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Abstract

An approach to time series prediction of the CATS benchmark (for Competition on Ar-
tificial Time Series) is presented, where we use Fourier bandpass filters and competitive
associative nets (CAN2s). Since one of the difficulties of this prediction is that the given
time series does not seem to involve sufficient number of data for obtaining the underlying
dynamics of the time series to reproduce low frequency components, we apply the CAN2
only for learning high frequency components extracted via Fourier bandpass filters with
trial parameter values of the upper and lower cutoff frequencies and the missing last value
of the given time series. Supposing that the optimal values among the trial values will give
the best prediction performance for high frequency components, we can identify such op-
timal values via a certain reasonable validation method, with which we predict the missing
high frequency components, and then we obtain the missing data to be predicted via adding
high and low frequency components.

Key words: Time series prediction; CATS benchmark; Competitive associative net;
Fourier bandpass filter

1 Introduction

The time series of the CATS benchmark (for Competition on Artificial Time Series)
is provided for the time series prediction competition held at 2004 International
Joint Conference on Neural Networks (IJCNN’04) [1], where with 4,900 given
data we should predict 100 missing data consisting of five blocks of 20 data for the
time 981-1,000, 1,981-2,000, 2,981-3,000, 3,981-4,000, and 4,981-5,000. One of
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the difficulties of this prediction is that the given time series does not seem to in-
volve sufficient number of data for obtaining the underlying dynamics to reproduce
low frequency components of the data because we cannot see any periodicity for
linear dynamics and any boundary of attractor for nonlinear dynamics. In order to
overcome this problem, we decide to use Fourier bandpass filters to separate low
and high frequency components, where we use trial values of the upper and lower
cutoff frequencies and the missing last value of the time series. Supposing that
the optimal values among the trial values for separating low and high frequency
components will also give the best performance in prediction of high frequency
components predicted by a certain method, we can identify such optimal values via
a certain validation method.

For predicting high frequency components, we use competitive associative net called
CAN2 which we have developed to utilize conventional competitive and associa-
tive schemes [3,4] for learning to achieve efficient piecewise linear approximation
of nonlinear functions. The CAN2 has been shown effective in function approxi-
mation, control and rainfall estimation problems [5]-[9]. In function approximation
problems, online learning methods for the CAN2 are shown to achieve better per-
formance than BPNs (back-propagation nets), RBFNs (radial basis function nets)
and SVR (support vector regression)[6,8,9]. Further, a batch learning method has
been developed recently and shown more effective than online learning methods
for a finite number of given data [9]. In control problems [7], the ability of learn-
ing to achieve piecewise linear approximation is shown useful for learning multiple
linear models of nonlinear and time-varying plants, and then for applying an appro-
priate linear model at each time to the conventional efficient linear controller such
as GPC (generalized predictive controller). In the rainfall estimation contest held
by the IEICE (Institute of Electronics, Information and Communication Engineers)
of Japan[5], the CAN2 has achieved the second least mean square error (MSE) in
estimating a huge number of rainfall data. At the CATS benchmark prediction com-
petition [2] in IJCNN’04, the prediction method using the CAN2 has achieved the
third least MSE for all prediction data among the 17 predictions selected from 24
submitted predictions[1].

In the following sections, we first describe the prediction method involving a sum-
mary of the CAN2 and the procedure to execute the CATS benchmark prediction
using Fourier bandpass filters and the CAN2. Next, we summarize the results ob-
tained on the initial values of the benchmark, analyze the results, and clarify the
advantages and disadvantages of the current method. Further, we have improved
our method so that it can be applied to the new data of the CATS benchmark. Fi-
nally, we show the conclusion.
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Fig. 1. Schematic diagram of the CAN2

2 Method for prediction

Here, we briefly show the CAN2 and its learning method (see [9] for details), and
then describe the procedure to solve the CATS benchmark prediction.

