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PAPER

Unsupervised Ensemble Anomaly Detection Using Time-Periodic
Packet Sampling∗

Masato UCHIDA†a), Shuichi NAWATA††b), Members, Yu GU†††c), Nonmember, Masato TSURU††††d), Member,
and Yuji OIE††††e), Fellow

SUMMARY We propose an anomaly detection method for finding pat-
terns in network traffic that do not conform to legitimate (i.e., normal) be-
havior. The proposed method trains a baseline model describing the normal
behavior of network traffic without using manually labeled traffic data. The
trained baseline model is used as the basis for comparison with the audit
network traffic. This anomaly detection works in an unsupervised man-
ner through the use of time-periodic packet sampling, which is used in a
manner that differs from its intended purpose — the lossy nature of packet
sampling is used to extract normal packets from the unlabeled original traf-
fic data. Evaluation using actual traffic traces showed that the proposed
method has false positive and false negative rates in the detection of anoma-
lies regarding TCP SYN packets comparable to those of a conventional
method that uses manually labeled traffic data to train the baseline model.
Performance variation due to the probabilistic nature of sampled traffic data
is mitigated by using ensemble anomaly detection that collectively exploits
multiple baseline models in parallel. Alarm sensitivity is adjusted for the
intended use by using maximum- and minimum-based anomaly detection
that effectively take advantage of the performance variations among the
multiple baseline models. Testing using actual traffic traces showed that the
proposed anomaly detection method performs as well as one using manu-
ally labeled traffic data and better than one using randomly sampled (unla-
beled) traffic data.
key words: anomaly detection, packet sampling

1. Introduction

Anomaly detection is the process of finding patterns in the
audit network traffic that do not conform to legitimate (i.e.,
normal) behavior. The nonconforming patterns are called
“anomalies.” Anomalies reflect the existence of malicious
activities such as worms, port scans, denial of service at-
tacks, and spoofing, and can seriously affect the operation
and normal use of the network and can cause an enormous

Manuscript received January 14, 2011.
Manuscript revised December 27, 2011.
†The author is with the Department of Electrical, Electronics

and Computer Engineering, Faculty of Engineering, Chiba Insti-
tute of Technology, Narashino-shi, 275-0016 Japan.
††The author is with KDDI R&D Laboratories Inc., Fujimino-

shi, 356-8502 Japan.
†††The author is with Amazon Web Services, 410 Terry Ave.

North Seattle, WA, 98109 USA.
††††The authors are with Network Design Research Center, Kyu-

shu Institute of Technology, Iizuka-shi, 820-8502 Japan.
∗The present paper is an extended version of a previous paper

presented at the 13th IEEE Global Internet Symposium 2010 [1].
a) E-mail: masato.uchida@ieee.org
b) E-mail: nawata@kddilabs.jp
c) E-mail: yuguamz@amazon.com
d) E-mail: tsuru@cse.kyutech.ac.jp
e) E-mail: oie@cse.kyutech.ac.jp

DOI: 10.1587/transcom.E95.B.2358

waste of network resources and economic loss. Conse-
quently, anomaly detection has become an important issue
in network monitoring and network security [2]–[7].

The design of an anomaly detection method usually re-
lies on a baseline model describing the normal behavior of
network traffic. An alarm is raised if a pattern in the traffic
deviates from the model. The model is generally trained us-
ing data extracted from traffic for which all instances (i.e.,
packets) are labeled in advance as either normal or anoma-
lous. However, labeling traffic data is prohibitively expen-
sive and time-consuming because it is usually done by hu-
man experts.

In this paper, we have developed a method for train-
ing a baseline model without using manually labeled traffic
data. The proposed method employs packet sampling for
the purpose of extracting normal packets from the unlabeled
original traffic data: the purpose is different from which it
was intended. The proposed method uses this extracted traf-
fic data to train a baseline model. This enables anomaly de-
tection to be executed in an unsupervised manner, unlike a
conventional supervised method that uses manually labeled
traffic data to train a baseline model.

