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Abstract 1 

Phosphate groups on materials surfaces are known to contribute to apatite formation 2 

upon exposure of the materials in simulated body fluid (SBF) and improved affinity of 3 

the materials for osteoblast-like cells. Typically, polymers containing phosphate groups 4 

are organic matrices consisting of apatite–polymer composites prepared by biomimetic 5 

process using SBF. Ca2+ incorporation into the polymer accelerates apatite formation in 6 

SBF owing because of increase in the supersaturation degree, with respect to apatite in 7 

SBF, owing to Ca2+ release from the polymer. However, the effects of phosphate content 8 

on the Ca2+ release and apatite-forming abilities of copolymers in SBF are rather elusive. 9 

In this study, a phosphate-containing copolymer prepared from vinylphosphonic acid 10 

(VPA), 2-hydroxyethyl methacrylate (HEMA), and triethylene glycol dimethacrylate 11 

(TEGDMA) was examined. The release of Ca2+ in Tris-NaCl buffer and SBF increased 12 

as the additive amount of VPA increased. However, apatite formation was suppressed as 13 

the phosphate groups content increased despite the enhanced release of Ca2+ from the 14 

polymer. This phenomenon was reflected by changes in the surface zeta potential. Thus, 15 

it was concluded that the apatite-forming ability of VPA-HEMA-TGEDMA-CaCl2 16 

copolymer was governed by surface state rather than Ca2+ release in SBF. 17 

18 
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1. Introduction1 

Bone-bonding bioactive ceramics, such as Bioglass [1], glass-ceramics A-W 2 

[2], and sintered hydroxyapatite (HAp) [3], have been clinically employed as bone 3 

substitutes for repairing severe bone defects induced by accident or disease. When 4 

artificial materials are implanted in the affected bone area, the fibrous tissue 5 

encapsulates and isolates the materials surrounding the living bone. In contrast, 6 

bioactive ceramics can bond to living bone directly owing to their ability to form a 7 

bone-like apatite layer on their surface. However, bioactive ceramics have some 8 

drawbacks e.g., they cannot deform easily to fit into the defect area or they exert stress 9 

shielding effects after implantation. Such issues are due to the brittleness and high 10 

Young’s modulus of ceramics. 11 

As a result, organic–inorganic composites, for bone substitutes, have been 12 

examined to improve the mechanical properties of bioactive ceramics. The biomimetic 13 

process using simulated body fluid (SBF) is one of the methods commonly employed 14 

for preparing apatite–organic polymer composites. Such composites are expected to 15 

show mechanical properties similar to that of living bone as well as bioactivity. In this 16 

process, functional groups that can induce heterogeneous nucleation of apatite such as –17 

COOH [4], –SO3H [5], –PO3H2 [4], Si–OH [6], Ti–OH [7], or Ta–OH [8] are introduced 18 
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into the organic matrix to obtain the composite. 1 

The heterogeneous nucleation of apatite is promoted by the release of chemical 2 

species, thereby increasing the supersaturation degree with respect to apatite [9]. For 3 

example, to release Ca2+ from the polymers, calcium salt [5, 10] is added or treatment 4 

with aqueous solutions of calcium salts [11–14] is performed. In the case of CaCl2 5 

treatment, polymers that feature excellent swelling properties in aqueous solution are 6 

used, thus facilitating the release of Ca2+ to SBF [12]. 7 

Phosphate groups are effective for not only apatite formation, but also activity 8 

of osteoblast-like cells [15–16]. The cell adhesion and growth was increased as 9 

phosphate content increases. The incorporation of phosphate groups into the polymer is 10 

expected to afford various composites with high biological compatibility. 11 

In our previous research, a phosphate-containing copolymer was prepared from 12 

vinylphosphonic acid (VPA) and triethylene glycol dimethacrylate (TEGDMA) through 13 

radical polymerization [17]. Although the low added amount of sodium p-toluene 14 

sulfonate (p-TSS), as a polymerization accelerator, inhibited degradation of the polymer, 15 

apatite was not formed in SBF irrespective of the composition employed. This 16 

phenomenon suggests that the presence of phosphate groups is insufficient to induce 17 

apatite formation. 18 
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Conversely, incorporating Ca2+ could be effective for improving the 1 

apatite-forming ability of the copolymer. Moreover, the phosphate groups in the 2 