2.1 The CAN2 for time series prediction

Let us suppose a time seriesy(t) for discrete timet = 1, 2, · · · is generated as an
output of a discrete dynamical system with ak-dimensional vector inputx(t) ,
(x1(t), x2(t), · · · , xk(t)) , (y(t− 1), y(t− 2), · · · , y(t− k))T ∈ Rk×1 as follows;

y(t) = f(x(t)) + d(t), (1)

whered(t) is zero-mean noise with the varianceσ2
d. To keep the notation simple

in the following, we sometimes drop the timet asy = f(x) + d. A CAN2 has
N units, and theith unit has a weight vectorwi , (wi1, · · · , wik)

T ∈ Rk×1 and
an associative (row) vectorM i , (Mi0,Mi1, · · · ,Mik) ∈ R1×(k+1) for i ∈ I =
{1, 2, · · · , N} (see Fig. 1). The CAN2 approximates the above functiony = f(x),
or the dynamics without noise, by

ŷ , ŷc , M cx̃, (2)
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wherex̃ , (1, xT )T ∈ R(k+1)×1, and thecth unit has the weight vectorwc closest
to the input vectorx, or

c , argmin
j∈I

‖x − wj‖. (3)

The above function approximation partitions the input spaceV = Rk into the
Voronoi (or Dirichlet) regions

Vi , {x
∣∣∣ i = argmin

j∈I
‖x − wj‖}, (4)

for i ∈ I, and performs piecewise linear approximation of the functiony = f(x).
This function approximation also indicates that the single-step ahead prediction
y = y(t) is done with the previous outputy(t − j) for j = 1, 2, · · · which are
supposed to be known or given. Further, multi-step predictiony(t + i) for i =
0, 1, 2, · · · can be obtained recursively (see below for details).

2.2 Batch learning method for the CAN2

We use a batch learning method introduced in [9] for this prediction. Here, note
that there are several parameter values to be tuned for a good performance, but the
optimal values, except the number of units, for many applications seem almost the
same as those used for function approximation problems [9]. Thus, we have not
tuned the parameter values so much, and here we show the values in this section
when introducing the parameters. The method is described as follows; for a given
training data setD , {(xj, yj = f(xj) + dj) | j ∈ J} for J = {1, 2, · · · , n}, we
modify wi andM i for i ∈ I = {1, 2, · · · , N} to minimize the mean square error
(MSE) or the energy given by

E , 1

n

∑

i∈I

∑

x∈Xi

‖e(x)‖2 =
∑

i∈I

Ei, (5)

wheree(xj) , ŷc − yj , M cx̃j − f(xj) is the prediction error,Xi = X ∩ Vi for
X = {xj | j ∈ J} is the training set of the input vectors in the Voronoi regionVi,
andEi , (1/n)

∑
x∈Xi

‖e(x)‖2 is the energy of the region. To solve this nonlinear
minimization problem, we apply iterations of a batch modification ofwi for all
i ∈ I, and a batch modification ofM i for all i ∈ I, and then reinitialization, as
follows.

Modification of weight vectors: Provided thatM i (i ∈ I) are constant, we can
optimizewi via the following gradient method; let the boundary of a Voronoi
regionVi and the adjacentVl with the widthWθ (< 1; we have used 0.2 for the
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competition) be

Wil ,


x

∣∣∣∣∣ x ∈ Xi ∪ Xl and

∣∣∣(2x − wi − wl)
T (wi − wl)

∣∣∣
‖wi − wl‖2

≤ Wθ



 . (6)

When a training vectorx is in Wil and moves fromVi to Vl (or from Vl to Vi)
owing to the change ofwi by ∆wi, the energyE increases by(1/n)(e2

i (x) −
e2

l (x))×s wheres , sign(∆wT
i (x−wi)), whileE does not change whenx ∈ Vi

ands = 1 or x ∈ Vl ands = −1. Thus, the increase ofE is discontinuous, but it
can be stochastically approximated by