The efficiency and ease of use of packet sampling for
network monitoring have led it its widespread use on high-
speed backbone routers to minimize resources used [8]–
[10]. However, since packet sampling is inherently lossy,
the sampled traffic is simply an incomplete approximation
of the actual network traffic. We look at these drawbacks
of packet sampling from a different perspective. That is,
we expect that the sampled (unlabeled) traffic would be fa-
vorably biased to the normal traffic by skipping the periods
in which burst anomalies occur. This approach differs from
that of other research on packet sampling in which the intent
was to reduce the bias of the sampled traffic. We confirmed
that this conjecture holds true by analyzing actual traffic
traces. We found that a baseline model trained using time-
periodically sampled (unlabeled) traffic data is comparable
in performance for detecting anomalies regarding TCP SYN
packets to one trained using manually labeled traffic data
and is better in performance than a baseline model trained
using randomly sampled (unlabeled) traffic data. Since the
performance of time-periodic sampling varies from trial to
trial because of the probabilistic nature of the sampling pro-
cedure, we devised an ensemble anomaly detection method
that collectively exploits multiple baseline models that are
trained independently using the time-periodically sampled
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traffic data. This mitigates the variation and improves the
overall performance. Since the desired alarm sensitivity de-
pends on the intended use, we also devised maximum- and
minimum-based anomaly detection methods that effectively
take advantage of the variations among the multiple baseline
models.

This paper is organized as follows. Section 2 provides
a brief review of related work on anomaly detection and
packet sampling. Section 3 explains the fundamental idea
behind the proposed method. Section 4 describes the exper-
imental results obtained using actual traffic traces. Section 5
concludes the paper with a summary of the key points.

2. Related Work

2.1 Intrusion Detection

The process of securing a network infrastructure by scan-
ning the network for suspicious activities is generically re-
ferred to as intrusion detection. The approaches to intrusion
detection can be roughly classified into two categories: sig-
nature detection and anomaly detection.

2.1.1 Signature Detection

In signature detection, the most widely deployed and com-
mercially viable approach to detecting intrusions, the detec-
tion system identifies specific traffic patterns by matching
the audited traffic data against the signatures of known at-
tacks. The signatures are usually provided by human experts
who investigate from the port number in the packet header to
a specific byte sequence in the payloads of a series of pack-
ets. Snort [11] and Bro [12] are well-known open source
systems that use signature detection. One of the benefits
of this approach is that, once a signature database has been
established, known attacks can be reliably detected with a
low false positive rate. However, an alarm is not raised for
attacks not in the database. For complete protection, the de-
tection system must have a signature database containing all
possible attacks, and the database must be manually updated
whenever a new type of attack is discovered. Before such an
update is made, the system is vulnerable to the new attack,
meaning that the database must be frequently updated.

2.1.2 Anomaly Detection

In anomaly detection, a baseline model is built for describ-
ing the normal behavior of network traffic. An alarm is
raised if a pattern identified in the audited traffic data devi-
ates from the baseline model. Unknown attacks can thus be
detected because their behavior will deviate from the base-
line model. Another benefit is that it is potentially easier to
maintain than the approach based on the signature detection
because we do not need to update any signature records. Al-
though false alarms are inevitable, the two benefits make the
anomaly detection approach a promising area of research,
and a number of methods based on this approach have been

proposed [2], [3]. A number of these methods are varia-
tions of the change detection method; they include adap-
tive threshold [13], cumulative sum [14], wavelets [15], and
maximum entropy [16]. In addition, a method exploiting
multiple existing anomaly detection algorithms in parallel
has been used to increase the accuracy of anomaly detection
[17].

We are interested in the anomaly detection approach,
in which a baseline model is conventionally trained using
normal traffic data extracted from labeled traffic data, where
the label associated with an instance (i.e., a packet) denotes
whether the instance is normal or anomalous. The basic
problem with this is that obtaining labeled traffic data is usu-
ally prohibitively expensive and time-consuming because it
is labeled by human experts. We have thus developed a
method for training a baseline model without using labeled
traffic data. The use of only unlabeled traffic data means that
this anomaly detection method is unsupervised. The funda-
mental idea is to take advantage of the lossy nature of packet
sampling for the purpose of extracting normal packets from
given unlabeled traffic data. Although methods using the
clustering approach without data labeling are efficient [18],
consideration of a different approach based on a new idea
should promote the development of unsupervised anomaly
detection.

2.2 Packet Sampling

Packet sampling has been attracting more and more atten-
tion as a way to minimize the resources needed for moni-
toring traffic passing through high-speed backbone routers
[19]. Modern routers already incorporate this technique,
e.g., sFlow [8] and NetFlow [9]. Moreover, the Packet
Sampling (PSAMP) Working Group [10] of the Internet
Engineering Task Force (IETF) has standardized packet
sampling techniques. Although packet sampling provides
greater scalability for network measurements [19]–[22], it
makes inferring the original traffic characteristics much
more difficult because it is inherently lossy. Therefore, ac-
curacy is degraded if sampled traffic is used as input for
anomaly detection [23]–[25].

