weightage of principal 

components, whereby each rows of P are orthogonal to one another. Besides that, P can 

also be explained as a matrix transformation that relates X and Y, a rotation and a stretch 

that transform X into Y and set of new basis vectors for expressing columns of X.  

ܲܺ ൌ
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.		.		.		3ሬሬሬሬԦݔ		2ሬሬሬሬԦݔ		1ሬሬሬሬԦݔൣ  ሬሬሬሬԦ൧                   (3-18)݊ݔ

Thus, 

ܻ ൌ 	 ൥
pଵ ∗ xଵ … pଵ ∗ x௡

⋮ ⋱ ⋮
p௠ ∗ xଵ … p௠ ∗ x௡

൩            (3-19) 

The ܲ in above equations are the key of PCA. To obtain ܲ, PCA algorithm actually 

calculate the eigen vectors of the semi-positive-definete ܵݔ as shown in the formula 

below: 

ݔܵ ൌ 	 ଵ

௡ିଵ
	்ܺܺ            (3-20) 

ICA is based on the assumption of the independence between different sources. 

Indeed, the so-call the whitening or sphering step of ICA do the same job as PCA. 

Whereas, ICA use the independent assumption to extract components rather than the 

eigen vectors that represent the maximum-variance directions. The observation in ICA 

is seen as a linear combination of different independent sources: 

ܺ ൌ ܹ ∗ 	ܵ                        (3-21) 

So that if ܹ can be estimated, ܹିଵ, the inverse matrix of projection weight matrix 
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ܹ  can be used to un-mix the independent components. Hence, after components 

corresponding to ocular artifacts are rejected (whole data series set to zero), the 

ocular-artifact-free EEG can be reconstructed. 

As is mentioned above, this component based methods utilize matrix calculations 

and stochastic analysis to obtain the expected results. Basically, they have high 

computational consumptions, which is not possible to be easily implemented in real-life 

used devices. Although some of the previous researches claimed that they outperform 

the regression based the strategies; some others declared that not huge differences can 

be found and the assumptions (i.e. orthogonality and independence) are too strong. 

On the other hand, both regression based methods and component based methods can 

be seen from the same point of view, the propagation patterns. Whereas using 

regression based method, the quantified coefficients can be obtained, component based 

methods take advantage of the relative ratio between those coefficients. Hence, at a 

certain, they result in the same analytic pattern. 

For the original purpose of applying EEG signals for daily use, obviously, regression 

based method is the better choice. Thus, in this thesis, we selected regression based 

method as the way to analyze and deal with ocular artifacts. Note that, even if their 

might be some performance difference, generally the tendencies must stay the same. 
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Chapter 4  Measuring EEG with eye-tracking system 

 

The present problem is to estimate real EEG signals because EEGs are very weak in 

the range of microvolts and are easily contaminated by artifacts from ocular and 

myographic electric potentials exceeding a certain voltage level. The eye 

movement-related potential, which is recorded in Electrooculography (EOG), is a major 

artifact called ocular artifact. In traditional EEG experiments, subjects are required to 

gaze at a fixed position on the screen to reduce the artifact [68], while it is difficult in 

terms of engineering applications to help daily human activities accompanied with 

frequent eye movements.  

Ocular artifacts can be explained using spatial dipole models [22][25] to represent 

how electric potentials are generated with respect to cornea-retinal rotations. As for the 

previously-reported methods for ocular artifact removals, some methods dealt with three 

dimensional properties of eyeball rotations in the linear model of EEGs and EOGs 

[22][25], while gaze-of-zone related eye movement EOG influences in EEGs were 

rarely noticed in traditional methods [26]. Plöchl et al. [68] introduced a combined 

analysis of EEG and eye-tracking data used to monitor saccade onset timings when 

eyeballs start to move. Recent technological advancement allows us to use a high-spec 

eye-tracking system with a 500 Hz sampling rate close to that of the EEG recording 

system, leading to an effective combined analysis. EOGs can be observed directly by 

using electrodes attached at regular positions around eyes to achieve simultaneous 

recording with EEGs, while electrodes around eyes is a serious burden to experimental 

subjects and thus a strong restriction to engineering applications. For engineering 

purposes [3][67], daily-use devices with a limited number of recording channels are 
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getting popular. If the high-speed eye-tracking system enables to pursue eye movements, 

EOG information could be estimated accurately from cumbersome electrodes around 

eyes.  

How much an accurate tracking of eye movements contributes to the artifact removal 

is still unclear. Plöchl et al. [68] demonstrated a large offset between conditions of 

upward and downward saccades, which means a comparison of opposite vertical 

directions, whereas a comparison in horizontal saccades and an effect of saccade 

movement length is not clearly observed as a significant different in the analysis of ERP 

topographic maps.  

In the present study, we proposed a concept to complement the EOG artifact removal 

from EEGs with the eye-tracking system, and studied preliminary investigated EOG 

influences in the EEG topographic pattern analysis depending on viewing-area of eye 

movements. This combination provides a favor in understanding the nature of eye 

movement and establishing the intuitions of the relationship between eye movements 

and EEG signal. An extra benefit is that by only EEG signals onset is difficult to 

determine but with eye-tracking system, the onset of EEG can be decided according to 

the timing of interest. The original purpose of this experiment is to get a preliminary 

understanding to the nature of eye movements and its potential properties in EEG. In 

addition, we hypothesized that EOG influences in the EEGs are different depending on 

viewing-areas, which can be called ‘zone-of-gaze dependency’ and we tried to observe 

the differentiations of propagation topographic patterns related to the area to gaze and 

when pursuing visual targets. We simply designed several tasks to test the EEG changes 

during various eye movements and the zone-of-gaze dependency by vertical saccade 

movements in different zones would also be testified by dividing view-sight into three 
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viewing areas horizontally.  

 

4.1. Experiment Design and Method. 

In this analysis, EEG measurement data was obtained from three subjects under the 

following experimental conditions. All subjects sat and their heads were fixed by the 

head support frame as shown in Figure 4.1. The head height was adjusted to the level 

for each subject to look at the center of the monitor screen with their eyes 

straightforwardly. Figure 4.2 shows the experiment scene after chin and view sight 

adjusted. EOG were obtained by using seven electrodes around eye (Figure 4.3). Visual 

stimulus was displayed by a 4030cm CRT monitor with a distance of 75cm from the 

subject (Figure 4.4) and subjects were instructed to keep quiet positions to prevent the 

jaw and clenching artifacts. A simultaneous recording of EEGs and EOGs were 

monitored by 32-channel electrodes of International 10-20 System (BrainAmp amplifier, 

Brain Products GmbH) with the 1000 Hz sampling rate. For comparison with EOGs, 

eye movement data were obtained by a 500 Hz high-speed eye-tracking system (Eyelink 

CL, SR Research).  

 

4.2 Task design 

For investigations on the zone-of-gaze dependency of EOG influences in EEG 

recording data, we focused on vertical saccade movements in different zones that 

divided into three areas horizontally as an important step for further systematic analysis. 
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Figure 4.1 Experiment scene: Subjects were set to an environment with stable and even light condition. A 

chin support was used to reduce subject’s head movements. The eye tracker under the monitor is adjusted 

to a good position to record eye movement with its best performance. 

