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SUMMARY There is an emerging requirement for real-time flow-based
traffic monitoring, which is vital to detecting and/or tracing DoS attacks as
well as troubleshooting and traffic engineering in the ISP networks. We
propose the architecture for a scalable real-time flow measurement tool in
order to allow operators to flexibly define “the targeted flows” on-demand,
to obtain various statistics on those flows, and to visualize them in a real-
time manner. A traffic distribution device and multiple traffic capture de-
vices processing packets in parallel are included in the architecture, in
which the former device copies traffic and distributes it to the latter devices.
We evaluate the performance of a proto-type implementation on PC-UNIX
in testbed experiments to demonstrate the scalability of our architecture.
The evaluation shows that the performance increases in proportion to the
number of the capture devices and the maximum performance reaches 80 K
pps with six capture devices. Finally we also show applications of our tool,
which indicate the advantage of flexible fine-grained flow measurements.
key words: IP flow, passive measurement, measurement tool

1. Introduction

There is an emerging requirement for real-time flow-based
traffic monitoring, which is vital to detecting and/or tracing
DoS attacks as well as troubleshooting and traffic engineer-
ing in the ISP networks, instead of the existing IP-layer traf-
fic volume monitoring or off-line flow analysis of collected
traffic data. For example, fine-grained and user-defined flow
monitoring is of practical importance for performance sensi-
tive services such as Grid applications, while such monitor-
ing on very high-speed links is a challenging task due to the
large overheads to investigate the contents of every packet
passing through the monitoring point.

The contents of traffic passing through Internet Service
Providers (ISPs) are becoming diverse since various appli-
cations such as peer-to-peer, VoIP and so on, are widely used
and DoS attacks occur frequently in their networks. It is get-
ting more difficult in such networks to monitor the traffic of
these applications as well as to detect and/or to trace DoS
attacks with tools showing graphs of the whole IP layer traf-
fic. Monitoring in such environments is required to classify
traffic into flows.

On the other hand, the MPLS based traffic engineering
requires monitoring flows to optimize usage of an entire ad-
ministrated network. Managed networks such as Grid Com-
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puting research networks are expected to progress the opti-
mization of flow controls based on both operational admin-
istrative policies and QoS requirements. A key issue is to
detect what hinders a flow from reaching its target through-
put. This kind of monitoring requires highly accurate flow
measurement up to microsecond resolutions to understand
how much bandwidth a flow consumes.

It is much more useful that flows can be specified by
any field from the IP header up to application data in the
payload as network operators require. Especially in the ISP
operations, the following functions are very useful to un-
derstand the characteristics of problems and to reduce trou-
bleshooting time: 1) extracting traffic flows flexibly and im-
promptuly specified by the operators on demand; 2) visu-
alizing them in a real-time manner. However, the exist-
ing tools for such flow measurements have several limita-
tions and drawbacks as mentioned in Sect. 2. In general, the
existing software-based systems are suitable for relatively
slow links, while the existing hardware-based systems can-
not achieve sufficient flexibility.

In this paper, we propose the architecture for a scalable
real-time flow measurement tool in order to allow operators
to flexibly define “the targeted flows” on-demand, to obtain
various statistics on those flows, and to visualize them in
a real-time manner. The system we implemented based on
the proposed architecture consists of the multiple capture
devices, the manager device and the user interface devices.
We also propose a bit-pattern-based flow definition method
and its data structure to measure multiple flows with flexible
flow definitions. Finally we report on the performance eval-
uation that the proposed system performs to measure flows
with up to 80 K pps traffic with 6 capture devices with mul-
tiple flow definitions.

2. Related Works

MRTG is a tool for collecting Management Information
Base (MIB) information (typically byte counters of router
interfaces every five minutes) from remote network devices
by using Simple Network Management Protocol (SNMP)
and for visualizing time-varying characteristics of the infor-
mation. MRTG is widely adopted in IP network operations
because it is easy to use and automatically generates visual
graphs and their HTML pages. MRTG theoretically can
visualize flow-based traffic information based on RMON2-
MIB [5] in cooperation with RMON2 enable devices. How-
ever, there are several limitations: e.g., RMON2-MIB is not



2666
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.12 DECEMBER 2004

so flexible, RMON2 enabling devices are not so common,
and collecting information cannot be performed in a short
time interval due to the architectural limitation of SNMP.

NetFlow [6] provided by Cisco or Cflowd [7] devel-
oped by CAIDA [8] collect flow statistics generated by sam-
pling packets passing through the router. Real-Time Flow
Measurement Working Group of IETF suggests that per-
flow basis counters kept in router to export statistics to col-
lectors. The keeping per-flow counts consume considerable
memory as well as processing power if the number of flows
becomes large.

sFlow [3], which is also discussed in Network Working
Group of IETF, is a specification to export raw data from
sampling the traffic arriving at the switch besides the statis-
tics. Some MIB of its statistics are shared with NetFlow
MIB. The basic behavior of sflow export is that the sampled
packets are chopped into a certain length and sent to multi-
ple collectors. Per-flow network traffic measurement with
sampled traffic has a trade-off between the sampling rate
and the accuracy of measurement result as shown in [9],
[10]. Some routers or switches have a function to capture
every packet passing an interface, however such processes
often cause performance degradation in the packet forward-
ing process, and thus, are adopted only to slow speed inter-
faces.

Anritsu Cooperation provides hardware-based traffic
monitoring tools which measures flows passing through a
GigabitEthernet link [2]. Tools can store measured flows at
millisecond resolution timestamps and their playback func-
tion generates traffic as captured. The system limits to effi-
ciently measuring up to four flows at the same time.

