
Enhancing the ESIM (Embedded Systems Improving Method) by Combining

Information Flow Diagram with Analysis Matrix for Efficient Analysis of

Unexpected Obstacles in Embedded Software

Yasufumi Shinyashiki

Matsushita Electric Works, Ltd.

yasufumi@mail.mew.co.jp

Masaaki Hashimoto

Kyusyu Institute of Technology

hasimoto@ai.kyutech.ac.jp

Naoyasu Ubayashi

Kyusyu Institute of Technology

ubayashi@ai.kyutech.ac.jp

Toshiro Mise

Matsushita Electric Works, Ltd.

mise@mail.mew.co.jp

Keiichi Katamine

Kyusyu Institute of Technology

katamine@ci.kyutech.ac.jp

Takako Nakatani

University of Tsukuba

nakatani@gssm.otsuka.tsukuba.ac.jp

Abstract

In order to improve the quality of embedded

software, this paper proposes an enhancement to the

ESIM (Embedded Systems Improving Method) by

combining an IFD (Information Flow Diagram) with

an Analysis Matrix to analyze unexpected obstacles in

the software. These obstacles are difficult to predict in

the software specification. Recently, embedded systems

have become larger and more complicated.

Theoretically therefore, the development cycle of these

systems should be longer. On the contrary, in practice

the cycle has been shortened. This trend in industry

has resulted in the oversight of unexpected obstacles,

and consequently affected the quality of embedded

software. In order to prevent the oversight of

unexpected obstacles, we have already proposed two

methods for requirements analysis: the ESIM using an

Analysis Matrix and a method that uses an IFD. In

order to improve the efficiency of unexpected obstacle

analysis at reasonable cost, we now enhance the ESIM

by combining an IFD with an Analysis Matrix. The

enhancement is studied from the following three

viewpoints. First, a conceptual model comprising both

the Analysis Matrix and IFD is defined. Then, a

requirements analysis procedure is proposed, that uses

both the Analysis Matrix and IFD, and assigns each

specific role to either an expert or non-expert engineer.

Finally, to confirm the effectiveness of this

enhancement, we carry out a description experiment

using an IFD.

1. Introduction

Embedded systems are used by various users who are

unaware of the existence of the systems in different

environments [1], [2]. Furthermore, these systems are

required to provide a safe, reliable service over a long

period. As a result, 70% or more of the source code of

embedded systems is generally allocated to exception

handling. It is expected that as embedded systems grow

larger in scale and become more complicated [3], the

development cycle would lengthen. On the contrary, in

reality this development cycle has actually shortened,

with the result that it has become more difficult to take

into account all the exception conditions. Furthermore,

software engineers are required to have knowledge not

only of the software, but also of devices, users and

environments to be able to recognize exception

conditions in the embedded software [4]. Occasionally

however, software engineers do overlook exception

conditions expected at times. In fact, the failure of

products occurs mainly because exception conditions

have not been foreseen and a re-design of the software

becomes necessary. This means that we can expect to

improve the quality and productivity of the embedded

software by reflecting the exception conditions more

accurately in the specification.

Fig. 1. Example of an IFD

We call these exception conditions “unexpected

obstacles” and have studied requirements analysis

methods to prevent overlooking unexpected obstacles

in embedded systems [5], [6], [7], [8]. In this paper, the

term “expected specifications” specifies the usual

system behavior described in the software operation

manual and explicitly defined at the start of the

architectural design, whereas “unexpected obstacle

specifications” are concerned with any deviations from

the usual behavior. Examples of such deviations are

fading and failure of system hardware, incorrect

operation and overload caused by system users, and

temperature or radio noise in the natural environment.

Of course, the unexpected obstacle specifications

should also be explicitly defined in the system

specifications. However, they are referred to as

"unexpected obstacle specifications" throughout the

entire system development process, in order to

distinguish them from the expected specifications, and

because they are sometimes left undefined.

We have studied two analysis methods for

unexpected obstacles by formalizing a method that is

tacitly used by experts in embedded software

development. We have already proposed using an

Information Flow Diagram (IFD) in one of the methods

[6]. In the other method, which we call ESIM, we

proposed the use of an Analysis Matrix [7]. Compared

with other existing analysis methods [4], [9], [10], [11],

[12], [13], these methods incorporate both top-down

and bottom-up analysis approaches to prevent

overlooking unexpected obstacles. Until now, it has

been assumed that these two methods are used

separately. However, if we combine them to form a

new method, we can expect the cost-effectiveness of

analyzing unexpected obstacles accruing to each of the

two methods according to the experiments. In this

paper, we therefore propose an enhancement to ESIM

by combining an IFD with an Analysis Matrix.