 

 

Figure 4.2 EEG channels and the chin support from a top view sight 
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Figure 4.3 EOG electrode positions 

 

 

Figure 4.4 Experimental setting of the distance to the screen and its size 
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Figure 4.5 Vertical type stimulation 

 

In the task, three zones (‘left’, ‘middle’, ‘right’ in Figure 4.5) were selected 

semi-randomly in every session. Individual session starts by showing a red-cross mark 

at the bottom position in the selected zone (a filled circle in the figure) and the subject 

gazes it for 1.5s. After that, a filled red circle appears at the top position in the same 

zone (open circle in the figure) and the appearance lasts for 1s to induce the upward 

saccade movement and the gaze, and then the filled circle is displaced at the bottom 

position and stays for 1s to induce the downward saccade and the gaze. The same 

protocol repeats once again. With respect to experimental setting (Figure 4.4), fixation 

and target positions in right and left zones are aligned horizontally as ±9˚ saccade 

angle from the middle, and vertical movement ranges are aligned a 12˚ rotation angle 

from the origin. Since upward and downward saccade movements are obtained two 

times in each session of this task, total 48 sessions including 16 sessions for each zone 
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are performed by each subject. 

 

4.3 Methods for ocular artifact correction.  

Various algorithms for EEG artifact removal and noise component detections have 

been proposed [26][83][85]. Components based algorithms have been widely used, such 

as Principle components analysis (PCA) which decomposes multiple channel EEG 

signals into orthogonal components by second order statistics, and Independent 

component analysis (ICA) which enhances the component detection by making use of 

higher order statistics. In ICA, non-gaussianity or mutual information is used to 

decompose the EEG into equivalent number of independent components as signal 

channels [83][85]. Even if the computational costs were set aside the discussion, ICA 

component rejection has the disadvantage of having a certain amount of hands-on 

experience, because the rejection criterions are only empirically specified and therefore 

the full automation of ICA is still unsolved. In contrast, regression based methods 

reduce the burden by calculating EOG influences in the form of propagation coefficients 

based on simple statistics. After the propagation coefficients are calculated, ‘real’ EEG 

signals can be estimated from a subtraction of EOG components and multiplied by the 

coefficients from all EEG channels. Although the method subtracts EOG influences 

proportionally with less adaptiveness for temporal and spatial variations, it is still a 

popular method because of its simplicity [22][25][77][80], which is expected to have 

wide application in on-line analyses.  

In the present study, we examined the zone-of-gaze dependency by using a revised 

regression method known as ‘AAA’ [77] and ICA [85][94] integrated in EEGlab [95].  
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4.4 Analysis method 

 

1) Regression based method: 

In agreement with the previous researches [22][25][77][80], the model of EEG and 

EOG can be described by a linear model: 

௠ൈ௡ܩܧܧ݉        ൌ 	 ௠ൈ௡ܩܧܧݎ ൅	∑ ܾ݅ሬሬሬԦ݉ൈ1
ெ
௜ୀଵ ∗  ௜ଵൈ௡             (3-21)ܩܱܧ݉

where mEEG  is measured EEG signal, rEEG  is the ‘real’ EEG signal, mEOGi  is 

the i-th EOG component, and ib represents the propagation coefficient. The regression 

method by Schlögl et al. [25] assumes that EEG and EOG are independent, and then ib 

can be calculated by the inner product of the inverse matrix and the auto-variance 

matrix of EOG signals with the cross-variance matrix between EEG and EOG signals. 

After the propagation coefficients are calculated, the ‘real’ EEG signal can be estimated 

by the following equation: 

௠ൈ௡ܩܧܧݎ     ൌ ௠ൈ௡ܩܧܧ݉	 െ	∑ ܾ݅ሬሬሬԦ݉ൈ1
ெ
௜ୀଵ ∗  ௜ଵൈ௡                 (3-22)ܩܱܧ݉

where ib represents how much EOG is transferred from eyes to the i-th channel placed 

over the head map, ib can be used to explain EOG influences as propagation patterns. 

Croft and Barry [22] suggested that 3 EOG components (i.e. vertical, horizontal and 

radial) are necessary for EEG correction as the eye movements actually take place in a 

3-D space and the influence from eyelid may also be related or can be described as a 

one or a combination of different components. However, vertical and horizontal EOG 

components are used conventionally, because of the difficulty of extracting the radial 

EOG [25]. Consistently, the two EOG component model were inherited by following 

analyses. 
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2) Independent component analysis (ICA):  

ICA is a well-known method for solving blind-source-separation problems. For the 

signals assumed as a linear combination of multiple independent components and 

containing up to a Gaussian signal, ICA can provide an inference of weights of 

components based on high order statistics. The model can be described as: 

ܣܹ ൌ ܵ                             (3-23) 

where ܣ is the only known data matrix of size number of channels-by-number of data 

length. ܵ represents the source matrix which contains components no more than the 

number of channels in ܣ. In most cases, whitening or sphering is done to unify the data 

variance through all the dimensions before solving the statistics. By maximizing the 

entropy or maximizing the mutual information between the inputs and the output, ICA 

provides an estimated un-mixing matrix with following ambiguities [85]: 1) the order of 

the independent components is no deterministic, and 2) the variance (in a sense of 

energy) of the components cannot be determined. The spatial distribution which can be 

obtained from the un-mixing matrix directly represents the propagation patterns. Since 

neuronal and non-neuronal source signals are assumed to be independent, target 

topographies of Independent component (IC) can be selected manually based on expert 

knowledge. ICA was used as a preliminary analysis for extracting the propagation 

patterns of EOG. 

 

4.5 Experimental result and analysis. 

Recorded data from three subjects with 144 sessions were used in this analysis, 

which totally contains 576 eye movements.  
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1) EOG and eye-tracking data: 

Example of recorded EOG, eye tracking data and EEG were shown in Figure 4.6 and 

Figure 4.7. In the part of data for 15s demonstrated that the correlation of upward and 

downward movements in the vertical EOG (V-EOG) obtained by the equation of 

((v1u-v1d)+(v2u-v2d))/2 and session-to-session transitions in every 5.5s were observed 

in the horizontal EOG (H-EOG) by H1-H2, shifting from the middle to right and then 

left. The eye-tracking data (X-ETS and Y-ETS) exhibited consistent changes depending 

on V- and H-EOGs. With the assistance of the high-sampling rate eye-tracker system, 

eye movements were accurately estimated in a comparison with temporal sequences of 

EOGs. As shown in Figure 4.6, the eye movement pursued the visual target, which can 

be divided into two phases: 1) A quick saccade with a large amplitude change in 

40~60ms is observed as a long-distance jump, if the movement exceed the target 

position (or to be short until the target) 2) an eye position is adjusted to reach the target 

position with a small amplitude change. The eye movement around 4s in the figure 

exhibited an overrun-and-return, and movements around 10s represented a 

shortage-and-adjust behavior. This observation suggests that it is possible for the 

eye-tracking system to estimate the EOG information, which is powerful enough for 

artifact removals, such as linear regressions and ICA.  