In this paper, we discuss the requirements of the flow
measurement tool especially for network operation in ISP
and propose architecture with scalability to meet high speed
traffic and flexible flow definitions.

3. Requirements in Network Operations

3.1 Flow Measurement

Flow is defined as a set of packets passing an observation
point in a network during a certain time interval and gener-
ally having the same 5-element-tuple of source IP address,
destination IP address, protocol, source port number and
destination port number [11]. However, we take flow in a
wider sense to define as a set of packets having common
properties specified by not only fields in the header but also
application data in the payload.

We define flow measurement as clarifying the traffic
properties derived from traffic changes, statistical length (to-
tal number of packets or bytes) and existing time (interval
between first and the last packets) of flows. The flow mea-
surement process consists of capturing traffic, flow identifi-
cation, statistic processing and data preservation which de-
scribed in Sect. 4. The flow identification process requires
high performance and often expensive hardware for high
speed links.

3.2 Requirements

In ISP operations, The traffic monitoring while classifying
traffic based on applications is required to meet DoS attack,
P2P utilization limitation and so on. The monitoring is re-
quired an ability to distinguish a certain application traffic
from various ones. However some of applications cannot be
distinguished based on port number of transport protocol.
Therefore application data fields in a packet are also used in
that case.

Additionally, ISPs are required to monitor the quality
of traffic for customers who make a SLA contract with them.
The ISP operations are required abilities to detect and mon-
itor the precise change of traffic to troubleshoot and to an-
alyze the depression of such customer’s traffic performance
regardless of the traffic volume. The followings are the re-
quirements for flow measurement to support such ISP oper-
ations:

1. Processing Scalability: The measurement system
should be extensible in terms of its packet processing
power. Flow identification processes require process-
ing power as traffic increase.

2. Flexible Flow Definition: To diagnose and troubleshoot
the customer traffic, the ability to define a flow regard-
less its volume is important. The flexible flow defini-
tion by specifying a flow with application data fields in
packets leads to smooth operations in the recent Inter-
net carrying various application traffic.

3. Operational Flexibility: To support multiple users to
obtain various statistics for flows, the system should be
able to accept to update the flow definitions on-demand
and, to visualize them in a real-time manner. Addition-
ally these operations are done by one interface.

4. Long-term Operation: System should be able to keep
working as long as possible. Any replacement such as
storage to meet the limited room, updates of system
configuration and parameters.

5. Flexibility of Visualization Resolution: The system
should give operators a spatially fine-grained view
such as traffic volume per routes or applications, and
a temporally fine-grained view such as millisecond-
order traffic behavior, which exposes the burst of traffic
which looks flat rate under the low (coarse) resolution.
Additionally the ability to change such resolutions as
operators required is useful for the operation in trou-
bleshooting.

We define the scalability for real-time flow measure-
ment system as to realize all of these requirements in this
paper.

3.3 Issues

In this section, we survey existing flow measurement system
or techniques and compare them with the requirements in
the previous section.
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Table 1 Comparison of requirements enabled by different measurement
systems.

NetFlow sFlow NeTraMet Anritsu proposed
system

Processing ◦ ◦ • •
Scalability
Operational ◦ • • ◦ •
flexiblity
Flexible Flow ◦ ◦ •
Definition
Long-term • • • •
Operation
Resolution • • •
Flexibility

• enabled
◦ limited

NetFlow consumes memory and make main proces-
sor overwork in routers as the increase of interface speed.
Therefore sampling technology is recently deployed in Net-
Flow to follow such a high speed. Although some col-
lectors such as FlowScan [12] provide multiple flow defi-
nitions, NetFlow running background of collectors exports
all flow information and its overhead is not small between
collectors and routers.

sFlow forwards sampled packets to collectors. The
sampling rate is enlarged to follow high speed link. Al-
though some collectors such as InMon Traffic Server [13]
provide multiple flow definitions, it’s hard to detect flows
having small traffic volume compared to the sampling rate.

NeTraMet provides the flexible flow definitions by any
combination of addresses or ports of Datalink, Network and
Transport layer. The collection of measurement information
is done with SNMP. Therefore it cannot be performed in
a short time interval due to the architectural limitation of
SNMP.

The hardware-based traffic monitoring tools from An-
ritsu Cooperation support various link speeds by replacing
the network interface cards. The system limits to measure
up to four flows at the same time and the high resolution
visualization is done in the off-line manner.

Table 1 summarizes our overview of existing systems
and the requirements realized by them. For proposed system
we discuss in Sect. 7.1.

In the ISP operations, multiple tools are used because
any system cannot provide the all requirements previously
described. It is effective that a real-time flow measurement
tool supporting all requirements is deployed in ISP opera-
tions.

4. Proposed System

Generally, flow measurement system consists of the follow-
ing components.

• Packet Capture Component
• Flow Identification Component
• Status Preservation Component
• Analysis Component

• Data Preservation Component
• User Service Component
• User Interface Component

In order to realize the scalability which discussed in
Sect. 3.2, we propose the role of each component in Sect. 4.1
and the architecture which combines these components in
Sect. 4.2.

4.1 Enhancement of Component

We propose the enhancement of basic components to meet
the scalability.