In Section 2, we describe briefly an IFD, the ESIM

and the requirements for the enhancement. In Section 3,

we propose the enhancement to the ESIM. Section 4

discusses the enhancement. Our conclusions are

presented in Section 5.

2. IFD, ESIM and requirements

We first give a brief description of an IFD and the

ESIM. Then, we specify the requirements for the

enhancement.

Fig. 2. Example of an Analysis Matrix

2.1. An IFD

An IFD is composed of two diagrams, the Process

Diagram (PD) and the Device Diagram (DD), and the

connections between these diagrams. The PD

represents the processes in the embedded system and

the information flow between them. The DD represents

the devices in the embedded system, the objects, such

as users, in the operational environment and the

communication carriers between them. Fig. 1 shows an

example of an IFD. The upper and lower parts are

separated by a dotted line, and specify the PD and DD

respectively.

When we analyze unexpected obstacles with an IFD,

we can logically trace the causal relation of the failure

from the causes to the final result in the IFD. For

example, a failure scenario is outlined by the numbered

sequence (1), (2), (3), etc. in the figure. Because of the

traceability, non-expert engineers can analyze

unexpected obstacles under the leadership of expert

engineers. However, much information about devices,

carriers, processes and information flows needs to be

specified in the IFD.

2.2. ESIM and an Analysis Matrix

The ESIM is composed of two phases: device

failure extracting phase and failure scenario

constructing phase. In the former phase, by applying

guide words, we assume unexpected phenomena to be

deviations from the component functions. Then, we

extract component device failures from the unexpected

phenomena by applying FTA. In the latter phase, we

extract unexpected states or events by analyzing the

unexpected phenomena, and add these states or events

to the Analysis Matrix, an example of which is given

in Fig. 2. New unexpected phenomena may occur

because of the added states or events. This procedure is

repeated until no new unexpected phenomena are

discovered, and we can then construct the failure

scenarios that are often overlooked by the software

engineers during the requirements analysis and design

phases.

ESIM has two characteristics. One is that we can

find unexpected states and events which are overlooked

by the software design engineers. The other is that we

extend the Analysis Matrix from which we can easily

obtain all the combinations of states and events.

However, only expert engineers can use the ESIM in

practice since the granularity of the information

contained in the Analysis Matrix is coarser than that in

the IFD. However, the ESIM requires less information

to be specified than for the IFD.

2.3. Requirements

By experimenting with the ESIM and an IFD, we

obtained the above-mentioned results, which show that

the characteristics of each method are contradictory.

With regard to engineer skills, only expert engineers

can use the ESIM, whereas analysis by non-expert

engineers using an IFD only requires leadership from

expert engineers. Regarding the quantity of information

to be specified, an IFD needs more

Fig. 3. Conceptual Model of Requirement Analysis Objects

information than the ESIM. This means, of course, that

the ESIM is more efficient than an IFD in analyzing

unexpected obstacles although relying on expert

engineers is more costly than using non-expert

engineers.

In practice, it is difficult for a project manager to

find several expert engineers. On the other hand, it is
not difficult to obtain non-expert engineers. Therefore,

we propose a cost-effective analysis method operable

by a team of expert and non-expert engineers, by

combining an IFD with the ESIM. In this method,

expert engineers lead non-expert engineers by using the

ESIM and IFD respectively.

3. Enhancing ESIM by combining IFD

with Analysis Matrix

In this section, we propose an enhancement to the

ESIM. We start with a conceptual model of an

embedded system, which we call the “Basic Conceptual

Model”. We then add to this basic model the concepts

that expert engineers use for understanding embedded

systems, and call this the “Additional Model”.

Thereafter, we propose an enhancement to the ESIM

by combining an IFD with an Analysis Matrix in order

to satisfy the requirements specified in Section 2.3.

3.1. Conceptual Model of Requirement

Analysis Objects

Fig. 3 shows the conceptual model of requirement

analysis objects when expert engineers analyze

unexpected obstacles in embedded systems. This model

is separated into two parts by the horizontal line. The

upper part of the model shows the basic conceptual

model. These concepts are considered by the engineers

during the design phase of the expected specifications.