Figure 4.7 showed temporal sequences of potentials in frontal EEG channels as FP1 

and FP2 after band filtered with a 0.1~30 Hz FIR band pass filter. Activities in the 

channels were largely influenced depending on vertical EOG changes. In following 

sections, EOG influences depending on the viewing-area, or gaze-of-zone, were 

analyzed in the propagation coefficient and EEG event-related topographic maps in 
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ICA. 

2) Linear regression analyses: 

In the result of the regression analysis, propagation coefficients were obtained on 

every channel based on the procedure discussed in regression based method and applied 

to the first motion of the upward saccade in every session. Resultant coefficient values 

of frontal channels of FP1 and FP2 were shown in Figure 4.8. While EEG channels are 

expected with a large influence from EOGs, in this experiment, the differences were not 

statistically significant. However, in the result, a little viewing-area sensitive differences 

were observed under the left and right conditions in comparison with the middle. 

Intuitively, maybe increasing the angular distance of saccades can lead to a significant 

difference between viewing-areas. For all the conditions, FP2 propagation coefficients 

are slightly larger than FP1’s, which needs further systematic analyses with multiple 

combinations of eye-movement directions and zones, and possibilities of bias effects of 

electrode positions or other asymmetric conditions in EEG channels can be considered.  

 

Figure 4.6 EOG and eye-tracking data 
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Figure 4.7 EEG raw data from channels of FP1 and FP2 

 

 

Figure 4.8 Propagation coefficients of different zones (upward saccade) 

 

3) ICA analyses: 
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In ICA analyses, we investigated EOG influences in EEGs after the separation of 

eight cases that consist of two groups (upward and downward movements) and 

zone-of-gaze dependency (left, middle right, and all zone-of-gaze combination 

conditions). Recording data was preprocessed with a 1~30 Hz FIR band pass filter and 

down sampling into 500 Hz to fit to the eye-tracker data. Independent Components 

(ICs) were obtained by ICA, and applied to each epoch defined as the period [-400ms ~ 

600ms] with respect to the eye movement onset timing, which was defined by the time 

point with a maximum speed of eye-tracking data in the epoch. As an example, the 

topographies of EOG component were shown in Figure 4.9. Figure 4.10 showed a 

sample of ICs in eight epochs of the downward eye movement in the combination case. 

Dotted line and solid line denote epoch period and onset timing respectively.  

In Figure 4.9, the influence of zone-of-gaze dependency in EEGs appeared as 

differences of topographic maps in left and right conditions compared with the middle 

condition. In the combination case of the topographic map, a relatively smooth 

propagation pattern was observed with a symmetric pattern, while our zone specific 

analyses revealed non-negligible differences depending on the viewing area both in 

results of the linear regression method and ICA based topographic maps consistently. 

Those results indicated a risk of ignorance of the EOG zone-of-gaze dependency in 

EEG analyses and ocular-artifact corrections.       
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Figure 4.9 Topographic head map of the independent components representing ocular artifacts 

 

 
Figure 4.10 An example of ICA component decompositions (downward saccade) 
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Our hypothesis of the EOG influence in EEGs in the viewpoint of zone-of-gaze 

dependency was preliminarily examined by the experiment with simultaneous recording 

of EOG, eye tracking and EEG recordings. In quantitative analyses with regression 

coefficient and ICA topographies, the results demonstrated a general tendency of the 

differences to testify the hypothesis. Our result indicates that the real eye movement 

analysis is important for improvements of artifact corrections by calculating the linear 

regression coefficients and ICA topographies separately depending on the gaze-of-zone, 

which have been considered as a naive assumption in traditional ocular artifact removals, 

yet it extends the availability of the high-spec eye tracking system effectively. Effects of 

initialized positions to gaze, its range of angle and directions are considerable factors, 

which should be analyzed in the further investigation.  
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Chapter 5  Direction and viewing area-sensitive influence 

of EOG artifacts revealed in the EEG topographic pattern 

analysis 

 

In chapter four, an intuitive experiment result showed that there seems to be some 

propagation difference both under regression based analysis and ICA topographic 

patterns. For practical use, a quantitative is preferable. Thus, in this chapter, a new 

experiment is designed to obtain a quantitative analysis to the influence and significance 

caused by zone-of-gaze. 

We investigated the influence of eye movement related artifacts on 

Electroencephalography (EEG) measurements of human subjects who were requested to 

perform a direction/viewing area depending saccade task. In this task, the subject gazed 

at a fixed point in a specific area of a screen and pursued with eyes depending on the 

instructed target to guide its direction either horizontally or vertically. Ocular electric 

potentials recorded as electro-oculography (EOG) were generated by making saccadic 

eye movements towards visual targets that were spatially located and aligned with the 

two possible directions of motion in the display. Traditionally, removal methods of 

EOG artifacts contaminated in EEGs have been studied under the assumption of a linear 

combination model, which indicates that the signals are superimposed with different 

strength to be described as coefficients of the linear model. The coefficient 

identification is the issue to minimize the error in the real EEG estimation, and eye 

movement-related differences were rarely noticed in those methods. We therefore 

designed a systematic protocol to evaluate the dependency and studied the coupling 
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effect of eye-movement direction and viewing area in the framework of the linear 

regression analysis for EOG corrections. In our experimental results, event-related 

potential (ERP) topographic patterns to evaluate EOG influences in the EEG head map 

were observed as a reversal structure in the coupling condition between 

horizontal-rightward and –leftward eye movements and consistently in the coupling 

condition between vertical-upward and –downward eye movements. Surprisingly, EOG 

influences are different in comparison between top-viewing and bottom-viewing areas 

in the horizontal movement and consistently are different between right-viewing and 

left-viewing areas in the vertical movement. The result demonstrated that the 

propagation coefficients were affected differently by the EOG changes depending on 

viewing fields and the eye movement directions, suggesting the non-trivial contribution 

to the EOG artifact removal if the coefficient identification will be done separately 

depending on the coupling condition of the viewing area and its direction. The 

maximum difference depending on conditions exceeded 10% percent change in 

propagation coefficients in the regression model, and the electrodes with significant 

difference in propagation coefficients were also shown in our result by pairwise T-test 

over all subjects (t(7)>2.3646; p<0.05).  

 

5.1 Eye movement related artifacts and their spatial sensitivities 

Owing to accumulations of the experimental evidences, understandings of ocular 

potential mechanisms are growing as a patchwork in this field, yet there are still 

unknown effects have not been interpreted, and the comprehensive ocular removal 

remains unsolved [56][61][68][96]. 

Recent advancements of eye-tracking systems make it possible to obtain a high 
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spatial-temporal resolution with a comparable sampling rate as EEG signals. This may 

lead to a fundamental improvement in the specification of EOG potential changes 

without electrodes surrounding eyes. Observation of accurate eyeball movements may 

predict spatial diploe changes that spread over EEG channels with a spatial distribution 

of EOG influences, thus may effectively help ocular artifact removal. Traditionally, the 

EOG propagation is treated as a static spatial distribution decreasing monotonically 

from a frontal area around eyeballs to occipital areas, which can be used for regression 

based methods for its validation and component based methods in a topographic 

discrimination whether independent components are ocular artifacts or not. 