• Packet Capture Component: Copying traffic from Net-
work device is done with the mirror function provided
high-end Ethernet switches or network taps. The opti-
cal tap can follow the increase of link speed due to no
conversion between optic and electricity. The system
should have a buffer for input traffic to absorb burst in-
put. The system should also have the mechanism which
independently handles process buffering input traffic
and post-process. To prevent to make the timestamp
inaccurate, buffering should be done after obtaining the
timestamp in a packet arrival.
• Flow Identification Component: This component ex-

amines every packet matching with the flow defini-
tions. Generally, the burden of flow identification pro-
cess increases as the increase of traffic rate and the
number of flow identifications. Both are not avoidable
to support the Processing Scalability and the Flexible
Flow Definition. The improvement the process perfor-
mance (e.g. by hardware implementation) is worried to
cost enormously. As the other solution, deployment of
multiple non-high-end devices to distribute burden of
flow identifications process is expected lower cost such
as in proportion to the traffic rate or so.
• Status Preservation Component: This component

checks the flow status by inactivity timeout which de-
fined by user.
• Analysis Component: This component calculates

statistics as the way of the each measurement attribute
described in Sect. 4.4. The calculation is done based
on the flow granularity defined on-demand to meet the
Flexibility of Visualization Resolution. The statistics
are sent to Data Preservation Component.
• Data Preservation Component: As the increase of the

number of flows, the system is required to meet the lim-
itation of storage for measured data. The system should
place the measured data in multiple places and change
the place when the total amount of data stored in a place
reaches a certain threshold which given by a user. Ad-
ditionally the system should provide the information
where the system currently accesses and history of its
accesses. This enables recognize which data is safe to
move.
• User Service Component: This component has two fea-
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tures. One is to update flow definitions used in the Sta-
tus Preservation Component, the Analysis Component
and the Data Preservation Component. The flow defini-
tions are updated form the User Interface Component.
The other is to send stored measurement data to the
one of User Interface Components. The User Service
Component manages the multiple accesses from User
Interface Components and should prevent that the flow
definitions become inconsistent.
• User Interface Component: This component commu-

nicates with the User Service Component to exchange
flow definitions and measured data, and visualizes
graph in various resolutions requested by operators.
Traffic graphs are automatically updated by periodi-
cally collecting measurement data.

4.2 Proposed Architecture

We propose the architecture that pipeline the process of
components and deploy Flow Identification Component to
distribute burden of flow identification process over multi-
ple devices to have good scalability. To manage the multiple
Flow Identification Components in the system, we propose
the Distribution Components and additional functions.

• Distribution Components: This distributes monitoring
traffic to the multiple Flow Identification Components.
Distribution Component is a key that the system fol-
lows the input traffic rate. Therefore its process should
be as simple as possible to be implemented on hard-
ware.
• It’s not expected that the Distribution Component dis-

tributes traffic based on the flow definitions, which
makes the distribution process complex. Therefore
the Flow Identification Components should maintain
the all flow definitions as considering the Distribution
Component adopts a round-robin distribution for its
simplicity.
• The system should be able to add and drop the Flow

Identification Components to follow the requirements
of process power while the system is running. Both the
Distribution Components and the Analysis Component
detect an addition of the Flow Identification Compo-
nents. The information of Flow definition should be
shared between the Status Preservation Component and
the Flow Identification Components. The Distribution
Component should be able to detect to stop distribution
to the Flow Identification Components which stops its
process or is removed. This function meets the Pro-
cessing Scalability and the Long-term Operation.
• The Status Preservation Component re-orders the mea-

sured data based on the data timestamp. The measure-
ment data is asynchronously sent from the Flow Iden-
tification Components.

Figure 1 shows the combination of the components de-
scribed in Sect. 4.1 and dataflow through them to pipeline

Fig. 1 Architecture of a distributed real-time flow measurement tool.

the measurement process. The basic flow of process is as
follows:

1. Traffic is copied by an Ethernet switch or an optic tap
and forwarded to the Distribution Component.

2. It then forwards packets to one of devices having the
Packet Capture Component and the Flow Identification
Component.

3. The Flow Identification Component updates measure-
ment data if the packet matches with flow identifica-
tions.

4. The Flow Identification Component periodically send
the local measurement data to the Status Preservation
Component.

5. Partial measurement data from the Flow Identification
Component is reordered and flow status is checked in
the Status Preservation Component.

6. Statistics of measurement attribute calculated in the
Analysis Component and it sent to Data Preservation
Component.

This architecture enables the system to update flow def-
initions on-demand (the Operational Flexibility), to move
the accumulated data and to add or drop the Flow Identifi-
cation Components without stopping the system (the Long-
term Operation), to accept the various measurement granu-
larities of time-scale (the Flexibility of Visualization Reso-
lution).

The Flexible Flow Definition discussed in the follow-
ing section.

4.3 Flow Definition and Data Structure

We define a flow definition as a set of chained bit-patterns.
The bit-pattern is defined by elements as described in Ta-
ble 2. A flow definition consists of the multiple bit-patterns.
The ‘chain’ of bit-pattern implies the ‘AND’ operation for
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pattern matching.
When the capture device receives a packet, it picks up

a bit field specified by parameters of a bit-pattern. We call
this bit filed a flow identifier (FID). The original packet is
judged as matching with the bit-pattern if its FID is between
a range specified by the minimum and maximum pattern.
The FID obtained from the last bit-patterns chained for a
flow definition is used as a key to search and update mea-
surement attribute described in Sect. 4.4. The combination
of a flow definition and the last FID specifies a flow in our
architecture.