∆E ' 1

2n
∆wT

i ξi, (7)

where

ξi ,
∑

l∈Ai

∑

x∈Wil

(e2
i (x) − e2

l (x))
x − wi

||x − wi||
, (8)

andAi is the index set ofVl adjacent toVi. Here, note that(x − wi)/||x − wi||
indicates the direction ofξi. Thus, in order to decreaseE, we modify the weight
vectors as∆wi = −γξi, or

wi :=wi − γξi (9)

for i ∈ I, where:= indicates the substitution. We use the learning rateγ given
by γ , γ0dx/dξ, whereγ0(< 1; we have used0.001) is a positive constant,dx is
the maximum width between the elementsxjl of xj as follows

dx , max
l=1,··· ,k


max

i∈J
j∈J

|xil − xjl|


 , (10)

anddξ is the maximum value of the elementξil of ξi as follows,

dξ , max
l=1,··· ,k

max
i∈I

ξil. (11)

Thus,γ = γ0dx/dξ guarantees that the absolute value of the element of weight
change,|∆wij| = |γξij|, is less than the maximum span of the elements of input
vectors,dx = maxl,i,j |xil − xjl| multiplied byγ0.

We have set the initial weight vectorswi (i ∈ I) to the vectors selected ran-
domly from the training input vectorsxj (j ∈ J) at only the first batch learning
iteration.

Modification of associative vectors:Provided that the weight vectorswi (i ∈ I)
are constant, the nonlinear problem of minimizingE =

∑
i∈I Ei becomes a linear

one to minimize

Ei =
1

n
‖M iX̃ i − Y i‖2 (12)
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for eachi, and the solution is given byM i = Y iX̃
+

i , whereX̃
+

i is the gener-
alized inverse of the matrix̃X i ∈ R(k+1)×ni which consists of̃x = (1, xT )T for
all x ∈ Xi, andY i ∈ R1×ni is the matrix consisting ofy = f(x) + d for all
x ∈ Xi. In order to avoid the situation whereni or the number of the vectors
in Xi is so small that the approximation error may become large, we do not use
the unit withni = 0 for modifying wi andM i and calculating the output of
the CAN2 until the reinitialization (see below) is triggered. Further, forXi with
ni ≥ 1, we compensate training vectors nearVi up to a certain numbernθ (we
have usednθ = 3), or search the training vectors in

∆Xi , {xj |xj ∈ X\Xi, ‖xj − wi‖ ≤ ‖xl − wi‖ for xl ∈ X\∆Xi,

|∆Xi| = nθ − ni}, (13)

where|∆Xi| is the number of the vectors in∆Xi, and then setXi := Xi ∪ ∆Xi

for calculatingM i = Y iX̃
+

i . Further, for stable learning performance with

modifyingwi (i ∈ I), we do not directly calculateM i = Y iX̃
+

i , but apply the
following RLS (recursive least square) method,

M i := M i +
(y − M ix̃) x̃T Ψ i

1 + x̃T Ψ ix̃
, (14)

whereΨ i ∈ R(k+1)×(k+1) is also updated as

Ψ i := Ψ i −
Ψ ix̃x̃T Ψ i

1 + x̃T Ψ ix̃
, (15)

and the above two updates are applied for allx ∈ Xi and the corresponding
y ∈ Yi for all i ∈ I once at each iteration. Further, at only the first iteration, we
have set the initial values to the vectors asM i = O andΨ i = I/ε, respectively,
whereO is the null (zero) vector,I is the unit matrix, andε is a small constant
(we have usedε := 10−4 for the competition).

Reinitialization: In order to avoid the local minima problem owing to the gradient
method for modifyingwi shown above, the condition called asymptotic optimal-
ity, where a large number of weight vectors are supposed, has been derived and
the online learning methods embedding this condition are shown effective [6,8].
Here, we also embed it to the present batch learning, as follows; first suppose
there are many input data and weight vectors, and let the energy be given by

E =
∑

i∈I

∫

Vi

‖ei(x)‖2p(x)dx =
∑

i∈I

Ei, (16)

wherep(x) is the probability density function. Further, suppose the area ofVi

is small andp(x) is approximated by a constantpi in eachVi, andf(x) is the
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function of classC2, then we have