Coincidentally, Plöchl et al. [68] noted future potentials of simultaneous recording 

EEGs and eye-tracking observations, such as a proposal to use the eye-tracker for 

determining the onset timing of the eye movement in saccade event-related potentials 

(ERPs), contributing for opening discussion on the eye movement dependent EOG 

specificity with the corneo-retinal dipole changes and their influence to EEG 

measurements. In an early stage investigation, Schlögl et al. [25] testified the EOG 

influence in the tasks requiring subjects to perform clockwise and counter-clockwise 

eye movements (large circular eye movements without moving their head) and Plöchl et 

al. [68] investigated eight types of eye movements centered in the middle of a big 

stimulation screen. As a preliminary investigation, they demonstrated a topographic 

difference of ERPs in comparison between upward and downward eye movements but 

they found there is no topographic pattern difference in comparison between small and 

large saccade movements. It suggests the directional selectivity of ocular artifacts and 

an important clue to the presence of the sensitivity of viewing area in a framework 

beyond traditional center-fixed saccade tasks. 
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In the purpose of resolving the ambiguity in the center-fixed saccade analysis task, 

we focused on viewing area depended ocular artifact generation in the background of 

the directional selectivity, proposed a novel systematic task comparing vertical and 

horizontal eye movements performed in different areas in the field of view and 

investigated twelve types of eye movements with varying fixation positions. The 

fixation positions are left, middle and right in the vertical (rightward/leftward) eye 

movements and top, middle and bottom in the horizontal (upward/downward) eye 

movements. Our aim was to test the actual topographic differences and their impact to 

the existing ocular artifact removal methods involving the difference in 

directions/viewing-areas and our experimental results was validated by propagation 

pattern analyses based on the linear regression coefficients. In following sections, 

methods and data analysis were introduced in Section 2, and experimental results was 

shown in Section 3. Discussion and conclusion were followed in Section 4 and 5. 

 

5.2 Methods and Data Analysis 

In the systematic analyses of EOG influence by extending the concept of Plöchl et al. 

[68], which demonstrated large offsets between different fixation positions. Figure 5.1 

illustrated a possible influence of corneo-retial dipole changes to the head map of the 

event-related brain potentials. It is expected that even in the same kind of eyeball 

movements, different influences can be observed depending on the areas on the screen. 

In the present study, the linear regression method was used for the validation to the 

effect and analyses of differentiation of EOG influences depending on conditions, which 

means an extension of the fixed propagation coefficients obtained by the whole 

recording data to condition-dependent coefficients.  
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Figure 5.1 Schematic illustration of corneo-retinal dipole changes depending on viewing areas. (left) 

Condition seeing the left side. (right) Condition seeing the center. 

 

1) Participants: 

In this study, we recorded EOG and EEG data from 7 electrodes surrounding eyes 

and 23 scalp electrodes (Figure 5.2) with 12 different eye movement conditions (Figure 

5.3a) from 8 subjects with a mean age of 26.1 years old (age range from 21 to 45 years 

old; 7 male and1 female) and without any signs of medical or psychiatric illness. All the 

subjects were normal sight or corrected-to-normal. All the subjects signed consent after 

being clearly informed of the purpose and procedures of the experiment. The 

experiment protocol was approved by the Ethics Committee in Future University 

Hakodate. 
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Figure 5.2 EOG electrode positions and EEG channel locations in the head map. (a) EOG electrodes 

attached on the face with 7 channels. (b) 23 EEG channels attached on the scalp using a EEG cap. 
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Figure 5.3 Task design and task scheduling. (a) Horizontal eye movement conditions segregated into three 

viewing areas horizontally (left) and vertical eye movement conditions segregated into three viewing 

areas vertically. (b) Timing to shift from the fixation, target and blank screen. (c) Task design as a 

self-paced saccade eye movement. 

 

2) Stimuli and experimental procedure: 

The subjects sat in a comfortable arm chair in front of a 21-inch CRT monitor (Sony, 

CPD-G520, refresh rate 85 Hz, 1024×768 pixels). An ophthalmic chin rest was used to 

support the subject’s head to prevent irregular head movements. As shown in Figure 

5.3b, all the subjects were instructed to stare at the fixation point in the screen and 
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follow a target point with their eyes after the target is presented in the screen 

(Figure5.3b), and subjects were requested not to blink during the task. To maximize the 

effect of the prevention of blinks, a ‘my-pace’ handy button was used for letting the 

subject decide the own starting timing during every trial, as self-pace task scheduling 

(Figure 5.3c). Stimuli were presented on a black background using MATLAB 

(MathWorks, USA) with the Psychophysics Toolbox extensions designed by Brainard 

[97]. 

During the experiment, subjects performed horizontal and vertical eye movements 

according to the stimuli pattern: the eye movement was cued to perform from different 

fixation points shown as a circle in the central position of arrowed-lines in the Figure 

5.3a, which illustrates horizontal and vertical eye movement conditions separately in the 

left and right panels. Middle points in horizontal and vertical conditions are given as the 

exact same position, and the distance or movement width/height between two adjacent 

points denoted as individual ends of arrowed-lines are the same as 12° eye movement in 

horizontal or vertical conditions. Fixation points and eye movement directions were 

selected semi-randomly in the whole sessions and trials. As illustrated in Figure 5.3c, 

after ‘my-pace’ button was pressed, a beep sound was played to suggest the start of trial. 

After 0.3 seconds, a fixation mark appeared in one of the six positions marked by 

rounds with a bar (Figure 5.3b) to hint the forthcoming eye movement’s direction 

(either horizontal or vertical). The fixation lasted 1.2 seconds and then the fixation mark 

disappeared and a stimulus point appeared at the location of the end of the arrow 

according to the selected movement direction. This stimulus point showed 0.8 seconds. 

And then another is beep was played to tell the subject the trial was over.  

Twelve types of eye movement conditions were abbreviated according to horizontal 
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(H) or vertical (V) as the first letter, the fixation position that was given as Top (T), 

middle (M) and bottom (D) in the horizontal case and left (L), middle (M) and right (R) 

in the vertical case were given as the second letter, and finally the movement direction 

either leftward (L), rightward (R), upward (U) or downward (D) were used as the last 

letter, such as abbreviations of HMR and VLU. 

The whole experiment was divided into 4 sessions. In every session, each subject 

performed 13 eye movements under every condition. Totally 52 trials of eye movements 

were recorded under every experimental condition. 

 

3) EEG recording and analysis: 

EEG signals were acquired using a 32-channel BrainVision amplifier (BrainProducts, 

Germany). 23 of the Ag/AgCl electrodes were used for EEG channels (FP1, FP2, F7, F3, 

Fz, F4, F8, FC5, FC1, FC2, FC4, T7, C3, Cz, C4, T8, CP1, CP2, P3, Pz, P4, O1, O2) 

according to the international 10-20 system, 7 for electro-oculography (EOG) channels 

(VRu, VRd, VLu, VLd: 4 vertical EOG (VEOG) electrodes placed on supraorbital and 

infraorbital rims of each eye; HL, HR: 2 horizontal EOG (HEOG) electrodes were on 

the left and right outer canthi; Vz: one was on the forehead approximately 25mm above 

the nasion, as shown by Figure 5.2a), and 2 for earlobes. EEG recordings (0.01–100 Hz 

bandpass, 500 Hz sampling rate) were referenced to an electrode between Fz and Cz 

during measurement and re-referenced to linked earlobes for analysis. VEOG are 

defined as the average of EOG potentials in both eyes given as 

(VRu -VRd) (VLu -VLd)  2 and HEOG are defined as the difference between two 

horizontal EOG electrodes: HL HR . 