polymer are expected to influence the adsorption and release of Ca2+ because phosphate 3 

is hydrophilic and can readily instigate ion–ion interactions with Ca2+ [18]. 4 

Furthermore, phosphate content is also expected to affect heterogeneous 5 

nucleation of apatite on the copolymer in SBF due to the above mentioned ion-ion 6 

interaction. Increase in carboxyl group content promotes the heterogeneous nucleation 7 

thorough interaction with Ca2+ [4]. Several researchers investigated apatite-forming 8 

ability of the synthetic polymer [19] or natural polymer [20] containing phoshonic acid 9 

through the phosphorylation process. However, these reports had no discussion 10 

regarding the effects of phosphate group content on surface condition and its apatite 11 

formation behavior in SBF. These points are important to obtain the apatite-phosphate 12 

polymer composites through the biomimetic process using SBF. 13 

In this study, VPA-based copolymers having different phosphate contents were 14 

prepared by addition of 2-hydroxyethyl methacrylate (HEMA) and TEGDMA. Apatite 15 

formation on the copolymers in SBF was investigated and discussed in terms of Ca2+ 16 

release, ionic interaction between the phosphate group and Ca2+, and variation in the 17 

surface zeta potential. 18 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

1 

2. Materials and methods2 

2.1. Preparation of VPA-HEMA-TEGDMA copolymers 3 

Table 1 lists the amounts of monomers used for the preparation of the 4 

copolymers. The amount of the monomers totaled to 10 g. The specimens are denoted as 5 

xVyHzT, where x, y, and z refer to the amounts (mol%) of VPA (V), HEMA (H), and 6 

TEGDMA (T), respectively. Monomers VPA (95%, Tokyo Chemical Industry Co., Ltd., 7 

Tokyo, Japan), HEMA (95%, Wako Pure Chemical Industries, Ltd., Osaka, Japan), and 8 

TEGDMA (90%, Wako Pure Chemical Industries, Ltd.) were mixed. Then, 0.5 wt.% 9 

p-TSS (98%, Tokyo Chemical Industry Co., Ltd.) and 2 wt.% N,N′-dimethyl-p-toluidine10 

(97%, Wako Pure Chemical Industries, Ltd.) were added to the combined monomers. 11 

Subsequently, (±)-camphorquinone (97%, Wako Pure Chemical Industries, Ltd.) was 12 

added at a concentration of 1 mol% relative to the total molar amount of monomers; the 13 

mixture was stirred in the dark for 1 h. 14 

Then, the 1.1-g mixture was poured into polypropylene cups and irradiated 15 

under blue light (460 nm) for 1 h to polymerize the monomers. The obtained copolymer 16 

specimens were dried at 60°C for 1 day, and subsequently cut (10 mm × 10 mm × 1 17 

mm) and polished with waterproof abrasive paper (SiC, #1000). The specimens were18 
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then soaked in ultra pure water for 1 day at room temperature to remove unreacted 1 

reagents. Subsequently, the copolymer specimens were soaked in 30 mL of 1 kmol·m−32 

calcium chloride solution at 36.5°C for 1 day. 3 

4 

2.2. Soaking of specimens in SBF and Tris-NaCl buffer solutions 5 

The copolymers specimens were soaked in 30 cm3 SBF at 36.5°C for various 6 

times up to 5 days. SBF (Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl− 147.8, HCO3
− 4.2, 7 

HPO4
2− 1.0, SO4

2− 0.5 mol·m−3) was prepared by adding NaCl, NaHCO3, KCl, 8 

K2HPO4·3H2O, MgCl2·6H2O, CaCl2, and Na2SO4 (Nacalai Tesque, Inc., Kyoto, Japan) 9 

to ultra pure water in this order [6]. The pH of the resulting solution was adjusted to 10 

7.40 by addition of tris(hydroxymethyl)aminomethane (Nacalai Tesque, Inc.) and an 11 

appropriate volume of 1 kmol m−3 HCl solution. 12 

Also, the specimens were soaked in 30 cm3 Tris-NaCl buffer at 36.5°C for 1 13 

day to measure the amount of Ca2+ released from the copolymer specimens. Tris-NaCl 14 

buffer (142 mol·m−3 NaCl and 50 mol·m−3 tris(hydroxymethyl)aminomethane) was 15 

prepared by sequential addition of NaCl and tris(hydroxymethyl)aminomethane to ultra 16 

pure water. Then, an appropriate volume of 1 kmol·m−3 HCl solution was added to the 17 

solution to adjust the pH to 7.40. 18 
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1 