However, when the engineers design unexpected

obstacle specifications, they introduce new concepts.

The lower part of the model shows the additional

model. The concepts in the additional model have the

following meanings:

• Normal State (Expected State) means a state that

is defined in the expected specifications.

• Abnormal State (Unexpected State) means a state

that is not defined in the expected specifications.

Thus the Abnormal States consist, not only of fatal

failures such as out of component works, but also of

irregular states, such as processing overloads.

• Normal Event (Expected Event) means an event

that is defined in the expected specifications.

• Abnormal Event (Unexpected Event) means an

event that is not defined in the expected

specifications. For example, it may be classified as

a normal event when a motor transmits power to

another component. However, assume that the

motor makes a noise at the same time. If software

engineers do not take this into consideration, it is

classified as an abnormal event.

• Failure Carrier specifies a carrier that has an

irregular value because of the effects of some

phenomenon. If a carrier of this kind reaches a

destination component, the information process of

the component will not understand the original

meaning. An example of a failure carrier is an

irregular voltage signal caused by a short in the

signal line.

• State of the System addresses the entire state,

including environment. We note that this definition

is different from the general definition of the state

of the system, which is usually defined as the

Cartesian product of the states of all components at

a particular moment. In our definition, however, it

is defined as the Cartesian product of the states of

those components on which the analysis is focused.

• Phenomenon addresses the phenomenon that

occurs by combining the states of the system, even

as defined above. The occurrence of the

phenomenon means that there is a transition of the

states of some components and/or sending events.

This is shown as a dependency in the conceptual

model of the requirement analysis objects.

• Expected Phenomenon addresses a phenomenon

judged not to become a failure or to cause a failure

in the system or environment.

• Unexpected Phenomenon addresses a

phenomenon that is a failure in the system or

environment or the cause of such a failure.

• Scenario means an ordered information flow or

ordered phenomena and has meaning, which is

given by a constraint.

• Failure Scenario addresses a scenario that results

in failure.
Expert engineers analyze unexpected obstacles

using either a top-down analysis like FTA [9], a

bottom-up analysis like FMEA [10] or deflection

analysis like HAZOP [11]. We now show how each of

these analyses is carried out on the conceptual model.

FTA is used to analyze the causes of the failure

specified at the root of a tree; it proceeds from the root

to the leaves in a stepwise manner. In the conceptual

model, we show two top-down analyses like FTA. One

of these is an analysis method in which engineers

specify unexpected phenomena at the root of a tree and

arrive at the causes by moving from the results toward

the causes using a state transition model. The other is

an analysis method in which engineers specify an

information flow which assigns failure at the root of a

tree and arrives at the causes by moving from the

destination toward the sources in an information

communication model.

FMEA is used to analyze the failures that occur as a

result of problems with the components in a bottom-up

manner. In the conceptual model, we show two bottom-

up analyses similar to FMEA. One of these is an

analysis method where engineers specify abnormal

states of a component, instead of the problems with the

component, at the root of the tree and then analyze the

failures that occur as a result of combining with other

states of the component and/or events using a state

transition model. The second is an analysis method

where engineers specify abnormal states of the

component or failure carrier at the root of a tree and

analyze the failures that occur as a result of combining

with other information in an information

communication model.

HAZOP was originally used for analyzing the safety

of plants, and assumes deviational phenomena that

have a negative impact on the plant. In the conceptual

model, the analysis process relies on the analysis of

deviational phenomena as in HAZOP. Engineers expect

the failure of carriers, abnormal states of components,

and abnormal states caused by the deviation of carrier,

state of component or event.

3.2. Combining an IFD with an Analysis

Matrix

In this section, we discuss combining an IFD with

an Analysis Matrix, which requires two issues to be

considered. The first of these involves matching the

concepts of the ESIM and an IFD to avoid repetition of

concepts used in both the IFD and ESIM. This includes

three topics. First, we explain how to describe a failure

scenario. In an IFD, a failure scenario is depicted by

information flow. On the other hand, in the ESIM, a

failure scenario is described by phenomena. To enable

non-expert engineers to deal with failure scenarios, we

describe a failure scenario using information flow.