We take advantage of this potential drawback of packet
sampling; i.e., the sampled packets do not represent the
actual characteristics of the underlying traffic. This is in
contrast to research in which the intent was to mitigate
sampling-induced information loss in order to analyze the
actual characteristics of the underlying traffic. That is,
by skipping the periods in which burst anomalies occur,
we should be able to obtain sampled packets biased to-
wards normal packets. By analyzing actual traffic traces, we
showed that this conjecture holds for time-periodically sam-
pled packets that are selected at periodic instants separated
by a sampling interval. On the other hand, we also showed
that this conjecture does not hold for randomly sampled
packets that are selected independently with a fixed sam-
pling probability per packet called sampling rate. Although
the bias of time-periodically sampled traffic is problematic
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for inferring the characteristics of the underlying traffic, this
bias is not a drawback in our approach. That is, we use time-
periodically sampled traffic, which contains a lower ratio of
anomalous packets than the original traffic, not to infer the
characteristics of the underlying traffic but to train a baseline
model for anomaly detection.

3. Proposed Method

3.1 Time-Periodic Packet Sampling

We use time-periodic packet sampling in order to extract
normal packets from given unlabeled packet data. As shown
in Fig. 1, in time-periodic packet sampling, triggers fire at
times Tn =

∑n
i=1 ti [sec] for n = 0, 1, . . ., where T0 = 0,

and ti represents a sampling interval that follows an inde-
pendent and identical exponential distribution with expec-
tation t. That is, triggers fire in accordance with a Poisson
process with rate τ = 1/t. The packet arriving immediately
after each trigger is sampled while the other packets in the
sampling interval are not sampled. Note that a packet is not
sampled if a packet does not arrive before the next trigger is
fired. The time-periodic packet sampling described in [21]
estimates the flow rate with a constant sampling interval,
ti. Since a constant sampling interval might bias the sam-
pling towards a flow in which packets arrive in a precisely
periodical manner, we use a variable sampling interval to
avoid synchronization effects. We use the time-periodically
sampled packet data to train a baseline model. This makes
manual labeling before training the model unnecessary. As
shown elsewhere [26], time-periodic packet sampling tends
to ignore events that happen in a burst, unlike random sam-
pling. Therefore, under the assumption that anomalous traf-
fic is very bursty, time-periodic packet sampling should ex-
tract traffic data containing a higher ratio of normal packets
than the original traffic data. This assumption is supported
by previous studies of anomalous traffic, including traffic
generated during a distributed denial-of-service (DDoS) or
worm attack [27].

The expectation that time-periodic packet sampling
should extract traffic data containing a higher ratio of nor-
mal packets than the original traffic data is theoretically
supported by a simplified model. Although the simplified
model may be controversial and inaccurately reflect the ac-
tual situation, we believe that it provides useful information

Fig. 1 Example of time-periodic packet sampling.

for understanding a typical aspect of time-periodic packet
sampling. Let us consider a case in which two flows are
multiplexed. The packets in flow 1 arrive in accordance with
a Poisson process at rate λ1. Those in flow 2 also arrive in
accordance with a Poisson process at rate Λ2, which is con-
tinuously and uniformly distributed over (0, 2λ2). Note that
the expected value of Λ2 is E[Λ2] = λ2. We regard flows 1
and 2 as normal and anomalous (i.e., bursty) traffic, respec-
tively. In addition, let A(i)

j denote the arrival time of the j-th

packet of flow i, and let p(i)
1 denote the probability that the

first packet arriving after time T0 = 0 is in flow i. The prob-
ability is given as follows. The derivation of Eqs. (1) and (2)
are given in Appendix A.

p(1)
1 = Pr{A(1)

1 < T1, A
(1)
1 < A(2)

1 }
=
λ1

2λ2
log

(
1 +

2λ2

τ + λ1

)
, (1)

p(2)
1 = Pr{A(2)

1 < T1, A
(2)
1 < A(1)

1 }
= 1 − τ + λ1

2λ2
log

(
1 +

2λ2

τ + λ1

)
. (2)

We can show that p(2)
1 /p

(1)
1 is a monotone increasing func-

tion with respect to rate τ (i.e., a monotone decreasing func-
tion with respect to the average sampling interval t) and that
it satisfies

p(2)
1

p(1)
1

< sup
τ>0

p(2)
1

p(1)
1

= lim
τ→∞

p(2)
1

p(1)
1

=
λ2

λ1
. (3)

This means that the ratio of packets from an anomalous traf-
fic flow (flow 2) to those from a normal traffic flow (flow
1) in time-periodically sampled packets is smaller than the
corresponding ratio for the underlying traffic. The detailed
proof of this is given in Appendix B.