2.3. Characterization 2 

Following soaking of the copolymer specimens in CaCl2 solution, the 3 

specimens were analyzed by wavelength-dispersive X-ray fluorescence spectroscopy 4 

(ZSX101e, Rigaku Co., Tokyo, Japan) to determine the Ca content. The surface of the 5 

copolymer specimens soaked in SBF for various periods was analyzed with thin-film 6 

X-ray diffraction (TF-XRD; MXP3V, Mac Science, Co., Yokohama, Japan), scanning7 

electron microscopy (SEM) using an S-3500N scanning electron microscope (Hitachi 8 

Co., Tokyo, Japan) equipped with an energy-dispersive X-ray (EDX) analysis system 9 

(EMAX Energy, Horiba Ltd., Kyoto, Japan), and Fourier transform infrared (FT-IR; 10 

FT/IR-6100, JASCO Co., Tokyo, Japan) spectroscopy using an attenuated total 11 

reflectance method. In the TF-XRD analysis, the angle of the X-ray (Cu Kα) was fixed 12 

at 1° relative to the surface of the sample. For the SEM-EDX analysis, the surfaces of 13 

the samples were coated with carbon using a carbon coater (CADE, Meiwafosis Co., 14 

Ltd., Osaka, Japan). For the FT-IR analysis, a diamond prism was used to record the 15 

FT-IR spectra at a resolution of 1 cm−1. 16 

The concentrations of Ca in the Tris-NaCl buffer and P and Ca in SBF after 17 

soaking the copolymer specimens were measured using inductively coupled plasma 18 
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optical emission spectrometry (Optima 4300DV CYCLON, PerkinElmer Inc., London, 1 

UK). The pH of the SBF solution following soaking of the different specimens was 2 

determined using a pH meter (F-23IIC, Horiba Ltd.). 3 

The surface zeta potential of the copolymer specimens in SBF was measured 4 

using a zeta potential analyzer (Otsuka Electronics Co., Osaka, Japan) connected to 5 

box-like quartz cell. After the copolymer specimens were soaked in SBF for various 6 

periods, the surface of the specimens was washed with ultra pure water. The washed 7 

specimen was introduced into the quartz cell. Then, fresh SBF and polyethylene latex 8 

particles (Otsuka Electronics Co.) were injected into the cell. To measure the surface 9 

zeta potential, the electrophoretic mobility of the particles was measured using the laser 10 

Doppler method. 11 

12 

3. Results13 

Figure 1a shows the content of Ca in the specimens prepared with varying 14 

amounts of VPA after soaking in CaCl2 solution. The content increased as the 15 

VPA/HEMA ratio increased. The Ca concentration in Tris-NaCl buffer after soaking the 16 

specimens for 1 day is shown in Fig. 1b. The concentration increased with increasing 17 

VPA/HEMA contents. 18 
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Figure 2 shows SEM images of the specimens after soaking in SBF for various 1 

periods. The deposition was observed on the surface of 01V94H05T after soaking SBF 2 

within 1 day. The morphology of deposition consisted of flake-like particles. On the 3 

other hand, deposition was not formed on the 10V85H05T and 40V85H05T within 5 4 

days. 5 

Figure 3 shows the TF-XRD patterns of the specimens after soaking in SBF for 6 

various periods. After soaking for 1 day, 01V94H05T displayed two broad peaks at 2θ 7 

26° and 32°, which were assigned to apatite (JCPDS #09-0432). In contrast, these peaks 8 

were not observed in 10V85H05T and 40V55H05T regardless of the soaking time. 9 

Figure 4 shows the variations in the concentration of P and Ca in SBF and 10 

solution pH after soaking the specimens for various periods. As observed in Fig. 3a, for 11 

01V94H05T, the concentration of P decreased with increasing soaking times. In contrast, 12 

the concentration of P remained rather constant after soaking 10V85H05T or 13 

40V55H05T. Conversely, for all three specimens, the concentration of Ca initially 14 

increased and then decreased slightly with increasing soaking times (Fig. 4c, d). The 15 

concentration of Ca increased in the order of 01V94H05T < 10V85H05T < 40V55H05T. 16 