All EEG recordings were filtered by a 30 Hz FIR low pass filter before data analysis. 
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In the analysis of the event-related potential of EOGs and EEGs, each onset of the trial 

was given by the time point of the highest inclination in the EOG change (Figure 5.3c), 

which was calculated by the largest difference between the value at the present time and 

value 10ms earlier, and it was reset as 0t . Then ERPs were obtained from -250ms 

to 400ms for every channel of EEGs and EOGs. Bad trials were rejected by the 

following simple algorithm based on statistical distribution. The procedure was given 

as: 

 Alignment (mean value removal): ch
i

ch
i

ch
i etets  )()(  where ei

ch  is the mean 

value of the i  -th trial and denotes EEG and 

EOG channels. After the mean value removal, aligned ERP signals 

),,1()](,),(),([)( 21 Nitststst ch
N

chchch
trial  s  were obtained in each 

trial, where N  is the number of trials.   

 Calculating of the standard deviation 
ch over trials: for the purpose to set a 

rejection criterion of the improper data, the mean and standard deviation were 

calculated via the formulas ),,1()()( NiNtt
i

ch
i

ch   s  and 

),,1()1())()(()( 2 NiNttt
i

chch
i

ch    s  over N  trials. 

 Bad trial rejection: in our data analysis procedure, proper data is defined as 

)}()(,{)(_ ttstt chch
i

ch
trialG   s  and an abnormal trial involves at least 

one data point exceeding the predefined threshold )(tch  such that 

)}()(,{)(_ ttstt chch
i

ch
trialB   s  where   3  for EOGs and   4  for 

EEGs. Whichever the EOG or EEG exceeds the predefined threshold, the whole set 

ch  [EEG1, EEG2,, EEG23,VEOG, HEOG]
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of data in the same trial is removed from the analysis.  

Figure 5.4, Figure 5.5 and Figure 5.6 showed some examples of the procedure. In 

Figure 5.4 and Figure 5.5, the mean value was shown as a thick curve in green, and the 

rejection boundary were marked by thin red dash lines. In Figure 5.6, all the rejected 

trials are marked by increasing line width and coloring by red. 

 

 

 

Figure 5.4 An example (EOG data) of the dataset containing bad trial of blink 

 

Figure 5.5 An example (EOG data) of the dataset containing common bad trials 
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Figure 5.6 An example (EOG data) of rejected trials in all eye movement conditions  
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By using obtained ERPs, the propagation coefficients of EOGs were calculated using 

‘aligned-artifact averages’ (AAA) method [77]. 

 

4) Linear Regression method: 

In agreement with the previous researches [22][25], the model of EEG and EOG can 

be described by a linear equation: 

mEEGch(t)  rEEGch (t) mEOGi

i1

M

 (t) bi
ch                (3-24) 

Where mEEG  represents measured EEG signals on scalp, rEEG  represents the ‘real’ 

EEG signal which is assumed to reflect brain activities but it is difficult to access due to 

contaminations of the signals by several types of artifacts. There are three types of 

EOGs with respect to 3D directions ( M in Eq. 1), which corresponds to vertical, 

horizontal and radial EOGs, if can be measured independently in an ideal way. mEOG i  

represents the i -th EOG component and bi its corresponding propagation coefficient. 

Croft and Barry [22] suggested that 3 EOG components are necessary for ocular artifact 

corrections, which consist of vertical, horizontal and radial EOG. Whereas the vertical 

and horizontal EOGs can be detected easily in saccade tasks, the radial component is 

too small to be obtained directly [25][98].  

In the present study, we focused on the influence of saccade direction specified on 

individual viewing area in the framework illustrated in Figure 5.3a, and the task 

dependent regression according to the model of EEGs and EOGs by the linear equation 

as: 

rEEG***
ch  mEEG***

ch mEOG*** b***
ch

                      (3-25) 

Where *** represents abbreviations of task conditions such as HMR and VLU. The 
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propagation coefficients b***
ch  were calculated by the single component regression 

analysis with the ‘AAA’ method [77]. 

 

5.3 Results 

 

1) EOG influences to EEG channels in vertical and horizontal eye 
movements 

Depending on task conditions, saccade ERPs of VEOG, HEOG and EEGs were 

obtained by averaging over all trials under each condition. Temporal sequences of task 

dependent EOGs and the influences on EEGs were shown in Figure 5.7. In horizontal 

eye movement conditions abbreviated as H** (Figure 7a), which include 

leftward/rightward eye movement, the HEOG defined as HL HR  changed positively in 

leftward movements of H*L and negatively in rightward movements of H*R change, 

exhibiting a consistent range that exceeds 200 V  within a period of 200ms. The flat 

potential curves under a negligible level in VEOG changes under leftward/rightward 

movement (H**) conditions suggested that there is almost no eyeball rotation or eyes 

did movement. Temporal sequences of HEOGs in leftward/rightward movements 

increased/decreased quickly just before the onset (defined by the highest inclination of 

the EOG change), while differences depending on fixation positions on 

top/middle/bottom, abbreviated as HT*, HM* and HD*, are quite small. EOG 

influences on EEGs were demonstrated with respect to EEG channel positions, such as 

averaged saccade ERPs on FP1, F7, Fz and Cz as shown in Figure 5.7b. EOG influences 

appeared in amplitudes of leftward saccade ERPs (HTL, HML and HBL; red lines in the 

figure) were like F7>FP1>FzCz0 reflected by the distance form eye positions to the 

channels. In vertical eye movement conditions which include upward/downward eye 
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movement (V**), the averaged HEOG stayed in a flat way and averaged VEOGs was 

clearly changed positively/negatively in upward/downward movements (V*U/V*D) as 

shown in Figure 5.7c. In the upward VEOG showed there is an overshoot around 25ms, 

which is presumed as an effect of the interaction between eyeballs and the eyelid when 

eyes were drifting upward [68]. In spite of the same rotation angle 12° of eyeballs, 

upward and downward eye movements VEOGs showed different amplitudes. This 

frequently depends on electrode position because muscular structures around eyebrows 

and cheeks are quite different. In influences on EEG channels (Figure 5.7d), a high 

amplitude approximately 50V prominently appeared in the FP1 channel in the upward 

condition and similarly in the downward condition. In other channels F7, Fz and Cz, the 

amplitude decrease with the distances increase from eyeball consistently in both upward 

and downward conditions. These results indicated that EOG influences to EEG 

potentials maximizing to 50V in the condition of 12° eyeball rotations are consistent 

with results of Plöchl et al. [68], which demonstrated in approximately 50V in the 

condition of 11.5° eyeball rotation. In vertical eye movement conditions, EEG channels 

in the midline showed positive/negative amplitudes with tens micro-voltage potentials 

depending on the upward/downward movements. In horizontal eye movement 

conditions, F7 showed positive/negative potentials with tens micro-voltage amplitude in 

both the leftward/rightward movements. 