E =
∑

i∈I

Ei =
∑

i∈I

(Cipiv
1+4/k
i + σ2

2pivi) ≥ N−4/k‖C(x)p(x)‖ 1
1+4/k

+ σ2
d,

(17)

whereCi , C(wi) is called quantization coefficient which represents the com-
plexity of f(x) atx = wi, and‖g(x)‖α , (

∫
V |g(x)|αdx)1/α, ‖C(x)p(x)‖ 1

1+4/k

is constant for givenf(x) andp(x). Further, the right hand side of Eq.(17) is the
minimum ofE and the equality holds iff

αi , Cipiv
1+4/k
i = constant for alli ∈ I. (18)

This equation represents the condition of asymptotic optimality, which can be
used as follows. From Eq.(5), Eq.(17) and Eq.(18), the total square errorSi of
theith unit is given by

Si ,
∑

x∈Xi

‖e(x)‖2 ' nαi + σ2
dni. (19)

When there is a regionVi wheref(x) is approximated by a linear function,Ci

andαi are 0, and we can estimate the variance of the noisedi by

σ̂2
d := min{Si/ni | i ∈ I andni ≥ θU}, (20)

whereθU is a constant larger than the dimensionk of x, and we have usedθU =
k + 5 for the competition. Then, from Eq.(19) and Eq.(20), we can estimateαi

as

α̂i :=
Si − σ̂2

dni

n
. (21)

In order to decide whetherαi (i ∈ I) satisfy the asymptotic optimality of Eq.(18)
or not, we use the following condition (see [10–12]);

α̂i

〈α̂i〉
≥ θα and

H

ln(N)
≤ θH , (22)

whereθα (> 1; we have used5) and θH (< 1; we have used0.9) are positive
constants,〈α̂i〉 is the mean of̂αi, andH is the entropy given by

H , −
∑

i∈I

αi∑
j∈J αj

ln

(
αi∑

j∈I αj

)
. (23)

When the above condition in Eq.(22) is fulfilled, we reinitialize thes(j)th unit
that has thejth smallest̂αi for all i ∈ I (the unit withni = 0 as described above
is supposed to have the smallestα̂i = 0), and move it near to theb(j)th unit that
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satisfies the former inequality in Eq.(22) and have thejth biggest̂αi for all i ∈ I,
as follows

ws(j) := wb(j) + θr(xc(b(j)) − wb(j)), (24)
M s(j) := M b(j), (25)

wherexc(b(j)) is the training vector nearest towb(j). We use the valueθr = 1.9,
which guarantees that the regionVs(j) of the newws(j) involves at least one
training vectorxc(b(j)).

2.3 Outline of the CATS benchmark prediction using the CAN2

For describing the time series prediction of the CATS benchmark, we denote the
time series byr(t) (t = 1, 2, · · · ). For the competition,r(t) for t in

Tgiven,
4⋃

b=0

T
given
b ,

4⋃

b=0

{1000b + j | j = 1, 2, · · · , 980}, (26)

is given, andy(t) for t in

Tpred,
4⋃

b=0

T
pred
b ,

4⋃

b=0

{1000b + j | j = 981, · · · , 1000}. (27)

should be predicted.

In order to extract the data for learning via the CAN2, we separate the given signal
r(t) into two signalsy(t) andrc(t) , r(t) − y(t), wherey(t) is obtained via the
bandpass filter described below and used for training and prediction via the CAN2.
After training the CAN2 withy(t) for Tgiven, the CAN2 performs multistep pre-
diction ofy(t) for Tpredas

ŷ(t) = M c(t)z̃(t), (28)

wherez̃(t) , (1,zT )T , (1, z(t−1), z(t−2), · · · , z(t−k))T whose elements are

z(t − j) ,





y(t − j) for t − j ∈ Tgiven,

ŷ(t − j) for t − j ∈ Tpred,
(29)

andc(t) is obtained from Eq.(3) whosex is replaced byz(t). The above equation

is applied consecutively fromt = min T
pred
b to t = max T

pred
b for each block.

With ŷ(t) for Tpred, we derive the designated predictionr̂(t) of r(t) by means of
the following equation;

r̂(t) := ŷ(t) + rc(t). (30)
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2.4 Detailed procedure to solve the problem

We here describe the original procedure for the prediction submitted to the compe-
tition; we have several trial values to be optimized for obtaining a good result, and
the actual steps to solve this problem we have employed are as follows.