The solution pH, after soaking, decreased monotonically for 40V55H05T, whereas that 17 

of the remaining specimens initially increased slightly and subsequently remained 18 
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unchanged (Fig. 4b). 1 

Figure 5 shows the changes in the molar ratio of Ca/P and content of P on the 2 

surfaces of 01V94H05T and 10V85H05T, and SEM images of 01V94H05T after 3 

soaking in SBF for various periods analyzed by SEM-EDX. The Ca/P ratio for both 4 

specimens decreased in the first 3 h of soaking and then increased. The Ca/P ratio of 5 

01V94H05T was higher than that of 10V85H05T irrespective of soaking time. The P 6 

content of 01V94H05T increased after 6 h of soaking, whereas that of 10V85H05T 7 

remained constant at all soaking times studied. Deposition was first observed after 12 h 8 

on the surface of 01V94H05T in SBF. 9 

Figure 6 shows the changes in the zeta potential of 01V94H05T and 10 

10V85H05T. The potential of 01V94H05T changed from negative to positive after 11 

soaking in SBF for 9 h. In contrast, the potential of 10V85H05T only increased slightly 12 

from the negative value to attain a zero value after 6 h of soaking. 13 

Figure 7 shows the FT-IR spectra of 01V94H05T and 10V85H05T after 14 

soaking in SBF for various periods. The peak at 900 cm−1, which was attributed to C–C 15 

stretching vibrations of HEMA, was observed for 01V94H05T after soaking in SBF for 16 

0–9 h [21-22]. The peak disappeared after 12 h of soaking owing to the formation of a 17 

deposition layer on the specimen. In contrast, 10V85H05 displayed a peak at 889 cm−1, 18 
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which was attributed to P–O bond in the –P–O−···Ca2+ complex, as well as the peak 1 

corresponding to C–C stretching at all soaking times investigated [17, 19]. 2 

3 

4. Discussion4 

The amount of Ca incorporated into the prepared copolymer and released into 5 

Tris-NaCl increased with increasing contents of the phosphate group (Fig. 1). The 6 

swelling property of the copolymer is affected by not only the cross-link density, but 7 

also the charge of the functional groups [16, 23]. The repulsion induced by ionic groups 8 

with the same charge acts as a driving force for swelling. The increase in the phosphate 9 

group content enhances swelling, therefore higher contents of phosphate would promote 10 

the adsorption of Ca2+ onto the copolymer upon CaCl2 treatment and release of Ca2+ into 11 

the solution. 12 

Apatite formation on the copolymer was rather suppressed upon increases in 13 

the phosphate content despite the enhanced release of Ca2+ from the copolymer. To 14 

further understand this phenomenon, the supersaturation degree with respect to apatite 15 

in SBF was calculated. Figure 8 shows changes in the relative supersaturation degree, σ, 16 

of the copolymers in SBF, calculated using Equation (1) [24]: 17 
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/1

/1/1

HAp

HApHAp

Ksp

KspIP 
 , (1) 1 

where IPHAp, KspHAp, and ν are the ionic activity products of HAp, solubility product of 2 

HAp (5.5 × 10−118 ), and the number of ions in an HAp molecule (18), respectively. The 3 

IPHAp was estimated according to Equation (2): 4 

263

4

1022610 ][][][)()()( 3
4

2


 OHPOCaIP

OHPOCaHAp  . (2) 5 

The values of γCa2+, γPO4
3 − , and γOH −  are respectively 0.36, 0.06, and 0.72 at 6 

physiological ionic strength (μ = 0.16) [25]. For all the specimens, the degree of 7 

supersaturation increased slightly and subsequently decreased. The degree of 8 

supersaturation increased in the order of 40V55H05T ≈ 01V94H05T < 10V85H05T. 9 

However, apatite was only observed on 01V94H05T (Fig. 2 and 3). These results 10 

suggest that apatite formation of the copolymer was governed by surface chemical state 11 

rather than increase in supersaturation degree owing to Ca2+ release. 12 

The difference in the surface state of the specimens having various contents of 13 

phosphate in SBF can be interpreted as follows. The zeta potential of 01V94H05T 14 

increased more significantly than that of 10V85H05T after 6 h of soaking in SBF (Fig. 15 