By taking a flow definition into multiple bit-patterns,
the multiple flow definitions can be converted into hierar-
chical chained bit-patterns to eliminate duplicate pattern-
matching per packet. Figure 2 shows an example of hier-
archical chained bit-pattern for measuring WEB and NEWS
traffic. Bit-pattern: “IPv4 TCP” is used when the packet is
judged as IPv4 packet by bit-pattern: “IP version” which
checks version field of IP header. Both “IPv4 TCP DST
WWW” and “IPv4 TCP DST NEWS” share “IPv4 TCP”
and “IP version.” Although the total number of bit-patterns
from two flow definitions (WEB and NEWS) is six, that
of hierarchical bit-patterns becomes four. For instance,
when a UDP packet is examined with those bit-patterns, it
doesn’t match with “IPv4 TCP.” Hence, the following pat-

Table 2 Elements specifying the bit-pattern.

Pattern ID Identifier used for reference by other
bit-patterns

Position Position of bit-pattern from a top of IP
packet

Length Length of bit-pattern
Mask Specifies a valid and invalid bits
Minimum Pattern Minimum value to specify range of

bit-pattern
Maximum Pattern Maximum value to specify range of

bit-pattern
Child Pattern ID Reference list of chained bit-patterns

Fig. 2 Example of hierarchical chained bit-patterns.

tern matches aren’t done.

4.4 Measurement Attribute

We define four measurement attributes for a flow definition:

• Flow Count: Number of packets and bytes at certain
intervals defined by users.
• Flow Length: Statistics on total number of bytes, pack-

ets and duration of a flow.
• Packet Gap: Statistics on timestamp intervals of con-

secutive packets composing a flow.
• Association Packet Gap: Statistics on timestamp inter-

vals of two packets matching two different flow defini-
tions.

When the Flow Count or the Flow Length are enabled,
each of the multiple flows detected by a flow definition has
its counters or length values. The Packet Gap is assorted
the only flow definitions of exact pattern matching in which
maximum and minimum patterns are the same. A flow defi-
nition can have multiple measurement attributes. The inter-
vals for the Flow Counter, the Packet Gap, the Association
Packet Gap and values of durations of the Flow Length have
microsecond precision.

The Association Packet Gap calculates statistics from
timestamp intervals of two packets that are expected to pass
an observation point in order and that need two different
flow definitions to detect respectively. E.g., a pair of packets
having a flag SYN and FIN in the TCP header respectively to
measure the duration of the TCP connection. The first flow
definition is used to match the first packet, and then FIDs
and timestamps are collected. The FID is substituted for the
minimum and/or maximum patterns of the last bit-pattern
for the second flow definition as users previously define.
The second flow definition is generated with first packet FID
and a lifetime whenever a packet matches with the first flow
definition. Hereafter, the second flow definition begins to be
used to detect the second packet expected to appear after the
first one. The second flow definitions are released when a
packet matches with it or its lifetime expires before a packet
matches. After a packet matches with the second flow defi-
nition, timestamp intervals are computed from both the first
and the second packets.

The user can limit the number of FID collected from
the first flow definition to prevent the FIDs consuming re-
sources in case that a long lifetime is given. When the num-
ber of FIDs reaches its limit, the following FIDs are dis-
carded until the active FIDs are released.

5. Implementation Issues

In this section, we argue the implementation issues for im-
plementing the system with the PC-UNIXs as the examples
based on the proposed architecture, time accuracy, time syn-
chronization and FID search.
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5.1 Implementation with PC-UNIXs

In this section we discuss the implementation of proposed
architecture with PC-UNIXs. The following shows the com-
position and physical devices:

• Distribution device: As explained in Sect. 4, we as-
sume to use a hardware-based general-purpose distri-
bution device as the Distribution device.
• Capture device: The Capture device consists of the

Packet Capture Component and the Flow Identification
Component.
• Manager device: The Manager device consists of

the Status Preservation Component, Data Preservation
Component and User Service Component.
• User Interface device: The User Interface device con-

sists of the User Interface Component.

The capture device consists of three thread processes;
Packet Buffering Process, Flow Identification Process, Re-
port and Definition Update Process. Report and Definition
Update Process periodically reports measurement data to the
manager device and receives update of flow definitions. The
Report and Definition Update Process derives or releases
the Packet Buffering Process and the Flow Identification
Process after that the capture device starts. All processes
share flow definitions and measured flow information con-
structed in a memory space. For capturing packets, PCAP
library [14] was adopted It provides timestamp and an in-
terface to collect capturing loss to application programs at-
tempting to detect and count. It is also supports both IPv4
and IPv6, and makes it easier to implement/port a capture
device on/to the variety of OSs.

The manager device consists of four thread processes;
Main Process, Definition Advertisement and Collection Pro-
cess, Save Process, User Interface Service Process. Main
Process manages the connections established from the cap-
ture devices or the user interface devices and derives other
three processes. Definition Advertisement and Collection
Process receives reports from the capture devices and adver-
tises flow definitions when detecting any difference between
registered definitions and definitions in a report. The Status
Preservation Component and the Analysis Component are
realized in this process.

Time synchronization is required between the multi-
ple capture devices to prevent inconsistent reports between
them. The accuracy of timestamp and method of time syn-
chronization are discussed in the following sections.