Step 0: Linear interpolation

In order to apply the bandpass filter shown below, we needr(t) for Tpred. So, we

first derive a linear prediction̂r(0)(t) of r(t), i.e. we obtain̂r(0)(t) for T
pred
b via the

following linear interpolation

r̂(0)(t) :=
r(t1) − r(t0)

t1 − t0
(t − t0) + r(t0) (31)

wheret0 = 1000b + 980, t1 = 1000b + 1001, t0 < t < t1, and we use trial values
rlast for r(5001) = rlast which will be optimized via the steps below. We denote
the obtainedr(t) for all t ∈ T by

r(m)(t) ,





r(t) for t ∈ Tgiven,

r̂(m)(t) for t ∈ Tpred,
(32)

wherem = 0 at thisStep 0, and after settingm := 1 go toStep 1. Here, note that
the following steps are iterated and the number of iterations is denoted bym, where
r(m−1)(t) is used as the source signalr(t) at themth iteration.

Step 1: Bandpass Filtering

We apply the Fourier bandpass filter, or exactly the FFT (Fast Fourier Transform)
bandpass filter, tor(t) and obtainy(t) as follows; (1) apply the FFT tor(t), (2)
remove high and low frequency components, (3) apply the IFFT (Inverse FFT)
which derivesy(t), where for the fundamental periodL0 = 8192 = 213(> 5000)
we use trial lower and higher cutoff frequenciesfl = 1/Ll andfh = 1/Lh (≤ 0.5),
respectively, and select the best ones after evaluating the performance by means of
the following steps.
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Step 2: Validation of trial parameter values

In order to evaluate trial values of the parameters for a good prediction, we intro-
duce a test period of time given by

T test
bPQ , {1000b + P + j | j = 1, 2, · · · , Q} ⊂ T

given
b , (33)

which is used for the following prediction test. Namely, first we train the CAN2
with y(t) for T train

bPQ , Tgiven\T test
bPQ , and do multistep prediction̂r(t) for T test

bPQ

via Eqs.(28), (29) and (30) whoseTgiven andTpred are replaced byT train
bPQ and

T test
bPQ , respectively. Then, we have the MSE ofr̂(t) as follows,

MSEtest
bPQ , 1

Q

∑

t∈T test
bPQ

(r̂(t) − r(t))2. (34)

Further, we calculate the averageMSEtest
b(P+l)Q for l = 0, 1, · · · ,M as

〈
MSEtest

bPQ

〉
M

, 1

M

M−1∑

l=0

MSEtest
b(P+l)Q, (35)

where we useM = 20 for a stable evaluation because the single MSE withM = 1
changes largely for the change ofP or the starting point of the evaluation. Among
all trial values of parameters for thismth iteration, we select the best values achiev-
ing

PI
(m)
b , min

{ 〈
MSEtest

bPQ

〉
M

for all trial values

}
, (36)

If the condition given by

PI
(m)
b ≥ PI

(m−1)
b (37)

is fulfilled, we quit the iteration and decide that the best prediction has been achieved
by r̂(m−1)(t). Otherwise, we calculatêy(t) and r̂(t) through Eq.(28) and Eq.(30)
with the best parameter values, setr̂(m)(t) := r̂(t) for Tpred, m := m + 1, and go
to Step 1.

Note that the above process for optimizing parameter values is executed for each
block.
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Fig. 2. Prediction̂r(1)(t) for T
pred
0 after the first iteration, where the selected parameter

values are as follows; embedding dimensionk = 17, number of unitsN = 22, lower
cutoff frequencyfl = 551/8192, higher cutoff frequencyfh = 4011/8192, the last value
rlast = −25.