3.2 Training of Baseline Model Using Time-Periodically
Sampled Traffic Data

We use the maximum entropy-based method to train the
baseline model [16]. This method is good at detecting
anomalies regarding TCP SYN packets, which make up the
majority of today’s significant operational threat [4]–[6].
The baseline model is defined using the generalized Gibbs
distribution over a set Ω of packet class

PΞ(ω) =
1
Z

exp

⎧⎪⎪⎨⎪⎪⎩
|F |∑
i=1

ξi fi(ω)

⎫⎪⎪⎬⎪⎪⎭
for ∀ω ∈ Ω, where Ω is defined as a set of two-dimensional
classes based on the protocol information and the destina-
tion port number in the packet header. F denotes a set of
indicator functions fi : Ω �→ {0, 1}, i = 1, 2, . . . , |F |, which
are called feature functions. For each feature function fi,
a parameter ξi determines its weight in the baseline model.
Ξ = {ξ1, ξ2, . . . , ξ|F |} denotes the set of weight parameters. Z
is a normalization constant that ensures that the sum of prob-
abilities over Ω is 1. We use a conjugate gradient technique
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on the time-periodically sampled packet data in order to ob-
tain the maximum likelihood estimator of the set of weight
parameters Ξ. Note that the original method [16] requires
manually labeled packet data for the estimation.

3.3 Ensemble Anomaly Detection Using Multiple Base-
line Models

We use the sliding-window-based anomaly detection ap-
proach proposed in [16]. In this approach, each time pe-
riod is divided into slots with a fixed length δ [sec]. Sup-
pose the audited traffic in a time slot contains packet se-
quences Π = {π1, π2, . . . , πn}. The empirical distribution of
the packet classes in this time slot is defined as

P̃Π(ω) =
∑
π∈Π 1(π ∈ ω)

n
,

where 1(π ∈ ω) takes the value 1 if packet π belongs to
packet class ω and 0 otherwise. The relative entropy of
packet class ω between P̃Π and PΞ is defined as

DP̃Π‖PΞ (ω) = P̃Π(ω) log
P̃Π(ω)
PΞ(ω)

.

If, for a certain packet class ω,

DP̃Π‖PΞ (ω) > d (4)

holds for more than h times in a window with W time slots,
an alarm is raised together with the packet class, ω, where d
is a predefined threshold.

However, as shown in the following section, the
anomaly detection performance of the baseline model, PΞ,
trained with sampled traffic data varies from trial to trial.
As mentioned, to mitigate this variation, we also devised an
unsupervised ensemble anomaly detection method that ex-
ploits the multiple baseline models trained using multiple
sets of sampled data. A similar idea proposed in [17] ex-
ploits multiple existing anomaly detection systems in par-
allel. Our method performs simultaneous time-periodic
packet samplings. It independently trains multiple base-
line models by using these time-periodically sampled traffic
data. The trained distributions are then integrated to enable
unified judgment using sliding-window-based anomaly de-
tection. That is, in place of Eq. (4), we use

1
M

M∑
i=1

DP̃Π‖PΞi
(ω) > d, (5)

where PΞi , i = 1, 2, . . . ,M denotes the baseline model
trained using the time-periodically sampled packet data ob-
tained in the i-th trial, and M denotes the number of baseline
models to be integrated.

The performance variations among the trained multiple
baseline models can be used for other purposes. That is,
rather than using Eq. (5) to mitigate the variation in anomaly
detection performance, to mitigate missing anomalies, we
can make use of a sensitive judgment rule:

max
i=1,2,...,M

DP̃Π‖PΞi
(ω) > d. (6)

In addition, to mitigate incorrect identification as anomalies,
we can make use of an insensitive judgment rule:

min
i=1,2,...,M

DP̃Π‖PΞi
(ω) > d. (7)

4. Experimental Results

4.1 Traffic Data

We used two-way traffic traces provided by the UMass Trace
Repository [28]. The traces were measured at the UMass
Internet gateway router. The UMass campus is connected to
the Internet through Verio, a commercial ISP, and Internet
2. Both of these connections are Gigabit Ethernet links. In
particular, we used the “Gateway Link 3 Trace,” the data of
which was measured every morning from 9:30 to 10:30 from
July 16 to 22, 2004. All the data were manually labeled,
but we did not use the labels with the proposed method. A
detailed description of the traces is available elsewhere [28].