5.2 Time Synchronization

In case that timestamp is given by the capture devices, the
packet arrival time becomes inaccurate against the actual ar-
rival time at the distribution device. The factors of this are
differences of 1) packet forwarding delay and 2) process de-
lay to take in packets in the capture device. The timestamp-
ing by the capture devices cannot avoid these factors even

time synchronizes between capture devices completely.
1 can be minimized if the number of hop between

the distribution device and the capture devices is few (e.g.
1 hop) and the connections between them consists of the
same length cables and high speed device (e.g. GigabitEth-
ernet switch). Although 2 is caused by the burden of flow
identification or other tasks running concurrently, the com-
puter which exchanges gigabit class traffic is expected to
have small delay. E.g. A computer which receives 1 Gbit/s
(MTU: 1500B) takes in 12 microsecond per packet treat-
ment in average. The roughly estimated accuracy is up to 1
millisecond, since the implementation is based on software
in this proposal.

Above discussion is based on that time synchronizes
between the capture devices. For the time synchronization,
there are several clock sources are available as follows:

• GPS: GPS requires a sky view for an antenna. The
establishment of antenna may be limited the building
maintenance or security policies of data-centers where
the system installed.
• Atomic Fountain Clock: The facility locations are lim-

ited. Wide area deployment is difficult.
• CDMA: CDMA (Code Division Multiple Access) is

becoming a widely popular air interface for mobile
telephony. The ntp (a free NTP server [16]) supports
CDMA as its clock source. CDMA brings better
chance to deploy in building than GPS if its location
is in the area of CDMA.
• Clock Generator: It’s hard for the clock generator to

deploy in wide area. The ntp also supports a few clock
generation devices.

Note that each scheme can take both forms to receive
clock signal from source and distribute PPS (pulse per sec-
ond) to multiple receivers and then to computer, or to re-
ceive clock signal by receiver through an antenna and dis-
tribute PPS to multiple computers. In the implementation
of proposed architecture, any clock source is available be-
cause capture devices should be installed in the same LAN
segment or in few hop topologies to get better timestamp ac-
curacy as discussed above. The selection of clock source is
done with the other criteria, Wide area deployment, estab-
lishment of antenna and so on.

5.3 Flow ID Search

The range definition of a flow definition results detecting
multiple flows in the system. Each flow matched with a flow
definition is distinguished by the last FID of chained bit-
patterns.

When a packet matches a flow definition, the same FID
is searched from the previously registered FIDs. If the same
FID does not exist at that moment, a new FID is registered.
In case that many FIDs are registered due to large range size
of bit-patterns, The FID search tends to take more time.

For searches with a certain length key such as the FID,
a binary search can reduce the processing cost to O(log n)
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where n is the total number of FIDs registered. However the
Flow Identification Component registers FID and the search
tree grows gradually thus the search tree must be well bal-
anced. The AVL tree [17], which keeps the search tree bal-
anced, is one of solutions. However the insertion of a new
FID is costly as opposed to normal list process, thus it is
better to discover in what range size of bit-pattern the AVL
tree shows better efficiency.

6. Evaluation

Firstly we evaluated if the system works as we expected.
The follows are confirmed.

• Flow definitions specifying any fields of a packet are
accepted by the system and correctly match packets
with appropriate flow definitions.
• The system accepts updates of flow definitions with

any measurement attributes on-demand and hereafter
it measures and stores statistics of requested attributes.
• The system can keep to run while the capture devices

are added or dropped. The measurement data preserva-
tion function works correctly.
• Traffic graphs are shown on the user interface device

and its auto update function works correctly.
• The system accepts multiple access from the user inter-

face devices and prevents conflicts of flow definitions
updates.

These evaluations imply that the system satisfies the
requirements except the Processing Scalability. In the rest
of this section, we evaluate the performance and scalability
with follows experiments:

1. Evaluation of capture device process performance
when the Packet Buffer Process is used or not. The
distribution device asynchronously send packets to the
capture device. The capture device is not ready to take
a packet when it arrives, due to the previous packet
process engaged. We evaluate how the deployment of
packet buffering process is effective in the packet cap-
turing process.

2. Evaluation of the performance difference of capture de-
vice in deploying AVL Tree Search or the Sorted List
Search. We evaluate how the performance of a cap-
ture device becomes difference in deploying AVL Tree
Search and Sorted List Search. The overhead of FID
search may have an influence on the performance of
capture device.

3. Evaluation of how the entire system performance in-
crease based on increment of the number of the capture
devices. We evaluate the improvement of measurement
performance against the number of capture devices.

6.1 Evaluation Environment

We performed two kinds of test for the evaluation 1 and

2, and for the evaluation 3. The former examined the pro-
cess performance of a capture device by measuring captur-
ing loss which is caused by an overwork of processing. The
traffic is sent with 500, 2 K, 4 K, 8 K, 10 K, 12 K, 15 K, 18 K,
20 K, 24 K, 27 K, 30 K packets per second (pps) respectively
from a traffic generator to a capture device in Fig. 3 config-
uration. Flow definitions are registered in a manager device
through a user interface device. The manager device ad-
vertises flow definitions to the capture device. The capture
device makes Flow Counter reports for all FIDs to the man-
ager device every 10 seconds. The performance is defined
as the maximum speed in which there is no capturing loss
for 60 seconds generation over 10 times examinations. The
traffic generation is shaped by an application that authors
developed to keep the short jitter at the user program level.
However small burst traffic was observed during generation
because the final packet treatment was controlled by a ker-
nel.

The other evaluation is a performance test of the entire
system for given 4, 8, 16 and 32 bit-patterns and the number
of capture devices.

Figure 4 shows a configuration of the performance test.
Although the configuration does not match with proposed
architecture, each traffic generated from a generator is as-
sumed as the traffic from distribution device in the practice.
This can evaluate the entire system performance by the total
the generated traffic. In this test, we used GPS for time syn-
chronization clock source for all capture devices. The clock

Fig. 3 Configuration of performance evaluation.