Figure 5.7 Temporal sequences of EOG and saccade ERP changes with respect to the 

onset timing. Practically the onset shown in the dashed line was defined by the time 

point of the maximum inclination of the temporal changes. Horizontal EOG (HEOG) 

and Vertical EOG (VEOG) in (a) and (c). ERPs of FP1, F7, Fz and Cz channels in the 

horizontal eye movements (b) and vertical eye movements (d).  
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Figure 5.7 An example of eye movement ERPs 
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2) ERP topographic patterns differentiate depending on eye movement 
direction and viewing area 

ERP topographic patterns depending on task conditions were shown in Figure 5.8, 

which were replotted from averaged ERP potentials over 150~350ms as a 2D contour 

map ranging in 50V . In horizontal condition of H**, ERP topographic patterns 

showed nearly reflected images between opposite directions, i.e. leftward/rightward 

movements abbreviated as H*L and H*R, propagated EOG influences in the head map 

starting from F7 (with a positive peak of about 50V  in the leftward group as HTL, 

HML and HBL and negative peak of about50V  in the rightward group as HTR, 

HMR and HBR) and F8. The ERP propagations looked larger when in HBL and HBR 

conditions than in HTL and HTR. In vertical condition of V**, ERP topographic 

patterns showed nearly symmetric images in upward movements (VLU, VMU and 

VRU) with different degrees of skew in distribution. While in downward movements 

(VLD, VMD and VRD), the skew in distribution became much clearer. 

 

3) Direction and viewing area-sensitive propagation coefficients 

For the sake of the validation for our hypothesis, propagation coefficients in the 

regression model were obtained separately depending on conditions, given by the 

combination of eye movement direction and viewing areas, as shown in Figure 5.9. As 

the consequence, topographic patterns of the coefficients showed similar distribution 

patterns with results of the ERP topographic distributions in Figure 5.8, except that the 

signs of the values. For coefficients topographies the range of values fell into [-0.5, 0.5]. 

For analyses to testify whether the difference exceeds a significant level or not, the 

difference between topographies are shown in Figure 5.10 and the result of a pairwise 

T-test over 8 subjects for all the electrodes were shown in Table 1. Figure 5.10 showed 
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comparisons depending on four groups as leftward (H*L), rightward (H*R), upward 

(V*L) and downward (V*D). The * in group labels represents a factor used for 

comparison such as Top (T), Middle (M) and Bottom (B) in the horizontal case and Left 

(L), Middle (M) and Right (R) in the horizontal case, and the label in top-right corner of 

four panels denotes which conditions the differences come from. The difference patterns 

in groups H*L and H*R showed nearly mirrored-images. In the group of V*U, the 

difference patterns were not as clear as the other groups. Whereas, in the group of V*D, 

topographies demonstrated clearly noticeable differences between different fixation 

conditions. In accordance with judgments on the numeric values, the difference in group 

V*U (upward eye movements), the differences were relatively small, whereas in group 

V*D, downward movement, values of the differences in lateral sites are significantly 

larger, especially in comparison of L-R the differences between left and right 

hemispheres provide values exceeding 0.03, which means more than 10% percent 

change in propagation coefficients. Pairwise T-test over 8 subjects on coefficient 

difference (Table 1) showed the electrodes with significant difference in bold font 

(t(7)>2.3646; p<0.05). 
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Figure 5.8 Saccade ERP patterns in the head map depending on twelve conditions 



102 
 

 

Figure 5.9 Propagation coefficient distribution in the head map depending on twelve conditions. 
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Figure 5.10 Topographic maps of coefficient difference classified by four groups horizontal/vertical and 

leftward/rightward conditions. 

 

5.4 Discussion 

The main aim of the present study is to clarify the influence of eye movement related 

artifacts to EEG measurements of human subjects who were requested to perform a 

direction-viewing area depending saccade task. We proposed twelve conditions 

(abbreviated as H(T/M/B)(R/L) in the horizontal eye movement and V(L/M/R)(U/D) in 
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the vertical eye movement) to examine a comprehensive set of direction and viewing 

areas. In the self-paced fixation-and-saccades task, EOG influences differentiated in 

individual EEG channels when taking viewing area and eye movement direction into 

account at the same time. 

 

  H*L H*R V*U V*D 

  T-M B-M T-B T-M B-M T-B L-M R-M L-R L-M R-M L-R

O1 -3.70 0.47 -4.40 1.07 -3.37 4.64 -2.08 -2.70 -0.68 0.30 -0.42 0.48 

O2 -5.37 0.06 -2.76 3.17 -3.03 5.75 -1.97 -2.42 0.22 -0.52 1.79 -2.26 

P3 -3.22 1.46 -3.84 2.38 -5.17 6.51 -3.69 -3.32 -0.62 0.41 -1.37 1.71 

Pz -2.93 1.25 -3.58 2.09 -5.14 5.19 -2.79 -4.20 0.41 1.03 1.11 -0.38 

P4 -3.08 0.81 -2.93 2.00 -3.15 4.83 -2.69 -3.30 0.41 -0.28 0.91 -1.39 

CP1 -3.27 0.61 -3.88 0.68 -4.69 3.75 -3.82 -3.01 -1.12 1.21 -1.50 2.31 

CP2 -2.62 0.41 -3.88 1.30 -5.16 5.02 -1.97 -5.02 1.10 0.32 0.56 -0.22 

T7 -1.24 1.55 -4.43 0.83 -3.09 3.88 -1.99 -0.91 -0.70 5.39 -4.29 6.83 

C3 -2.21 1.98 -5.52 0.66 -4.36 4.29 -2.73 -1.20 -1.95 3.59 -1.15 3.26 

Cz -2.02 2.90 -3.65 1.20 -5.04 5.50 -3.21 -5.64 0.20 1.25 -0.52 1.97 

C4 -2.05 -0.01 -2.38 1.13 -5.03 5.21 -1.15 -3.45 0.59 -0.45 1.32 -1.45 

T8 -1.31 -0.99 -0.58 0.53 -9.19 3.81 0.20 -1.59 2.40 -2.24 3.78 -4.59 

FC5 -1.22 3.35 -5.03 0.82 -1.90 2.73 -1.87 0.79 -1.40 3.50 -2.20 5.10 

FC1 -1.04 2.45 -2.27 1.17 -3.46 5.13 -1.67 -2.45 -0.52 3.74 -2.73 3.86 

FC2 -1.37 0.11 -2.08 0.80 -4.11 4.97 -4.12 -1.42 0.02 0.72 1.44 -0.34 

FC6 -0.98 -0.27 -0.98 1.87 -6.65 9.62 0.37 -2.54 2.17 -1.65 2.77 -3.76 

F7 0.50 2.37 -2.71 -0.39 -1.98 0.63 -1.30 1.37 -1.77 5.24 -2.87 6.47 

F3 -0.42 3.94 -3.38 -0.10 -3.98 3.64 -1.51 -0.39 -1.11 3.97 -2.64 3.60 

Fz -1.04 0.65 -2.50 0.19 -5.17 4.83 -0.94 -1.29 -0.29 1.69 0.01 1.27 

F4 -0.02 1.13 -0.79 0.67 -7.27 6.64 1.17 0.05 0.85 1.72 2.10 -0.15 

F8 0.40 0.24 0.18 2.32 -6.14 5.72 0.14 -1.33 2.02 -2.08 5.20 -4.87 

FP1 -0.19 4.41 -4.26 -0.88 -5.46 1.20 -1.55 0.73 -1.36 1.80 4.01 -0.46 

FP2 1.50 1.32 0.91 0.47 -8.40 8.48 2.13 0.02 1.56 2.90 -0.18 2.03 

Table 1: Pairwise T-values of coefficient difference (t(7)>2.3646; p<0.05). Numbers in bold fonts 

represented channels/condition with significant difference. 
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1) Eye movement specificity in the EOG generation  