4.2 Ratio of Anomalous Packets

First, we confirmed our conjecture that time-periodically
sampled traffic contains a higher ratio of normal packets
than the original traffic. Table 1 shows the ratio of anoma-
lous packets for the original traffic, the time-periodically
sampled traffic, and the randomly sampled traffic. The sam-
pling intervals for the time-periodically sampled traffic fol-
lowed an independent and identical exponential distribution
with expectation t [sec]. The sampling rate for the randomly
sampled traffic was r.

As shown in the table, the ratio of anomalous packets
for the time-periodically sampled traffic was much smaller
than that for the original traffic. In addition, the ratio was
almost the same for two orders of magnitude of sampling in-
tervals. This result can be intuitively understood by focusing
on the timescales of the sampling and packet-arrival inter-
vals. As mentioned above, we used traffic traces measured
at the UMass Internet gateway router, where the UMass
campus is connected to the Internet via two commercial Gi-
gabit Ethernet links. The sampling intervals for the time-
periodically sampled traffic followed an independent and
identical exponential distribution with expectation t = 0.1,
0.01, 0.001 [s] (i.e., 100, 10, 1 [ms]). Therefore, the sam-
pling intervals were sufficiently longer than the packet ar-
rival intervals; i.e., the probability of no packets arriving
during a sampling interval was sufficiently small. Since, in
time-periodic packet sampling, the packet arriving immedi-
ately after each trigger is sampled while the other packets in
the sampling interval are not sampled, the probability that
the sampled packet is anomalous strongly depends on the
rate of anomalous traffic (in terms of packets per second, or
pps) at the time the trigger fires. It does not strongly depend
on the (burst) duration of anomalous traffic. This relation-
ship corresponds to τ (= 1/t) 
 λ1, λ2 in Eqs. (1) and (2).
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Table 1 Ratio of anomalous packets (%).

Date Original Traffic
Time-Periodically Sampled Traffic Randomly Sampled Traffic

t = 0.1 t = 0.01 t = 0.001 r = 0.001 r = 0.01 r = 0.1

July 16 8.48 4.20 4.32 4.67 8.43 8.47 8.48

July 17 8.71 7.49 7.59 7.86 8.46 8.71 8.71

July 18 18.18 14.68 14.80 15.35 18.31 18.19 18.18

July 19 11.02 6.13 6.19 6.57 11.07 11.02 11.02

July 20 8.36 3.50 3.50 3.79 8.37 8.36 8.36

July 21 6.62 3.17 3.20 3.39 6.63 6.61 6.62

July 22 2.97 1.36 1.35 1.47 3.00 2.97 2.97

That is, the probability that the first packet arriving after a
trigger is in flow i, p(i)

1 , does not depend on the sampling
interval. Here, we regard flows 1 and 2 to be normal and
anomalous (i.e., bursty) traffic, respectively.

In contrast, the ratio of anomalous packets for the ran-
domly sampled traffic was almost identical to that for the
original traffic. The randomly sampled traffic was not bi-
ased because each packet was simply sampled with a fixed
probability regardless of whether it was anomalous or nor-
mal. Therefore, the ratio between anomalous and normal
packets for the randomly sampled traffic was approximately
the same as that for the original traffic.

These results indicate that time-periodic packet sam-
pling is useful for extracting normal packets from unlabeled
original traffic which may include anomalous packets. How-
ever, the time-periodically sampled traffic might be biased
towards a specific aspect of normal traffic. Therefore, we in-
vestigated the performance of baseline models trained with
time-periodically sampled traffic data.