3 Results obtained on the initial values of the benchmark

The results submitted to the competition are as follows; the parameter values se-

lected and the prediction̂r(1)(t) for T
pred
0 after the first iteration are shown in

Fig. 2, wherePI
(1)
b =

〈
MSEtest

bPQ

〉
M

= 43.16 for b = 0 and we have usedP = 929

because it has achieved the smallest
〈
MSEtest

bPQ

〉
M

aroundP = 930, andQ = 20

because the duration of the designated prediction periodT
pred
b is also 20. Further,

M = 20 for a stable evaluation as described above.

After m = 2 iterations, the performance indexPI
(m)
b for all b = 0, 1, 2, 3, 4 became

smaller, therefore we ran the next iteration. Afterm = 3 iterations,PI
(m)
b for

b = 1, 2, 4 did not become smaller although that forb = 0 and 3 were reduced.

Here, the latter result shows thatr̂(3)(t) for T
pred
0 andT

pred
3 may be better than

r̂(2)(t). On the other hand,PI
(m)
b is affected bŷr(m−1)(t) of the bth block as well

as other blocks, so that̂r(2)(t) for b = 0 and3 had a possibility to provide the
improvement of̂r(3)(t) for b = 1, 2, 4. Since the difference betweenPI

(2)
b andPI

(3)
b

is not so big for allb, we decided to quit the iteration and submit the predictionr̂(2)

to the competition. The prediction̂r(2) and the parameter values for each block
obtained by the optimization procedure described above are shown in Fig. 3, and
see the next section for an analysis of the result.

The predictions submitted to the competition have been ranked by the following
MSE, orE1, for all 100 prediction data,

E1 =
1

100

4∑

b=0

∑

t∈T
pred
b

(r(t) − r̂(t))2. (38)

Among 17 predictions selected from 24 submitted ones (see [1] for details), our
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Fig. 3. Submitted prediction̂r(2)(t) for all T
pred
b (b = 0, 1, 2, 3, 4) with optimized parame-

ter values as follows; (a)k = 17, N = 25, fl = 550/8192, fh = 3916/8192, rlast = −25,
(b) k = 11, N = 43, fl = 793/8192, fh = 4037/8192, rlast = 80, (c) k = 11, N = 43,
fl = 793/8192, fh = 4037/8192, rlast = 80, (d) k = 20, N = 42, fl = 797/8192,
fh = 3918/8192, rlast = 130, and (e)k = 38, N = 51, fl = 814/8192, fh = 4046/8192,
rlast = 0.

prediction withE1 = 509 has taken the third place while the bestE1 = 408 has
been achieved by the Kalman smoother method. Further, the MSE for the first 80

12



prediction data,

E2 =
1

80

3∑

b=0

∑

t∈T
pred
b

(r(t) − r̂(t))2 (39)

has also been reported, andE2 = 418 of ours has taken the ninth place while the
bestE2 = 222 has been achieved by the ensemble model method.

4 Analysis of the results: advantages and disadvantages of the current method

We have analyzed our result submitted to the competition with the real data of
missing data which have been provided after the competition.

4.1 Effectiveness of FFT bandpass filtering

First, we have examined the effectiveness of the FFT bandpass filtering which ne-
glects high frequency components just like the Kalman smoother method. We have
found out that the smooth datarc(t) obtained via the FFT bandpass filters has
achievedE1 = 440, 450, 454 andE2 = 390, 378, 379, respectively, for themth
(m = 1, 2, 3) iterations of the parameter optimization process as described in Sec-
tion 2.4. Among these results, the one at the first iteration seems to be good com-
pared with the predictions submitted to the competition. Further, in order to clarify
the ability of the FFT bandpass filtering, we have executed the following simple ex-
amination; we have optimized only the trial valuesrlast = −120,−119, · · · , 19, 20,
with constantfl = 410/8192 andfh = 0.5 which remove the frequencies higher
than the one with the periodLl = 1/fl ' 20 which seems reasonable because
the time length of each missing block is also 20. Then, we have the optimum
rlast = −60 which has achieved the minimum MSE (=128) of the smooth data
rc(t) for all given test data, and we haveE1 = 566 andE2 = 410 for the prediction
data. Further, with the same procedure as above forfl = 205/8192 ' 1/40, we
haverlast = 7 which achieves the minimum MSE (=181) for all given test data,
E1 = 430 andE2 = 346, whereE1 = 430 is better thanE1 = 441 of the recurrent
neural network method which achieves the second leastE1 at the competition, and
E2 = 314 is better thanE2 = 346 of the Kalman smoother method. These results
indicate that the FFT filtering works well, but it needs a method to decide which
value offl is better for the CATS benchmark prediction, where note thatE1 andE2