With respect to the morphology of eyeballs and extraocular muscles with nervous 

controls, eye movement kinematics were modeled with three dimensional properties 

with horizontal, vertical and radial/torsional axes in a gain control model [99] and 

three-dimensional kinematics of saccadic and pursuit eye movements [98] which 

demonstrated all those eye movements can be projected to a horizontal-vertical plane 

with less interference of torsional changes.  The internal cornea-retinal potential was 

estimated as a range of 10-30mV [57][71] and recorded as less than 1mV using the 

skin-surface electrode as EOG recording [72][73]. Even in the millivolt range, it causes 

a large impact to EEG measurements to be a dominant noise source [22][25][58][61]. 

The eye movement angle was linearly correlated with the staying EOG potential in a 

specific range such as less than 30-40 [73], whereas potential fluctuation during 

saccade and pursuit movements have a dynamic property according to interaction with 

eyelids [100][101]. For a simplification and phenomenological treatment, the influence 

of EOGs traditionally were treated by a 3D dipole model of eye movement theoretically 

[22][25][61] or removed by using multiple EOG channels to enhance the ICA accuracy 

[102]. In the present study, the experimental design focused on the influence with 

respect to the specificity in eyeball rotations (the change in orientation of the 

corneo-retinal dipoles, and extended to a larger framework contains various viewing 

field conditions. In a preliminary stage, Plöchl et al. [68] investigated the EOG 

influence in the saccade task. According to their results, the topographic pattern 

difference did not show any significance between large (23) and small (11.5) 

saccadic movement in the same saccade directions, while differences in and 

upward/downward directions appeared significantly.  In the systematic framework by 
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combining direction and viewing area, we found a zone-of-gaze sensitivity property of 

the artifacts, which were demonstrated both in the propagation coefficient and ERP 

topographic distribution. As a new finding, the differences among top/middle/bottom 

viewing areas in the horizontal movements were revealed in the coefficient value. The 

difference value varied from 0.04 to -0.04 as a 10% of the original range of coefficient 

values, which was estimated as 20V from the average HEOG amplitude. The same 

tendency was observed in the difference among left/middle/right viewing areas in the 

vertical downward movement; however such a difference is negligible in the vertical 

upward movement. On the particularity of the upward movement, the interaction of 

eyeballs and eyelids is the plausible candidate to concern. In Plöchl’s research [68], they 

also investigated blink and saccade-related eyelid artifacts. They suggested that two 

types of artifacts were generated by the same mechanism, and suggested those two 

kinds of eyelid sliding over the cornea produces the same scalp topography (the typical 

blink topographic pattern). In the present analyses, we did not treat the eye blinks and 

eyelid interactions in the model. 

 

2) Possible improvements to artifact correction methods 

The effect of viewing area sensitive EOG influence on EEG signals has non- 

negligible impact on past artifact correction methods. Most of the methods known as 

regression based methods [22] and component based methods like ICA [83] rely on the 

mathematical background of the signal processing with less considerations of the 

cornea-retinal potential change depending eyeball rotations and eyelid interactions. 

Currently, the eye-tracking system exhibits a high-specification including a 500 Hz 

sampling rate close to that of the EEG recording system, easily offering an effective 
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combined analysis [68][103]. Even without EOG recordings, a high-spec eye tracking 

system detect eyeball rotations and eye blinks accurately, which is used for estimation 

of the EOG information, opening a new potential of EEG recordings for engineering 

purposes [3][67].  

Combining with the EEG correction methods, even for ICA which has been 

frequently used for ocular artifact correction [26], the idea of separating coefficient 

calculations depending the viewing area may improves the accuracy by approximately 

10%, without any conflict to the original calculation process. Hopefully, this strategy 

may be applied to any traditional methods that use fixed propagation coefficients, 

without only being constrained to regression-based methods and ICA. For simplification 

of the experimental procedure to test our hypothesis, we segregated three viewing areas 

horizontally and vertically. This potential can be extended to EEG measurements in the 

free viewing task and engineering applications of the brain-machine-interface (BCI), by 

coupling with eye tracking method such as EOG [104] or eye-tracker. 

 

3) Theoretical aspect of the zone-of-gaze sensitivity in the artifact 
correction 

Removing ocular artifacts by adaptive filtering was discussed in contaminated 

signals of EEG and MEG [105][106][107]. He et al. [108] formulated an adaptive filter 

with VEOG and HEOG components. Originally the adaptive filter was a generalized 

method to remove noise from a time-varying signal by using a linear filter with the 

transfer function defined by finite impulse response (FIR) filters in the concept of the 

linear model that the signal and noise sources are linearly combined [92][109]. 

Well-known adaptive filters are the Kalman filter [110], the least mean square (LMS) 

filter and the recursive least square (RLS) filter [92][109]. The ocular artifact removal 
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method proposed by He et al. [108] is described with the recorded signal s(t)  x(t) z(t) 

where signal x(t) and ocular artifacts z(t)  and then error e(t)  is defined using FIR 

filters based on the RLS algorithm as: 

e(t)  s(t) r̂v (t) r̂h (t)  x(t) z(t) r̂v (t) r̂h (t) ,                     (3-26) 

,)1()()(ˆ
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m
vvv mtrmhtr                          (3-27) 
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where rv  and rh  are VEOG(t) and HEOG(t) respectively. Filter coefficients hv  and 

hh  are calculated through a minimization of E e2  E x2 E z  r̂v  r̂h 2



 , or 

E z  r̂v  r̂h 2



 .  of M 1 is equivalent to the simple time-domain regression method 

[23][111]. Theoretically, the selection of M  is determined by the characteristics of the 

EOG–EEG transfer function, and He et al. [108] demonstrated that filtering method 

with the condition of M 1 showed a better performance than that of M 1, which 

was accompanied with extensive computational cost to obtain target coefficients in 

recursive calculations determined by M . Finally they concluded that M  3  was 

suitable in their experimental data. Interestingly, this time-domain regression method 

can be reconsidered in the viewpoint of the spatial-domain method, and in this sense our 

result represents a spatial-domain regression method that is categorized in the eye 

movement direction. In the viewpoint of adaptive filtering methods [92][108][110][112], 

two dimensional adaptive filter algorithms for image processing have been proposed 

[113]–[115] by applying the original method of time-varying signals to the 

spatially-varying information. However, in the consideration of our results, the 
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combination of the direction specificity and viewing area is crucial for applications to 

adaptive filtering methods, which need to be treated in multiple layers depending on 

individual eye movement directions, i.e. direction selective multi-layered spatial 

adaptive filters. Multi-layered adaptive filters were discussed covering with the learning 

mechanism of the artificial neural network [116]–[118] yet those were still in the 

mathematical framework. 
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Chapter 6  Performance improvement of artifact removal 

with ocular information 

In the previous chapters, the influences from zone-of-gaze or view-field and the way 

to estimate it were discussed. The biggest difference of in-lab neuroscience researches 

and free-viewing daily EEG applications can be represented as the level of constraint to 

eye movements. Traditional methods are able to do the work with respect to a well 

constrained eye movement condition. However, they never hold the same when being 

performed in a free-viewing condition. Like showing below, the eye movements taking 

place out of the center view-field may cause biases in brain activities related EEG 

estimated (corrected EEG). Here we evaluate the performance improvement from the 

experimental result obtain from chapter 5. 