Fig. 4 Configuration of entire system performance test.
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signal received at an antenna was divided up to 6 receivers
and they provided plus per second to the corresponding cap-
ture devices.

We define the performance as the maximum value of
total packet speed generated by the generators for 60 sec-
onds without any measurement loss. The maximum value
was searched by binary search of packet speed. Bit-patterns
were advertised to capture devices from the manager device
every 10 second. Measured values of counter attribute were
reported to the manager device every second. The precision
of counter attribute was 10 milliseconds.

All computers in both evaluations had the same speci-
fications as shown in Table 3.

6.2 Performance Difference in Deploying or Not Deploy-
ing the Packet Buffering Process

Figure 5 shows the process performance of capture device
in which 1 up to 64 bit-patterns are registered respectively.
Traffic which had bit-patterns to match with one of flow def-
initions was sent to the capture device. The bit-pattern ap-
pearance in generated packets was done in a round-robin
manner. The length of a bit-pattern was four bytes and an
exact match defined. This implies that the result is either
matched or unmatched.

The maximum performance was 27 K pps where the
number of bit-patterns was 1 and that the minimum perfor-
mance was 2 K pps where the number of patterns was 64
when Packet Buffer Process was deployed in the capture
device. The appropriate number of patterns is expected to
be between 4 and 64 in practice, therefore the performance
per capture device would be between 2 K to 15 K pps. As
described in Sect. 5.1, we adopted PCAP library for cap-
turing packets. The timestamp is already obtained before

Table 3 Specification of PC-UNIXs used for evaluation.

CPU Xeon 2.8 GHz
Memory 2 GB
HDD 73 GB
Bus PCI-X (64 bit, 133 MHz)
Network Interface 2 ports, 10/100Base-TX
Operating System RedHat 9 Linux kernel 2.4.20

Fig. 5 Process performance per number of bit-patterns with or without
the packet buffer.

the packet is buffered. The delay while packets are buffered
doesn’t cause inaccuracy on their arrival time.

On the other hand, the packet loss was observed on 500
pps traffic when the Packet Buffer Process was not deployed.
From 2 experiments, the Packet Buffering Process is effec-
tive.

6.3 Performance Difference in Deploying AVL Tree
Search or Sorted List Search

Figure 6 shows the capture device process performance
when the range size of the bit-pattern is between 64 and
8192 respectively. The FID in packets which matched with
the flow definitions was generated in a round-robin manner,
so the number of each FID in packets became the same be-
tween FIDs. The length of the bit-pattern was four bytes.

From the results, the criterion to select a search from
the AVL tree search or the sorted list search on the proposed
system was 1024 in point of range size view. It may be effec-
tive if each flow definition statically selects one of searches
such as the AVL tree search and the sorted list search with
a criterion of the range size of the bit-pattern when the flow
definition is registered in a capture device. The range size of
a bit-pattern composing a flow definition is previously obvi-
ous when the flow definition is registered.

6.4 Scalability Evaluation

Figure 7 shows the average performance from 10 examina-
tions for each number of bit-patterns and the capture de-
vices. The exact pattern matching with 4-byte-length bit-
patterns was used. All bit-patterns was specified at the
same position in a packet. The FID field of generated traf-
fic picked up by the capture device is generated in round-
robin manner to match with the bit-patterns with the same
frequency. Therefore every bit-pattern matched with 1 nth
of total traffic, where n is the number of given bit-patterns.
The Flow Counter for the measurement attribute was used
and the sorted list for the FID search to increment counters
was adopted.

The performance increased in proportion to the number
of capture devices and it reached 80 K pps with six capture

Fig. 6 Process performance per range size of bit-pattern with AVL tree
search or sorted list search.
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Fig. 7 Performance of entire system.

devices.

7. Discussions

7.1 Evaluation Results

From the results of Fig. 5 in case the packet buffering pro-
cess deployed, it is clear that the number of bit-patterns per
packet significantly impacts on performance. We assume
that the proposed system performs with the multiple flow
definitions and that each of them consists of the multiple bit-
patterns. The hierarchical bit-pattern structure is expected
to prevent the performance degradation as the number of re-
duction of bit-patterns.

In order to improve the performance, it would be bet-
ter to modify the order of chained bit-patterns operating as
‘and’ operations between bit-patterns while the system is in
progress. This tuning to reduce the average number of pat-
tern matching per packet depends on the traffic measured.
The dynamic matching order method is expected to reduce
the entire pattern matching overheads.

For the reference of the proposed system performance,
we show an example of average packet length from a real
world network that we investigated. Figure 8 shows the
1 minute average packet length (‘+’) and average traffic
(‘×’) of the traffic passing through a GigabitEthernet link
between APAN Tokyo XP [18], [19] and WIDE [20] mea-
sured in June 18, 2003. The average packet length on that
day was 861 bytes. The results of this packet length are only
an example, yet the performance of 2 k–15 K pps per the
capture device is estimated at 13 M–100 M bit/s. 80 K pps
performed by 6 capture devices of Sect. 6.4 is estimated at
600 M bit/s if observed traffic have 861 bytes which is same
as the average packet size.

As we showed in the Sect. 6.4 the performance of
the entire system increases in proportion to the number of
the capture devices and the proposed architecture addresses
scalability by deploying multiple capture devices. However,
we ascertained the reason of a little performance falls at six
capture devices. It caused by once or twice of significant

Fig. 8 Packet length of traffic passing between APAN and WIDE.

performance failure in 10 examinations. The performance
failure came from the rise of the delay of data processing at
the threads of the Definition Advertisement and Collection
Process in the manager device, due to the large volume re-
ports for Flow Counter from six capture devices. The long
delay caused significant gap of data processing between cap-
ture devices and manager devices and thus resulted to dis-
card delayed reports beyond a given threshold.