4.3 Performance of Time-Periodic Packet Sampling

To evaluate the performance of time-periodic packet sam-
pling, we trained baseline models by using different types
of traffic data for a certain measurement day: normal traf-
fic data, original traffic data, ten sets of time-periodically
sampled traffic data, and ten sets of randomly sampled traf-
fic data. We then used traffic data for other measurement
days to evaluate the number of normal behaviors incorrectly
identified as anomalies (false positives, FPs) and the number
of missed anomalies (false negatives, FNs) regarding TCP
SYN packets. For example, when traffic data for July 16
were used to train the baseline models, those for July 17 to
22 were used for the evaluation. All possible combinations
of measurement days used for training and of days used for
evaluation were treated. Consecutive FPs were considered
to be a single FP. That is, the performance of anomaly de-
tection was evaluated on a flow-by-flow basis. Unless other-
wise noted, we used the average FP and FN for ten sampling
trials for the sampling results because the results varied with
each trial. We also used the normalized FP and FN numbers,
which are defined as the original numbers of FPs and FNs
divided by the number of anomalous incidents. Throughout
this paper, we used d = 0.005, W = 60, and h = 30 for fair

Fig. 2 Original traffic vs. normal traffic.

comparison.
To provide a basis for comparison, we first present the

comparative performance between baseline models trained
using normal and original traffic data. The open circles
in Figs. 2(a) and 2(b) respectively show the FPs and FNs
for the baseline models trained using original traffic data
against those for the baseline models trained using normal
traffic data. All possible combinations of training and eval-
uation days were considered, as mentioned above, and each
circle represents one such combination. For reference pur-
poses, the average position of the circles is shown by the
asterisk in each figure. These results indicate that both FP
and FN were worse for the original traffic data than for the
normal traffic data. Given this result, in the following, we
show that the performance of a baseline model trained us-
ing time-periodically sampled traffic data is better than that
of one trained using original traffic data (see Fig. 3) and al-
most identical to that of one trained using normal traffic data
(see Fig. 4), while a baseline model trained using randomly
sampled traffic data is not (see Fig. 5).

Figure 3 shows the comparative performance between
baseline models trained using time-periodically sampled
traffic data and original traffic data for t = 0.1, 0.01, and
0.001. As shown in Figs. 3(a), 3(c), and 3(e), the individ-
ual FP comparative performances varied (as shown by the
spread of the circles). However, the average FP performance
with time-periodically sampled traffic data was almost iden-
tical to that with original traffic data (as shown by the aster-
isk). In contrast, as shown in Figs. 3(b), 3(d), and 3(f), the
FN performance with time-periodically sampled traffic data
was better than that with original traffic data. Note that these
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Fig. 3 Comparative performance between time-periodically sampled
traffic and original traffic (t = 0.1, 0.01, and 0.001).

results do not depend on the value of t.
Figure 4 shows the comparative performance between

baseline models trained using time-periodically sampled
traffic data and normal traffic data for t = 0.1, 0.01, and
0.001. As shown in Figs. 4(a) to 4(f), the comparative per-
formance varied for both FP and FN. However, the aver-
age performance for both FP and FN with time-periodically
sampled traffic data was almost identical to that with normal
traffic data.

The results shown in Figs. 3 and 4 indicate that, on av-
erage, using time-periodic packet sampling is especially ef-
fective for improving FN performance while not degrading
FP performance. On the other hand, as shown in Fig. 5, the
FP and FN performances with the randomly sampled traffic
data were nearly identical to those with the original traffic
data. This means that using randomly sampled traffic data
to train the baseline models is ineffective.

Although Fig. 4 shows that the FN performance
was relatively worse than the FP performance for time-
periodically sampled traffic data, the FN performance (as
well as the FP performance) of the proposed method, which
uses a baseline model trained with time-periodically sam-

Fig. 4 Comparative performance between time-periodically sampled
traffic and normal traffic (t = 0.1, 0.01, and 0.001).

pled traffic, was almost identical to that of the ideal method,
which uses a baseline model trained with normal traffic.
This indicates that the proposed method can achieve nearly
ideal performance without requiring manual labeling of the
traffic data for the training of the baseline model. The FN
performance could be improved by using a smaller d, but
doing so would degrade FP performance. Establishing a
method for adjusting the value of d so as to achieve a good
balance between FP and FN performance remains for future
study.

