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Abstract 
 

In order to improve the quality of embedded 

software, this paper proposes an enhancement to the 

ESIM (Embedded Systems Improving Method) by 

combining an IFD (Information Flow Diagram) with 

an Analysis Matrix to analyze unexpected obstacles in 

the software. These obstacles are difficult to predict in 

the software specification. Recently, embedded systems 

have become larger and more complicated. 

Theoretically therefore, the development cycle of these 

systems should be longer. On the contrary, in practice 

the cycle has been shortened. This trend in industry 

has resulted in the oversight of unexpected obstacles, 

and consequently affected the quality of embedded 

software. In order to prevent the oversight of 

unexpected obstacles, we have already proposed two 

methods for requirements analysis: the ESIM using an 

Analysis Matrix and a method that uses an IFD. In 

order to improve the efficiency of unexpected obstacle 

analysis at reasonable cost, we now enhance the ESIM 

by combining an IFD with an Analysis Matrix. The 

enhancement is studied from the following three 

viewpoints. First, a conceptual model comprising both 

the Analysis Matrix and IFD is defined. Then, a 

requirements analysis procedure is proposed, that uses 

both the Analysis Matrix and IFD, and assigns each 

specific role to either an expert or non-expert engineer. 

Finally, to confirm the effectiveness of this 

enhancement, we carry out a description experiment 

using an IFD.  

 

1. Introduction 
 

Embedded systems are used by various users who are 

unaware of the existence of the systems in different 

environments [1], [2]. Furthermore, these systems are 

required to provide a safe, reliable service over a long 

period. As a result, 70% or more of the source code of 

embedded systems is generally allocated to exception 

handling. It is expected that as embedded systems grow 

larger in scale and become more complicated [3], the 

development cycle would lengthen. On the contrary, in 

reality this development cycle has actually shortened, 

with the result that it has become more difficult to take 

into account all the exception conditions. Furthermore, 

software engineers are required to have knowledge not 

only of the software, but also of devices, users and 

environments to be able to recognize exception 

conditions in the embedded software [4]. Occasionally 

however, software engineers do overlook exception 

conditions expected at times. In fact, the failure of 

products occurs mainly because exception conditions 

have not been foreseen and a re-design of the software 

becomes necessary. This means that we can expect to 

improve the quality and productivity of the embedded 

software by reflecting the exception conditions more 

accurately in the specification. 



 
Fig. 1.  Example of an IFD

We call these exception conditions “unexpected 

obstacles” and have studied requirements analysis 

methods to prevent overlooking unexpected obstacles 

in embedded systems [5], [6], [7], [8]. In this paper, the 

term “expected specifications” specifies the usual 

system behavior described in the software operation 

manual and explicitly defined at the start of the 

architectural design, whereas “unexpected obstacle 

specifications” are concerned with any deviations from 

the usual behavior. Examples of such deviations are 

fading and failure of system hardware, incorrect 

operation and overload caused by system users, and 

temperature or radio noise in the natural environment. 

Of course, the unexpected obstacle specifications 

should also be explicitly defined in the system 

specifications.  However, they are referred to as 

"unexpected obstacle specifications" throughout the 

entire system development process, in order to 

distinguish them from the expected specifications, and 

because they are sometimes left undefined. 

We have studied two analysis methods for 

unexpected obstacles by formalizing a method that is 

tacitly used by experts in embedded software 

development. We have already proposed using an 

Information Flow Diagram (IFD) in one of the methods 

[6]. In the other method, which we call ESIM, we 

proposed the use of an Analysis Matrix [7]. Compared 

with other existing analysis methods [4], [9], [10], [11], 

[12], [13], these methods incorporate both top-down 

and bottom-up analysis approaches to prevent 

overlooking unexpected obstacles. Until now, it has 

been assumed that these two methods are used 

separately. However, if we combine them to form a 

new method, we can expect the cost-effectiveness of 

analyzing unexpected obstacles accruing to each of the 

two methods according to the experiments. In this 

paper, we therefore propose an enhancement to ESIM 

by combining an IFD with an Analysis Matrix. 

In Section 2, we describe briefly an IFD, the ESIM 

and the requirements for the enhancement. In Section 3, 

we propose the enhancement to the ESIM. Section 4 

discusses the enhancement. Our conclusions are 

presented in Section 5. 

 

2. IFD, ESIM and requirements 
 

We first give a brief description of an IFD and the 

ESIM. Then, we specify the requirements for the 

enhancement. 