Next, we explain the relationship between devices in an

IFD and components in ESIM. We treat these concepts

as one in the enhanced ESIM because they represent

the same thing. Finally, we explain the relationship

between the set of concepts, carriers and information

Fig. 4. A procedure in the enhanced ESIM

flow in an IFD and the communication contents in the

ESIM. To enable non-expert engineers to deal with

failure scenarios, we choose the solution that allows

engineers to describe a more detailed failure scenario.

A deviation of communication content in the ESIM is

the same as recognizing a wrong meaning at a

destination component because of deviation of the

carrier in an IFD. Therefore, we use the concept of

information flow and carrier in the enhanced ESIM.

The second consideration is the analysis procedure

and role assignment. Fig. 4 shows an analysis

procedure in the enhanced ESIM using an IFD and an

Analysis Matrix. To allow the analysis to be led by an

expert engineer, this procedure is based on the ESIM

procedure. When the analysis process reaches the end

of this procedure, we obtain failure scenarios and

feedback for software engineers. Furthermore, we

assign the roles for each process to expert or non-

expert engineers as shown in Fig. 4. This assignment is

based on the requirements shown in Section 2.3.

3.3. Application example

We show an example of the description of a failure

scenario using an IFD and Analysis Matrix. The failure

scenario is constructed from the sample specifications

for an electric kettle. The kettle is equipped with a

water sensor that senses the water level. If the sensor

detects the filled water state, it turns off the heating

element to prevent the boiling water from overflowing.

When a user supplies water to the kettle, a thermistor

senses the falling temperature, and this event turns on

the heating element, which in time causes the kettle to

enter the boiling water state. However, there is the

possibility of an unexpected event happening, such as

something tipping the kettle. Depending on the angle of

the kettle, the filled water sensor may not recognize

that the actual water level has reached the danger point,

and the heating element remains in the state of

“boiling”. Ultimately, the boiling water overflows and

may burn the user.

In Fig. 1, we indicate the failure scenario by

attaching numerical comments, e.g. (1), (2), (3), etc.. In

Fig. 2, we show the same failure scenario. If we

compare both descriptions, we find that the ESIM

omits the detail of the failure scenario. The detail

corresponding to (2), (3), (5), (7), (8), (9), (11), (12)

and (13) in Fig. 1 is not present in Fig. 2.

4. Discussion

This section discusses the enhancement to the ESIM

by combining an IFD and an Analysis Matrix.

4.1. Effect of enhancing the ESIM

To confirm the effects of this enhancement, we

devised a description experiment using an IFD and

based on the results of the ESIM. The target embedded

system is implemented as a new product in the C

programming language. During the development of this

product, an expert engineer applied the ESIM to

analyze failure scenarios. The expert engineer referred

the requirements specification of the product for

analysis. Applying the ESIM resulted in the expert

engineer finding 44 failure scenarios in 32 hours. We

gave 9 of these failure scenarios to testers to describe

using IFDs. The testers were 3 students who had no

development experience of the embedded software. In

the experiment, the testers were allowed to question us

freely. We recorded their questions, and analyzed the

content. Ultimately, the testers were able to describe

each of the scenarios using an IFD. The results of our

analysis are as follows:

• The method of mapping from a description of a

failure scenario given in natural language to an IFD

is useful for non-expert engineers.

• It was difficult for the non-expert engineers to

distinguish the control information and input

information in a PD.

• Some of the non-expert engineers were not

sufficiently able to distinguish between information

process and information flow.

To assist testers with respect to the above-

mentioned points, an expert engineer was available to

support them in all the non-expert engineer’s processes

specified in Fig. 4. We expect that the effect of an

actual application of this method in companies would

result in the expert engineer’s load being reduced since

the non-expert engineers would be more

knowledgeable about embedded software than the

testers in this experiment.

4.2. Future work

In this paper, we have proposed an enhancement to

the ESIM by combining an IFD and an Analysis Matrix

and have predicted the effect of this enhancement. In

the future, we aim to confirm the effectiveness of the

enhanced ESIM quantitatively by experimenting with

real applications. Thereafter, we aim to reduce the cost

of application of the enhanced ESIM by formalizing

the analysis processes which are done by expert

engineers in this paper. There are two future works.

One of these is the formalization of the analysis method

by applying qualitative reasoning with concepts of

states provided by an Analysis Matrix and constraints

given by an IFD. This formalization will lead to the

formalization of knowledge about unexpected obstacles

owned by expert engineers. Furthermore, the

development of a knowledge base about unexpected

obstacles will also be undertaken. The knowledge base

is expected to be connected with CASE tools. Other

future work will focus on the character of an IFD as a

directed graph. Based on this, we will study the

application of the techniques of graph analysis to

analyze loss, connections and loops which provide

feedback [5].