Using multiple capture devices in the proposed system
is a key to achieving high-performance measurement of the
IP flow on a high-speed link. However, the manager device
can be a bottleneck for the performance of the entire system.
The one of solution may be further to separate the com-
ponents, the Status Preservation Component and the Data
Preservation Component, to multiple devices.

Through all evaluations, we could show that the pro-
posed system provides scalability (Table 1) by achieving the
requirements defined in Sect. 3.2. To improve the further
performance scalability, we investigate and develop the dis-
tribution device and the manager device as future works.

7.2 Performance

As discussed in Sect. 3.2, existing hardware-based flow
measurement system has limitations such as the number
of flow definitions given at the same time to follow wire
speed supported by its NICs. E.g. MD1230A series from
Anritsu products accepts up to 4 flows [22]. On the other
hand, our proposed system provide the interface to define
flows flexibly and have no limitation the number of the flow
definition and thus give users the convenience and flexi-
bility in their operations. Additionally, although the pro-
posed system composed by a few computers is inferior to the
hardware-based system in the performance aspect, the pro-
posed system can bring the performance close to hardware-
based system by adding computers.

Comparing to existing software-based systems, Ar-
gus [21], for instance measures flows specified by addresses
from Datalink to Transport layers. Although Argus basically
can measure all flows passing the observation point, it con-
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straints users to obtain measurement data aggregated by ad-
dresses or port numbers such as IP prefix in the offline man-
ner with proper scripts because it doesn’t provide the inter-
face for user to define flows used in the on-line manner. On
the other hand, NeTraMet can collect measurement data ag-
gregated by the combination of addresses and/or port num-
bers from Datalink to Transport layers due to the interface
for user to define flows using these addresses. NeTraMet
adopts hashing algorithms to handle flow identification pro-
cess particularly for these address treatment to follow high
traffic rate [1].

As described in Sect. 4.3, besides the collection of ag-
gregated flow data as NeTraMet provides, our proposed sys-
tem provides better interface for the flow definition that user
can flexibly specify flows using any field of packets. This
flexibility enables us various operational applications such
as to measure round trip time for TCP flows (described in
Sect. 8.2), to monitor SYN flag of TCP to detect Syn Flood
attack, to monitor connections carrying abnormal volume
traffic and so on. To improve measurement performance in
the condition supporting such flexibility in the flow defini-
tion, we design the data structure and architecture which re-
duce the number of pattern matching per packet.

For compare these software-based systems including
the proposed system, it’s hard to find the significance from
the performance comparisons under the identical conditions
because these systems have different design and implemen-
tation originating in their different usage fields. However,
note that the performance of all systems rather depends
hardware specification of computers on which the software
of the systems implemented, at least. Under this point of
view, the proposed system can follow the traffic rate without
the dependency of the computers performance by adding the
number of computer in the system, as the evaluation showed
in Sect. 6.4.

7.3 Timestamp Accuracy and Distribution

We proposed that the capture device use its own clock in the
implementation. In the Sect. 5.2 we discussed that times-
tamp becomes inaccurate in the software-based system. To
measure high speed links, high time precision is required
(e.g. at least 38 nanosecond to detect 48 byte frame on OC-
192 link). Both delay variations of packet forwarding and
software-based packet capturing are hardly accepted to meet
such high speed links. Therefore timestamp process should
be implemented in the distribution device of the hardware
based implementation and both delay variation should be
removed.

The timestamp function realized in a distribution de-
vice requires the capture device to obtain a timestamp from
a packet and to shift the start or end point of the packet for
the timestamp field. This also eliminates the need for clock
synchronization between the capture devices and hence sys-
tem becomes simpler.

8. Application and Advantage of Flow Measurement

8.1 Example Real World Environment

Figure 9 shows an example of the flow measurement of
packet speed on the same GigabitEthernet link between
APAN Tokyo XP and WIDE as shown in Fig. 8. The mea-
surement was performed with a 2-capture-device system.
The capture devices made reported every second. The distri-
bution was performed in a round-robin manner using a pro-
totype we developed with PC-UNIXs for this measurement.
The total average and maximum traffic speed was 0.92 K pps
and 2.8 K pps. The bit-pattern definitions were for checking
the protocol field of the IP packet (1-byte length) and the
destination port field of TCP header (2-byte length). There
was no capturing loss detected during measurement. The
resolution of the graph is in milliseconds.

The procedures for graph generation of Fig. 9 with the
proposed system were as follows:

1. Register flow definitions with the manager device
2. Measure flows with the multiple capture devices and

store date to a manager device
3. Check graph for each flow definition by using the user

interface device
4. Dump flow information in a specific period to text file
5. Generate a graph with an appropriate tool such as

RRDTool [23], Gnuplot [24], Microsoft Excel, etc.

Steps 1 to 3 were repeated until the graph that the user
wanted was shown on the user interface device. It was
easier to extract certain flows at the observation point be-
cause measurement based on the flow identification defini-
tion registered started just after its registration, and the graph
showed up without delay. The operation with the proposed
system effects to help operators look and feel for the traffic
status without complex procedures.