 

 



 
Fig. 2.  Example of an Analysis Matrix

 

2.1. An IFD 
 

An IFD is composed of two diagrams, the Process 

Diagram (PD) and the Device Diagram (DD), and the 

connections between these diagrams. The PD 

represents the processes in the embedded system and 

the information flow between them. The DD represents 

the devices in the embedded system, the objects, such 

as users, in the operational environment and the 

communication carriers between them. Fig. 1 shows an 

example of an IFD. The upper and lower parts are 

separated by a dotted line, and specify the PD and DD 

respectively. 

When we analyze unexpected obstacles with an IFD, 

we can logically trace the causal relation of the failure 

from the causes to the final result in the IFD. For 

example, a failure scenario is outlined by the numbered 

sequence (1), (2), (3), etc. in the figure. Because of the 

traceability, non-expert engineers can analyze 

unexpected obstacles under the leadership of expert 

engineers. However, much information about devices, 

carriers, processes and information flows needs to be 

specified in the IFD. 

 

2.2. ESIM and an Analysis Matrix 
 

The ESIM is composed of two phases: device 

failure extracting phase and failure scenario 

constructing phase. In the former phase, by applying 

guide words, we assume unexpected phenomena to be 

deviations from the component functions. Then, we 

extract component device failures from the unexpected 

phenomena by applying FTA. In the latter phase, we 

extract unexpected states or events by analyzing the 

unexpected phenomena, and add these states or events 

to the Analysis Matrix, an example of which  is given 

in Fig. 2. New unexpected phenomena may occur 

because of the added states or events. This procedure is 

repeated until no new unexpected phenomena are 

discovered, and we can then construct the failure 

scenarios that are often overlooked by the software 

engineers during the requirements analysis and design 

phases. 

ESIM has two characteristics. One is that we can 

find unexpected states and events which are overlooked 

by the software design engineers. The other is that we 

extend the Analysis Matrix from which we can easily 

obtain all the combinations of states and events. 

However, only expert engineers can use the ESIM in 

practice since the granularity of the information 

contained in the Analysis Matrix is coarser than that in 

the IFD. However, the ESIM requires less information 

to be specified than for the IFD. 

 

2.3. Requirements 
 

By experimenting with the ESIM and an IFD, we 

obtained the above-mentioned results, which show that 

the characteristics of each method are contradictory. 

With regard to engineer skills, only expert engineers 

can use the ESIM, whereas analysis by non-expert 

engineers using an IFD only requires leadership from 

expert engineers. Regarding the quantity of information 

to be specified, an IFD needs more 



 
Fig. 3.  Conceptual Model of Requirement Analysis Objects 

 
information than the ESIM. This means, of course, that 

the ESIM is more efficient than an IFD in analyzing 

unexpected obstacles although relying on expert 

engineers is more costly than using non-expert 

engineers. 

In practice, it is difficult for a project manager to 

find several expert engineers. On the other hand, it is 
not difficult to obtain non-expert engineers. Therefore, 

we propose a cost-effective analysis method operable 

by a team of expert and non-expert engineers, by 

combining an IFD with the ESIM. In this method, 

expert engineers lead non-expert engineers by using the 

ESIM and IFD respectively. 

 

3. Enhancing ESIM by combining IFD 

with Analysis Matrix 
 

In this section, we propose an enhancement to the 

ESIM. We start with a conceptual model of an 

embedded system, which we call the “Basic Conceptual 

Model”. We then add to this basic model the concepts 

that expert engineers use for understanding embedded 

systems, and call this the “Additional Model”. 

Thereafter, we propose an enhancement to the ESIM 

by combining an IFD with an Analysis Matrix in order 

to satisfy the requirements specified in Section 2.3. 

 

3.1. Conceptual Model of Requirement 

Analysis Objects 
 

Fig. 3 shows the conceptual model of requirement 

analysis objects when expert engineers analyze 

unexpected obstacles in embedded systems. This model 

is separated into two parts by the horizontal line. The 

upper part of the model shows the basic conceptual 

model. These concepts are considered by the engineers 

during the design phase of the expected specifications. 

However, when the engineers design unexpected 

obstacle specifications, they introduce new concepts. 

The lower part of the model shows the additional 

model. The concepts in the additional model have the 

following meanings: 

• Normal State (Expected State) means a state that 

is defined in the expected specifications. 

• Abnormal State (Unexpected State) means a state 

that is not defined in the expected specifications. 

Thus the Abnormal States consist, not only of fatal 

failures such as out of component works, but also of 

irregular states, such as processing overloads. 

• Normal Event (Expected Event) means an event 

that is defined in the expected specifications. 

• Abnormal Event (Unexpected Event) means an 

event that is not defined in the expected 

specifications. For example, it may be classified as 

a normal event when a motor transmits power to 

another  component. However, assume that the 

motor makes a noise at the same time. If software 

engineers do not take this into consideration, it is 

classified as an abnormal event. 