5. Conclusion

This paper has proposed an enhancement to the

ESIM by combining an IFD and an Analysis Matrix. In

this enhancement, we considered the following three

issues: establishing the conceptual model, defining the

analysis procedure, and assigning the roles of expert

and non-expert engineers. Furthermore, we have

predicted the effectiveness of this enhancement by

carrying out a description experiment using an IFD.

In the future, we aim to confirm the effectiveness of

the enhanced ESIM quantitatively by experimenting

with real applications. We will also study the

formalization of the analysis method by applying

qualitative reasoning theory.

Acknowledgment

The authors wish to thank Mr.Tanabe, Mr.Tanimoto,

Mr.Inoue and Mr.Kubo in the Hashimoto Lab. for their

help with the experiments in this research.

References

[1] T.Nakatani, T.Mise, Y.Shinyashiki, K.Katamine,
N.Ubayashi, and M.Hashimoto, “Toward defining a system
boundary based on real world analysis”, Proc. of the
FOSE2005, Japan Society for Software Science and
Technology, Kindai Kagaku Sha, 2005, pp. 221-226 (in
Japanese).

[2] T.Sumi, M.Hirayama, and N.Ubayashi, “Analysis of the
external environment for embedded systems,” IPSJ SIG
Technical Reports, 2004-SE-146, 2004, pp. 33-40 (in
Japanese).

[3] Ministry of Economy, Trade and Industry, editor, Report
of actual field survey of embedded software 2005 Edition,
Ministry of Economy, Trade and Industry, 2005 (in Japanese).

[4] R.Crook, D.Ince, L.Lin, and B.Nuseibeh, “Security
Requirements Engineering: When Anti-Requirements Hit the
Fan”, Proc. of the 10th Anniversary Joint IEEE International
Requirements Engineering Conference (RE'02), 2002, pp.
203-205.

[5] H.Hatanaka, Y.Shinyashiki, T.Mise, H.Kametani,
M.Hashimoto, N.Ubayashi, K.Katamine, and T.Nakatani,
“An Analysis of Information Flow Graph based on
Conceptual Model of Exceptions in Embedded Software”,
TECHNICAL REPORT OF IEICE 104-431, 2004, pp. 19-24.

[6] H.Kametani, Y.Shinyashiki, T.Mise, M.Hashimoto,
N.Ubayashi, K.Katamine, and T.Nakatani, “Information Flow
Diagram and Analysis Method for Unexpected Obstacle
Specification of Embedded Software”, Proc. of the
Knowledge-Based Software Engineering (JCKBSE’06), 2006,
pp. 115-124.

[7] T.Mise, M.Hashimoto, K.Katamine, Y.Shinyashiki,
N.Ubayashi, and T.Nakatani, “A Method for Extracting
Unexpected Scenarios of Embedded Systems”, Proc. of the
Knowledge-Based Software Engineering (JCKBSE’06), 2006,
pp. 41-50.

[8] Y.Shinyashiki, T.Mise, M.Hashimoto, K.Katamine,
N.Ubayashi, T.Nakatani, “A Requirements Analysis Method
of Unexpected Obstacles in Embedded Software by Applying

Information Flow Diagram”, IPSJ Special Issue on embedded
system, 2007(To be appeared)(In Japanese).

[9] N.G.Leveson, “Fault Tree Analysis”, Safeware: System
Safety and Computers, Addison-Wesley, 1995, pp. 317-326.

[10] N.G.Leveson, “Failure Modes and Effects Analysis”,
Safeware: System Safety and Computers, Addison-Wesley,
1995, pp. 341-344.

[11] N.G.Leveson, “HaZards and Operability Analysis”,
Safeware: System Safety and Computers, Addison-Wesley,
1995, pp. 335-341.

[12] I.Alexander, “Misuse cases, use cases with hostile
intent”, IEEE Software, vol.20, no.1, 2003, pp. 55-66.

[13] A.V.Lamsweerde, E.Letier, “Handling Obstacles in
Goal-Oriented Requirements Engineering”, IEEE
Transactions on Software Engineering, vol.26, no.10, 2000,
pp. 978-1005.