for prediction data do not decrease with the decrease of the MSE for all given data
as shown above. Further, the prediction by the FFT filtering does not involve high
frequency components, which we are not satisfied with.
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4.2 Effectiveness of the Parameter Validation Method

Next, we have calculated the MSEs of our prediction data obtained at the iterations
of the parameter optimization process as follows;E1 = 466, 509, 503 andE2 =
390, 418, 414, respectively, for themth (m = 1, 2, 3) iteration, which indicates
that our submitted prediction, or the one obtained at the 2nd iteration, is not better
than the prediction at the first iteration which is also worse than the smooth data
obtained by the FFT filtering as shown above. This disorder basically caused by
the parameter validation method in the optimization process, which is affected by
the properties of the time series, the learning ability of the CAN2, and so on. To
examine these factors much more, we have run an experiment, where we use the
real data for parameter validation instead of using the performance indexPI

(m)
b in

Eq.(36) and then we have a very good prediction as shown in Fig. 4 whose MSEs
areE1 = 80 andE2 = 73. This result indicates that the CAN2 has a possibility
to learn the underlying dynamics of the data to be predicted from the training data
excluding the prediction data. However, we here have to take an account of the
overfitting phenomenon, namely, the prediction data validated with the real data
may fit the real data to be predicted very well but it may not fit other data so well.
So we have compared the performance indexPI

(m)
b of our method and the MSE

for the real data with respect to a number of trial parameter values, and found that
the performance index as well as the MSE have a number of local minima which
do not correspond each other exactly on a wide range of parameter values except
some ranges, which is supposed to be the main reason that our predictions prepared
for submitting the competition had involved the disorder. However, inversely, our
validation process seems to have worked in some ranges of parameter values so
that the result was not so bad. Especially, our method is capable of selecting the
parameters for smoothing (fl andfh) and estimating the last valuerlastof the time
series, where the former contributes to obtaining goodE1 andE2 and the latter
works especially for a goodE1, which is one of the advantages of our method.

4.3 Different Parameter Values for Different Blocks

From Fig. 3 and Fig. 4, we can see that the parameter values optimized are different
for different blocks. From the point of view of understanding the nature of the time
series, this result might seem strange especially because the dimension of the input
vector or the embedding dimensionk is usually set constant even if the time series
involves chaotic, time-varying, and other complicated properties. Actually, at a be-
ginning stage of this research for the competition, we tried to identify a constantk
for all blocks, but we could not obtain a goodk which minimizes the performance
indexPI

(1)
b for all blocks, and we gave up this strategy. Here, note that we had al-

ready given up the prediction of low frequency components because of insufficient
number of given data as described above, which indicates an information loss and
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Fig. 4. Prediction̂r(1)(t) optimized by the parameter validation using the real data. The
parameter values are as follows; (a)k = 9, N = 41, fl = 732/8192, fh = 4061/8192,
rlast = −139, (b) k = 41, N = 47, fl = 492/8192, fh = 4059/8192, rlast = 122, (c)
k = 7, N = 30, fl = 232/8192, fh = 4069/8192, rlast = −32, (d) k = 9, N = 43,
fl = 203/8192, fh = 4049/8192, rlast = −182, and (e)k = 28, N = 40, fl = 99/8192,
fh = 4036/8192, rlast = −29.

may cause the difficulty of identifying a singlek for all blocks. For example, when
a signal is of such as a nonlinear system or a deterministic chaos, the identification
of a singlek for all blocks may be possible but difficult if we do not have sufficient
number of data. Further, when a signal is of a time varying system, the embed-
ding dimension as well as other parameter values may change from block to block.
Moreover, since the given signal is said artificial, there are many other possibili-
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ties. Thus, we took the strategy that we select the parameter values for each block
independently. However, the amount of the change of parameter values, especially
in Fig. 4, seem too big, which we have not analyzed enough so far.