• Failure Carrier specifies a carrier that has an 

irregular value because of the effects of some 

phenomenon. If a carrier of this kind reaches a 

destination component, the information process of 

the component will not understand the original 

meaning. An example of a failure carrier is an 

irregular voltage signal caused by a short in the 

signal line. 

• State of the System addresses the entire state, 

including environment. We note that this definition 

is different from the general definition of the state 

of the system, which is usually defined as the 

Cartesian product of the states of all components at 

a particular moment. In our definition, however, it 

is defined as the Cartesian product of the states of 

those components on which the analysis is focused. 

• Phenomenon addresses the phenomenon that 

occurs by combining the states of the system, even 

as defined above. The occurrence of the 

phenomenon means that there is a transition of the 

states of some components and/or sending events. 

This is shown as a dependency in the conceptual 

model of the requirement analysis objects. 

• Expected Phenomenon addresses a phenomenon 

judged not to become a failure or to cause a failure 

in the system or environment. 

• Unexpected Phenomenon addresses a 

phenomenon that is a failure in the system or 

environment or the cause of such a failure. 

• Scenario means an ordered information flow or 

ordered phenomena and has meaning, which is 

given by a constraint. 

• Failure Scenario addresses a scenario that results 

in failure. 
Expert engineers analyze unexpected obstacles 

using either a top-down analysis like FTA [9], a 

bottom-up analysis like FMEA [10] or deflection 

analysis like HAZOP [11]. We now show how each of 

these analyses is carried out on the conceptual model.  

FTA is used to analyze the causes of the failure 

specified at the root of a tree; it proceeds from the root 

to the leaves in a stepwise manner. In the conceptual 

model, we show two top-down analyses like FTA. One 

of these is an analysis method in which engineers 

specify unexpected phenomena at the root of a tree and 

arrive at the causes by moving from the results toward 

the causes using a state transition model. The other is 

an analysis method in which engineers specify an 

information flow which assigns failure at the root of a 

tree and arrives at the causes by moving from the 

destination toward the sources in an information 

communication model. 

FMEA is used to analyze the failures that occur as a 

result of problems with the components in a bottom-up 

manner. In the conceptual model, we show two bottom-

up analyses similar to FMEA. One of these is an 

analysis method where engineers specify abnormal 

states of a component, instead of the problems with the 

component, at the root of the tree and then analyze the 

failures that occur as a result of combining with other 

states of the component and/or events using a state 

transition model. The second is an analysis method 

where engineers specify abnormal states of the 

component or failure carrier at the root of a tree and 

analyze the failures that occur as a result of combining 

with other information in an information 

communication model. 

HAZOP was originally used for analyzing the safety 

of plants, and assumes deviational phenomena that 

have a negative impact on the plant. In the conceptual 

model, the analysis process relies on the analysis of 

deviational phenomena as in HAZOP. Engineers expect 

the failure of carriers, abnormal states of components, 

and abnormal states caused by the deviation of carrier, 

state of component or event. 

 

3.2. Combining an IFD with an Analysis 

Matrix 
 

In this section, we discuss combining an IFD with 

an Analysis Matrix, which requires two issues to be 

considered. The first of these involves matching the 

concepts of the ESIM and an IFD to avoid repetition of 

concepts used in both the IFD and ESIM. This includes 

three topics. First, we explain how to describe a failure 

scenario. In an IFD, a failure scenario is depicted by 

information flow. On the other hand, in the ESIM, a 

failure scenario is described by phenomena. To enable 

non-expert engineers to deal with failure scenarios, we 

describe a failure scenario using information flow. 

Next, we explain the relationship between devices in an 

IFD and components in ESIM. We treat these concepts 

as one in the enhanced ESIM because they represent 

the same thing. Finally, we explain the relationship 

between the set of concepts, carriers and information  



 
Fig. 4.  A procedure in the enhanced ESIM

flow in an IFD and the communication contents in the 

ESIM. To enable non-expert engineers to deal with 

failure scenarios, we choose the solution that allows 

engineers to describe a more detailed failure scenario. 

A deviation of communication content in the ESIM is 

the same as recognizing a wrong meaning at a 

destination component because of deviation of the 

carrier in an IFD. Therefore, we use the concept of 

information flow and carrier in the enhanced ESIM. 

The second consideration is the analysis procedure 

and role assignment. Fig. 4 shows an analysis 

procedure in the enhanced ESIM using an IFD and an 

Analysis Matrix. To allow the analysis to be led by an 

expert engineer, this procedure is based on the ESIM 

procedure. When the analysis process reaches the end 

of this procedure, we obtain failure scenarios and 

feedback for software engineers. Furthermore, we 

assign the roles for each process to expert or non-

expert engineers as shown in Fig. 4. This assignment is 

based on the requirements shown in Section 2.3. 