 

 

Figure 6.1 Eye movements under different conditions 
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To evaluate the EOG artifact correction using the specificity of viewing areas and 

eye movement direction as we focused in this work, the leave-one-out cross-validation 

method was introduced.  

Under each condition, by using the N  proper dataset, propagation coefficients of 

the linear regression were calculated from the 1N  dataset and applied to the trial left 

out. Depending on which trial was left, results of N  sets was obtained and then they 

were used to validate how much EOG influence remains in EEG data after the artifact 

correction. By connecting corrected N  EEG time series in a successive manner and 

N  corresponding EOG time series in the same way, a single value of the correlation 

coefficient (CC) was calculated by the two time series of the connected N corrected 

EEG and the corresponding EOG time series.  

Therefore, the CC can be used for a measure to evaluate how much EOG influence 

remains, varying from 0 to 1. Thus, 0 and 1 respectively represent no correlation 

between corrected EEG and EOG and a high correlation between them. We defined 

‘proposed method’ as the result of the leave-one-out cross-validation and ‘normal 

method’ as the consistent procedure applied to the same target EEG signal, but using 

propagation coefficients obtained from the dataset of the center fixation condition. In 

every channel and each condition, we finally obtained individual CC form the corrected 

EEG with the EOG in the proposed method and individual CC for the normal method 

correspondingly. In other words, the proposed method means EEG corrections 

calibrated with data of task-sensitive fixation positions. In comparison between the 

proposed and normal methods, the pairwise T-test over 8 subjects was analyzed after the 

Fisher’s Z-transformation of two sets of CCs for subjects.  
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Figure 6.2 and 6.3 exhibited an averaged CC (inversed Z-value) over all subjects in 

every EEG channel in cases of horizontal and vertical conditions, respectively. The 

figure was highlighted by gray background colors representing ERP absolute 

amplitudes in corresponding channels as shown in Figure 5.8 under horizontal 

conditions, the significant difference between proposed and normal methods appeared at 

lateral 14 channels in leftward eye movements and 21 channels in rightward eye 

movements [t(7)>3.499; p<0.01]. In comparison between two methods, the difference 

of CC values in those channels was about 0.1 in average (0.099 in HTL&HBL and 

0.093 in HTR&HBR), which can be estimated as 10% of the EOG influence, such as 

V5  in EEG signals if the maximum range of the EOG influence is V50 . In the 

same manner, under vertical conditions, the significant difference appeared in 12 

channels distributed from parietal to occipital areas in the case of upward eye 

movements, whereas lateral 12 channels distributed from frontal to parietal areas in the 

case of downward eye movements. The difference of CC values in those channels was 

about 0.08 (0.071 in VLU&VRU and 0.093 in VLD&VRD) because of relatively weak 

differences in the upward case.  

These results indicate that fixation position dependent EOG influences are exhibited 

at propagation coefficients and then the cross-validation based evaluation represents an 

improvement of the traditional method when the proposed concept is applied to the 

EEG artifact correction. In the case of the linear regression by using the proposed 

method, 10% accuracy improvements can be estimated in areas including channels 

marked in Figure 6.4. 
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Figure 6.2 Correlation coefficients between proposed methods and traditional methods (horizontal 

conditions) 
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Figure 6.3 Correlation coefficients between proposed methods and traditional methods (conditions 

vertical) 
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Figure 6.4 Electrode locations with significant difference between proposed method and traditional 

method 

 

In case of the difference between view-field located on opposite sides, the situation 

becomes more serious as shown in Figure 6.5. 
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Figure 6.5 Electrode locations with significant difference between opposite sides (color-bar: t-value) 

 

These results confirmed our hypothesis again that when eye movement took place in 

varied view-field, the propagation coefficient would have significant changes. 

Furthermore, it also implies the risks of topographic changes when using component 

based methods. In other word, the stationarity attained (e.g. using high pass filter and 

well-epoch strategies) actually could not solve this spatial propagation-changes, hence 

may fail to correct EEG by rejecting one constant topographic pattern for one eye 

movement type (i.e. horizontal or vertical). 

Another conclusion can suggested by Figure 6.5 is that the significance is related to 
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the angular distance between conditions. When the angular distance increases, the 

difference gets greater. Note that, it doesn’t mean the significance exists when only 

small angular changes happens. Thus, a reasonable choice for free-viewing EEG 

applications is to divide the whole view-fields into several zones, for instance a 3-by-3 

zones, and obtain propagation coefficients respectively by calibrations. Then, by 

combining ocular information (e.g. start position and end positions saccades) a stronger 

ocular artifact removal method can be implemented. 
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Chapter 7  Summary 

 

In the present study, we hypothesized the existence of direction and viewing 

area-sensitive EOG influence in the EEG topographic pattern and investigated the 

influence of eye movement related artifacts in the direction/viewing area depending 

saccade task. This was evaluated using the systematic protocol to evaluate the 

dependency by focusing on the coupling effect of eye-movement direction and viewing 

area and testifying in the framework of the linear regression analysis for EOG 

corrections. In our experimental results, ERP topographic patterns to evaluate EOG 

influences in the EEG head map were observed as a reversal structure in the coupling 

condition between horizontal-rightward and –leftward eye movements and consistently 

in the coupling condition between vertical-upward and –downward eye movement. 

Surprisingly, EOG influences are different in comparison between top-viewing and 

bottom-viewing areas in the horizontal movement condition and consistently are 

different between right-viewing and left-viewing areas in the vertical movement 

condition. The result demonstrated that the propagation coefficients were affected 

differently by the EOG changes depending on viewing fields and the eye movement 

directions, suggesting the non-trivial contribution to the EOG artifact removal if the 

coefficient identification is done separately depending on the coupling condition of the 

viewing area and its direction. Our results indicate that direction and viewing 

area-sensitive influence of EOG artifacts exhibits in properties appropriate for removing 

eyeball rotation related artifacts in the context of a visual saccade task. This fact has an 

impact to past ocular artifact corrections using the constant coefficients in the sense of a 

possibility of improvements as presumably 10% better performance, which will 
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contribute to free viewing EEG task availability with frequent eye movements. Our 

results also enlightened the coming ocular artifact removal/suppression algorithm 

developments in the future for free-viewing EEG applications. 
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