6). As reported, the potential of soft solids, such as a gel or a polymer, is governed by 16 

not only the charge on the outermost surface, but also the charge inside the solid, unlike 17 

that of hard solids such as metal oxides [26–27]. Therefore, Ca2+ would accumulate near 18 
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14 

the surface of the soft specimens after soaking in SBF. Furthermore, the complex –P–1 

O−···Ca2+ formed on 10V85H05T only upon soaking in SBF (Fig. 7). Based on the 2 

result, it is assumed that the amount of free Ca2+ is larger than that of Ca2+ tightly bound 3 

to phosphate groups on the surface and/or inside 01V94H05T and that the negative 4 

charge on 10V85H05T is neutralized in SBF upon tight binding with Ca2+. The free 5 

Ca2+ would readily bond with phosphate ions in SBF for conversion into apatite. The 6 

decrease in the zeta potential of 01V94H05T after 9 h of soaking supports this 7 

assumption. Conversely, further ion adsorption to induce apatite nucleation did not 8 

occur on 10V85H05T. 9 

The surface potential has been previously reported as a contributing factor to 10 

the formation of apatite on various substrates in SBF [28]. For example, the zeta 11 

potential of high-molecular-weight polyethylene containing –SO3H groups and Ca2+ 12 

becomes positive upon soaking in SBF and subsequently adsorbs PO4
3− to induce 13 

apatite nucleation [29]. In contrast, the polymer modified with –SO3H only did not form 14 

apatite in SBF. Accordingly, as observed, the surface potential of 10V85H05T was 15 

insufficiently positive to adsorb PO4
3− and therefore it did not form apatite. 16 

The results in this study showed that materials with larger amounts of 17 

phosphate group inhibit apatite formation in SBF. However, as reported, phosphate 18 
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groups in the self-assembled monolayer on gold can interact with PO4
3− after binding 1 

with Ca2+ in SBF, subsequently instigating apatite formation [4]. This suggests that the 2 

binding state of the phosphate groups with Ca2+ is different in the present results. 3 

Specifically, the acidity of the phosphate-containing compounds is different owing to 4 

their different chemical structure [30]. The effects of chemical structure and space 5 

distribution of phosphate groups on the binding state and apatite formation on 6 

phosphate-containing polymers deserve further investigation in future work. 7 

8 

5. Conclusion9 

The effect of the amount of phosphate groups on the apatite-forming ability of 10 

VPA-HEMA-TEGDMA treated with CaCl2 solution was investigated in SBF. Increasing 11 

the content of VPA enhanced the release of Ca2+ from copolymer. However, apatite 12 

formation was only induced on the copolymer prepared with 1 mol% of VPA (lowest 13 

amount studied). Higher VPA content rather inhibited the apatite formation because 14 

PO4
3- could not react with free Ca2+ on the surface due to the increase in amount of Ca2+15 

tightly binding with phosphate group. It was found that phosphate groups in VPA 16 

produce the unsuitable surface condition for heterogeneous nucleation of the apatite. 17 

The future works are required to precisely investigate the effects of detailed chemical 18 
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structure and binding state with Ca2+ of the phosphate groups on apatite formation． 1 

2 
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Figure and table captions 1 

2 

Fig. 1 (a) Ca content in the copolymer specimens after soaking in 1 kmol m−3 CaCl2 3 

solution and (b) Ca concentration in Tris-NaCl buffer following soaking of the different 4 

copolymer specimens (N = 3). 5 

Fig. 2 SEM images of the specimens after soaking in SBF for various periods. 6 

Fig. 3 TF-XRD patterns of the copolymer specimens following soaking in SBF for 7 

various periods 8 

Fig. 4 Changes in (a) P concentration, (b) pH, and (c, d) Ca concentration in SBF 9 

following soaking of the different copolymer specimens (N = 3). 10 

Fig. 5 Changes in the (a) molar ratio of Ca/P and (b) abundance of P on the surface of 11 

01V94H05T and 10V85H05T following soaking in SBF 12 

Fig. 6 Changes in the surface zeta potentials of 01V94H05T and 10V85H05T following 13 

soaking in SBF (N = 3). 14 

Fig. 7 FT-IR spectra of 01V94H05T and 10V85H05T following soaking in SBF for 15 

various periods 16 

Fig. 8 Changes in the relative supersaturation degree in SBF following soaking of the 17 

different copolymer specimens 18 
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Table 1 Composition of the monomers employed during synthesis of the copolymer 1 

specimens 2 
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