4.4 Performance of Ensemble Anomaly Detection

The FP and FN performances of the baseline model trained
using time-periodically sampled traffic data (Figs. 3 and 4)
were based on the averages over ten sampling trials. How-
ever, each individual performance before averaging would
likely vary from sample to sample due to the probabilistic
nature of sampled traffic data. Therefore, we compared the
average performances with the best and worst individual FP
and FN performances for the ten sampling trials. As shown
in Fig. 6, the individual performances did indeed vary from
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Fig. 5 Comparative Performance between Randomly Sampled Traffic
and Original Traffic (r = 0.001, 0.01, and 0.1).

sample to sample.
As mentioned, to mitigate this performance variation,

we devised an ensemble anomaly detection method. We
compared the performance of individual anomaly detec-
tion (Eq. (4)) averaged over ten time-periodic sampling trials
(i.e., the performances shown in Figs. 3 and 4) with that of
ensemble anomaly detection (Eq. (5)) using multiple base-
line models trained using ten sets of time-periodically sam-
pled traffic data (M = 10). Figure 7 shows that the ensemble
method can mitigate the performance variations among the
individual baseline models for the time-periodically sam-
pled traffic and achieve performances nearly identical to
those for the average over ten sets of time-periodically sam-
pled traffic data, which are almost identical to those for the
baseline model trained using normal traffic data (Fig. 4).

We also compared the performances of ensem-
ble anomaly detection defined by Eq. (5) with those of
maximum- and minimum-based anomaly detection defined
respectively by Eqs. (6) and (7). As shown in Fig. 8,
the maximum-based anomaly detection improved FN per-
formance at the expense of FP performance, while the
minimum-based anomaly detection improved FP perfor-

Fig. 6 Comparative performance between best/worst and average (t =
0.1, 0.01, and 0.001).

mance at the expense of FN performance. These results
mean that the performance variations among trained base-
line models can be used to adjust the alarm sensitivity to
match the intended use. We could adjust the value of d so
as to strengthen the intentions behind Eqs. (6) and (7). That
is, since the intention behind Eq. (6) is to mitigate the risk of
missing anomalies, it would be reasonable to use a smaller
value of d to increase the alarm sensitivity. In addition, since
the intention behind Eq. (7) is to mitigate the risk of incor-
rectly identifying anomalies, it would be reasonable to use a
larger value of d to decrease the alarm sensitivity. The effect
of the value of d on alarm sensitivity also remains for future
study.

5. Conclusion

Our proposed unsupervised ensemble anomaly detection
method does not require manual labeling of the traffic data
used for training the baseline model. The two key ideas be-
hind this method are (i) using packet sampling for a pur-
pose other than that for which it was intended and (ii) im-
proving/controlling overall anomaly detection performance
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Fig. 7 Comparative performance between ensemble anomaly detection
(average) and individual anomaly detection (t = 0.1, 0.01 and 0.001).

by using multiple baseline models in parallel. Experiments
showed that (a) the use of time-periodic packet sampling re-
sults in the extraction of a higher percentage of normal pack-
ets from original unlabeled traffic, which may include burst
anomalous traffic, than the use of random sampling, (b)
time-periodically sampled traffic data is better than (unla-
beled) original traffic data and randomly sampled traffic data
for training a baseline model that is effective with respect to
false positives and false negatives, (c) the performance of
the proposed method can be further improved by exploit-
ing multiple baseline models in parallel, and (d) the perfor-
mance variation of multiple baseline models can be used to
improved FP/FN performance at the expense of FN/FP per-
formance. Therefore, the proposed method is preferable to
one that uses manually labeled traffic data: it can save a lot
of effort and is just as accurate.
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Appendix A: Derivation of Eqs. (1) and (2)

Equation (1) was derived as follows.
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Equation (2) was derived as follows.
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Appendix B: Proof of Some Properties of p(2)
1
/p(1)

1

If we define x as x = 2λ2/(τ + λ1), the following equations
hold:
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In addition, the following inequalities hold:
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λ1

2
x

(√
x + 1 − 1

)
≤ p(2)

1

p(1)
1

≤ λ2

λ1
,

d
dx

p(2)
1

p(1)
1

≤ 0,

where the equalities hold if and only if x ↓ 0. Here, we used
that the following inequality holds for ∀x > 0:

√
x + 1 ≤ x

log(x + 1)
≤ x + 2

2
,

where the equalities hold if and only if x ↓ 0. Note that

lim
x↓0

p(2)
1

p(1)
1

=
λ2

λ1
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holds because

lim
x↓0

2
x

(√
x + 1 − 1

)
= 1

holds. The above discussion indicates that p(2)
1 /p

(1)
1 is a

monotonically decreasing function with respect to x (i.e., a
monotonically increasing function with respect to τ) and its
supremum is given by λ2/λ1 when x ↓ 0 (i.e., τ→ ∞).
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