Fig. 9 Flows of outgoing traffic to WIDE.
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8.2 RTT Measurement

RTT measurement is an example of the use of the Associ-
ated Packet Gap. RTT measured passively is not common
because there is not always traffic passing a path of inter-
est nor is it able to specify the probe packet size, interval
of consecutive probes and measurement period. RTT itself
is essential for the buffer size decision of high performance
TCP transmission in a delay environment or for path selec-
tion for delay sensitive real-time applications such as VoIP
or contents streaming. However RTT inference with an ac-
tive measurement tool may cause competition between ap-
plication traffic and the measurement traffic when measure-
ment is performed before the application traffic is sent. The
passive approach is more scalable and becomes more appro-
priate if the RTT inference for optimization of application
traffic becomes more common [25].

A TCP connection is suitable to measure RTT pas-
sively because a packet pair of data and its acknowledg-
ment (ACK) can be the probe. To collect timestamps of
the pair, the proposed system needs to receive bidirectional
traffic at an observation point and to have two flow defini-
tions to specify data packets and its ACK packets, which
have replaced source/destination addresses and ports be-
tween them. The first definition is used to collect the times-
tamp of a data packet and the FID matching with the se-
quence field bit-pattern. The second is for the timestamp
used to compute interval between the data packet and it-
self matching with the ACK sequence field bit-pattern. Both
definitions are connected by the Association Packet Gap at-
tribute described in Sect. 4.4

Receiving the ACK sequence at a data source host im-
plies that all the data sequences previously sent less than
ACK sequence are received at a destination host, even
though the number of ACK sequences doesn’t match with
one of the data sequences exactly. Therefore the FIDs (se-
quence of data packet) collected by the first flow definition
should be applied to the minimum value for range matching
of the second flow definition to match with an ACK packet
corresponding to the data packet. The maximum value of
the second flow definition should be “0x f f f f f f f f .” FIDs
of the first flow definition around the highest portion of a
sequence before rounding back 0 may not match the ACK
sequence, because the highest ACK sequence portion may
be omitted by the Delayed ACK [26] (DACK) and round
back to the low value. Therefore it is a good idea that the
first flow definition uses a range matching not to collect the
highest portion of the data sequence, such as the multiple
size of MTU as an example. Figure 10 shows an example of
two flow definitions bound by the Association Packet Gap
attribute to measure RTT from a TCP flow.

Figure 11 shows an example of RTT phase plot [27]
showing minimum RTT realm, the correlation between two
adjacent RTT values and congestion transition. The RTTs
for this phase plot was collected by the proposed system
from the traffic of both ways passing the same GigabitEth-

Fig. 10 An example of flow definitions to collect RTTs from a TCP
connection.

Fig. 11 An example of phase plot showing different congestion region.

ernet link between APAN Tokyo XP and WIDE shown in
Fig. 8. The target flow lasted for 4.589 seconds and 1128
RTT data was collected. The X-axis ticks in that plot rep-
resent RTTn and the Y-axis ticks represent RTTn+1, where
n and n + 1 are indexes of RTT data. Figure 11 shows that
minimum RTT including TCP process time at end system is
8.3 ms, minimum RTT realm (E) is 0.6 ms. [27] describes
that three regions of I, II and III derived from the phase
plot imply no congestion, transient congestion and persis-
tent congestion, respectively, as follows:

• Region I contains probe pairs that experience minimum
RTT and minor random overhead E due to router, me-
dia or end host’s TCP processing.
• Region II contains probe pairs that experience the be-

ginning of congestion on the path.
• Region III contains probe pairs that experience persis-

tent congestion due to packets are queued in routers or
an end host raising process burden.
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We should consider DACK and retransmission to use
TCP’s data and its ACK packets for the passive RTT mea-
surement. DACK is done when a receiver acknowledges
every multiple data packets received or when no acknowl-
edgment is sent of more than 200 milliseconds. Therefore
the region II and line Rn = Rn+1 become filled by plots of
enlarged RTT caused by DACK besides congestions on the
path even though there is no loss with the target flow. The
retransmission also shows large RTT in Region II for the
beginning of loss and III for the rest of the following. For
the accurate inference to detect congestion on the path, It is
a good idea to extract minimum RTT from multiple RTTs
computed from an ACK packet arrival. This extension re-
quires small modification on the to the Association Packet
Gap attribute, but a greater effect is expected.

9. Conclusions

We discussed the requirements for flow measurements that
help us understand how the network is being used in a spa-
tially fine-grained view (e.g., not only total traffic volume
but traffic volume per route or applications) and in a tem-
porally fine-grained view (e.g., not only five-minute average
but millisecond-order behavior) even on high-speed links.
Based on them, we proposed an architecture of scalable
and flexible real-time flow measurement tools, which adopts
multiple capture devices for processing packets in parallel,
hierarchical chained flow definitions for reducing average
overheads of pattern-matching, and an adaptive tree data
structure for dealing with a large number of active flows.

To evaluate the proposed architecture, we then de-
veloped a proto-type implementation of the tool on PC-
UNIX and examined its performance in testbed experi-
ments, demonstrating that it could measure statistics on
flows defined by complex and on-demand definitions on a
gigabit class link. Even by the proto-type system on nominal
PC-UNIX machines, the maximum performance reached
80 K pps with six capture devices.

We also showed applications of our tool in real envi-
ronments. The real-time fine-grained flow visualization en-
ables us to understand what types of traffic are dominant
and, at the same time, how they are behaving over a short
time-scale. Monitoring bidirectional TCP flows enables us
to infer RTT behavior without sending any probe packet.

The development of the distribution device and the
evaluations of its performance and that of entire system re-
quire further investigation.
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