4.4 Computational Cost

A disadvantage of our method was that we had to tune a number of parameter values
combinatorially, which takes a lot of time for obtaining the final prediction. Another
disadvantage is that our validation method had not been matured as described above
for the CATS benchmark, which however may be true for all other methods and a
key to solve the prediction problem lies on making a good validation method. In
order to overcome these disadvantages, we have improved our method as shown in
the next section.

5 Improved method for prediction

We have improved our method so that it performs better and it can be easily ap-
plied to the new data of the CATS benchmark (see [1]). We first modify the linear
interpolation given in Eq.(31) as the following equation using the moving aver-
age of two data, or̃r(t) = (r(t) + r(t + 1))/2 for t = t0 = 1000b + 979 and
t = t1 = 1000b + 1001,

r̂(0)(t) =
r̃(t1) − r̃(t0)

t1 − t0
(t − t0 − 0.5) + r̃(t0) (40)

where, for the last block, we use trial valuesrlast for r̃(5001) = rlast.

As mentioned in the previous section, we have to overcome the overfitting problem,
and one of the solutions, in general, is to reduce the freedom of parameter values.
To have this done as well as for overcoming the time consuming parameter tuning
and specifying the range of reasonable validation, we have obtained a reduced set of
trial values for the CATS benchmark as follows: first we decide the step lengthQ =
2 for predicting the test (or validation) datay(t) of t in T test

bPQ = {1000b+P +j | j =
1, 2, · · · , Q} because long term prediction of the CATS benchmark is not so easy
and we have fond that the valuesQ bigger than3 are not so stable for validating trial
parameter values although we have to predict up to 20 step ahead data. We useP =

969 andM = 10 for calculating the mean MSE
〈
MSEtest

bPQ

〉
M

, whereM is set as
small as possible for a stable validation andP is set as near to the target prediction

periodT
pred
b = {1000b + j | j = 981, · · · , 1000} as possible because the CATS

benchmark seems to have time dependency. Incidentally, we only use 400 training
datay(t) of t in T train

bP , {1000b+P −j | j = 0, 1, 2, · · · , 399} for predictingy(t)
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of t in T test
bPQ . The trial last valuesrlast is important but the performance index is

not so sensitive to the change ofrlast, and we decided to userlast = r(4980)±∆r

for ∆r = 0,±30, or rlast = −35,−65,−95 sincer(4980) ' −65. Further, we
use trial cutoff frequenciesfl = 205/8192 and405/8192 which correspond to the
periodsLl = 1/fl ' 40 and20, respectively, andfh = 4058/8192 corresponding
to the periodLh ' 2. And we use the trial embedding dimensionsk = 7, 8, 9
and the number of cellsN = 9, where they affect the stability of the CAN2 and
we set them small relatively to the best ones found so far (see Fig. 4) because
the smaller ones achieve stable performance although they provide conservative
performance. With these parameter values we have obtain the followingE1 andE2

via the parameter optimization iterations described in Section2.4; E1 = 275, 262,
251, 268, andE2 = 239, 230, 212, 233, respectively, for themth (m = 1, 2, 3, 4)
iteration. These are all competitive to the predictions submitted to the competition,
and the bestE1 = 251 andE2 = 212 at the third iteration are better than all of the
submitted predictions.

6 Conclusions

We have presented an approach to the CATS benchmark prediction, which uses
Fourier bandpass filters for separating low and high frequency components of the
time series and the CAN2 for learning and predicting high frequency components.
For the CATS benchmark prediction, smoothing and estimating the last value of
the time series are very important, and one of the advantages of our method is
that the parameter values for smoothing and estimating the last value are obtained
automatically by means of the optimization process of our method.

Finally, we would like to note that our works on the CAN2 are partially supported
by the Grant-in-Aid for Scientific Research (B) 16300070 of the Japanese Ministry
of Education, Science, Sports and Culture.
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