 

3.3. Application example 
 



We show an example of the description of a failure 

scenario using an IFD and Analysis Matrix. The failure 

scenario is constructed from the sample specifications 

for an electric kettle. The kettle is equipped with a 

water sensor that senses the water level. If the sensor 

detects the filled water state, it turns off the heating 

element to prevent the boiling water from overflowing. 

When a user supplies water to the kettle, a thermistor 

senses the falling temperature, and this event turns on 

the heating element, which in time causes the kettle to 

enter the boiling water state. However, there is the 

possibility of an unexpected event happening, such as 

something tipping the kettle. Depending on the angle of  

the kettle, the filled water sensor may not recognize 

that the actual water level has reached the danger point, 

and the heating element remains in the state of 

“boiling”. Ultimately, the boiling water overflows  and 

may burn the user. 

In Fig. 1, we indicate the failure scenario by 

attaching numerical comments, e.g. (1), (2), (3), etc.. In 

Fig. 2, we show the same failure scenario. If we 

compare both descriptions, we find that the ESIM 

omits the detail of the failure scenario. The detail 

corresponding to (2), (3), (5), (7), (8), (9), (11), (12) 

and (13) in Fig. 1 is not present in Fig. 2. 

 

4. Discussion 
 

This section discusses the enhancement to the ESIM 

by combining an IFD and an Analysis Matrix. 

 

4.1. Effect of enhancing the ESIM 
 

To confirm the effects of this enhancement, we 

devised a description experiment using an IFD and 

based on the results of the ESIM. The target embedded 

system is implemented as a new product in the C 

programming language. During the development of this 

product, an expert engineer applied the ESIM to 

analyze failure scenarios. The expert engineer referred 

the requirements specification of the product for 

analysis. Applying the ESIM resulted in the expert 

engineer finding 44 failure scenarios in 32 hours. We 

gave 9 of these failure scenarios to testers to describe 

using IFDs. The testers were 3 students who had no 

development experience of the embedded software. In 

the experiment, the testers were allowed to question us 

freely. We recorded their questions, and analyzed the 

content. Ultimately, the testers were able to describe 

each of the scenarios using an IFD. The results of our 

analysis are as follows: 

• The method of mapping from a description of a 

failure scenario given in natural language to an IFD 

is useful for non-expert engineers. 

• It was difficult for the non-expert engineers to 

distinguish the control information and input 

information in a PD. 

• Some of the non-expert engineers were not 

sufficiently able to distinguish between information 

process and information flow. 

To assist testers with respect to the above-

mentioned points, an expert engineer was available to 

support them in all the non-expert engineer’s processes 

specified in Fig. 4. We expect that the effect of an 

actual application of this method in companies would 

result in the expert engineer’s load being reduced since 

the non-expert engineers would be more 

knowledgeable about embedded software than the 

testers in this experiment. 

 

4.2. Future work 
 

In this paper, we have proposed an enhancement to 

the ESIM by combining an IFD and an Analysis Matrix 

and have predicted the effect of this enhancement. In 

the future, we aim to confirm the effectiveness of the 

enhanced ESIM quantitatively by experimenting with 

real applications. Thereafter, we aim to reduce the cost 

of application of the enhanced ESIM by formalizing 

the analysis processes which are done by expert 

engineers in this paper. There are two future works. 

One of these is the formalization of the analysis method 

by applying qualitative reasoning with concepts of 

states provided by an Analysis Matrix and constraints 

given by an IFD. This formalization will lead to the 

formalization of knowledge about unexpected obstacles 

owned by expert engineers. Furthermore, the 

development of a knowledge base about unexpected 

obstacles will also be undertaken. The knowledge base 

is expected to be connected with CASE tools. Other 

future work will focus on the character of an IFD as a 

directed graph. Based on this, we will study the 

application of the techniques of graph analysis to 

analyze loss, connections and loops which provide 

feedback [5]. 

 

5. Conclusion 
 

This paper has proposed an enhancement to the 

ESIM by combining an IFD and an Analysis Matrix. In 

this enhancement, we considered the following three 

issues: establishing the conceptual model, defining the 

analysis procedure, and assigning the roles of expert 



and non-expert engineers. Furthermore, we have 

predicted the effectiveness of this enhancement by 

carrying out a description experiment using an IFD. 

In the future, we aim to confirm the effectiveness of 

the enhanced ESIM quantitatively by experimenting 

with real applications. We will also study the 

formalization of the analysis method by applying 

qualitative reasoning theory. 
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