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Abstract

The B-BANDWIDTH problem is a decision problem whether the bandwidth of a given graph
is smaller than B, and it is NP-complete even if the graph is a small graph class of trees. Cygan
and Pilipczuk proposed exponential time and space algorithms for B-BANDWIDTH with n/3 ≤ B
where n is the number of vertices. In this paper, we propose two algorithms for the B-BANDWIDTH

problem with n/4 ≤ B < n/3. These algorithms are extension of Cygan and Pilipczuk algorithms
with restricted B. One of the algorithms takes O∗(4.5n) time and O∗(1.5n) space when n/4 ≤ B <
n

2
log2 1.5, and the other takes O∗(4.77n) time and O∗(1.59n) space when n

2
log2 1.5 ≤ B < n/3.

Our algorithms are fastest O∗(2n) space algorithms for n/4 ≤ B < n/3.

1 Introduction

Let G = (V,E) be an undirected graph where n = |V |. For a vertex ordering π : V → {1, . . . , n},

bandwidth of π is the maximum difference between positions of adjacent vertices, i.e., max{u,v}∈E |π(u)−
π(v)|. If the bandwidth of π is at most B, we call π a B-ordering. The bandwidth of the graph is the

minimum bandwidth over all orderings, and it is denoted by bw(G). The BANDWIDTH problem is that

of finding bw(G) and its ordering for a given graph G. The B-BANDWIDTH problem is a decision

problem whether the bandwidth of the graph G is smaller than B. There are many applications of the

BANDWIDTH problem in sparse matrix computations and in molecular biology [7, 9].

Computing the bandwidth of a graph is one of the NP-hard problems, even if G is restricted to

a caterpillar with hair length three which is a small class of trees [11]. Moreover, the BANDWIDTH

problem is known to be APX-hard even if the input graph is a caterpillar [12]. Bodlaender et al. showed

that the BANDWIDTH problem are hard for various levels of the W hierarchy, that is, there is no fixed

parameter tractable algorithms unless FPT= W [t] for every t ≥ 1 [8]. Recently, Dregi and Lokshtanov

showed that there is no f(B)no(B) time algorithm for BANDWIDTH of trees of pathwidth at most two

under assumption of the Exponential Time Hypothesis [10].

From view point of exponential exact algorithms, the BANDWIDTH can be solved in O∗(n!) time

by exhaustive search where the O∗ means the polynomial factors omitted. Feige and Kilian proposed

O∗(10n) time and polynomial space algorithm for B-BANDWIDTH [5]. This is the first algorithm

that runs in O∗(cn) time where c is constant. Cygan and Pilipczuk proposed O∗(9.363n) time algo-

rithm that runs in poly-space, recently [2]. They also presented some exponential space algorithms

for B-BANDWIDTH. The complexity of these algorithms are O∗(5n) time and O∗(2n) space [3, 4, 6],

O∗(4.83n) time and O∗(4n) space [4], and O∗(4.383n) time and O∗(4.383n) space, respectively [1].

Additionally, they proposed exact algorithms for B-BANDWIDTH with restricted B [3]. These algo-

rithms run in O∗(2.83n) time and O∗(1.42n) space when n/2 ≤ B, and O∗(4n) time and O∗(1.42n)
space when n/3 ≤ B < n/2, respectively. We describe these results in Table 1.

In this paper, we propose two algorithms for the B-BANDWIDTH problem with n/4 ≤ B < n/2.

Our algorithms are extension of Cygan and Pilipczuk algorithms, although our algorithms is slower
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Table 1: Algorithms for B-BANDWIDTH

Algorithms Restriction of B Time Space

(a) naive none O∗(n!) polynomial

(b) [5] none O∗(10n) polynomial

(c) [2] none O∗(9.363n) polynomial

(d) [3] none O∗(5n) O∗(2n)
(e) [4] none O∗(4.83n) O∗(4n)
(f) [1] none O∗(4.383n) O∗(4.383n)
(g) [3] n/2 ≤ B O∗(2.83n) O∗(1.42n)
(h) [3] n/3 ≤ B < n/2 O∗(4n) O∗(1.42n)

than their algorithm (h) in Table 1 for n/3 ≤ B < n/2. The complexity of the first algorithm is

O∗(3n × 22B) time and O∗(22B) space, and that of the second one is O∗(2n+2B × 22B) time and

O∗(22B) space. If B ≤ n
2 (log2 1.5) ≈ 0.29n, the second algorithm is faster than the other. Thus, the

second algorithm takes O∗(4.5n) time and O∗(1.5n) space when n/4 ≤ B < n
2 log2 1.5, and the first

one takes O∗(4.77n) time and O∗(1.59n) space when n
2 log2 1.5 ≤ B < n/3. Our algorithms are fastest

O∗(2n) space algorithms for n/4 ≤ B < n/3. Thus, we assume that n/4 ≤ B < n/3 in this paper.

2 Preliminary

In this paper, we treat simple, undirected, and connected graphs. The neighbor set of a vertex v is the

set N(v) = {u ∈ V | {u, v} ∈ E}. For V ′ ⊂ V , the set of the neighbors in V \ V ′ of vertices in V ′ are

called neighbor set of V ′, and its set is denoted by N(V ′). That is N(V ′) = (
⋃

v∈V ′ N(v)) \ V ′. Let

G[V ′] denote a subgraph of G = (V,E) induced by V ′ ⊆ V .

3 Algorithms

In this section, we propose two algorithms for B-BANDWIDTH problem with n/4 ≤ B < n/3. These

algorithms consist of two phases. In the first phase, we partition the vertices V into V1, V2, V3, and V4

such that |V2| = |V3| = B + 1, |V1| = s, and |V4| = n − (s + 2B + 2) where s = ⌊(n − 2B − 2)/2⌋.

From n/4 ≤ B < n/3, |V1| and |V4| are smaller than B. In the second phase, the algorithms find a

B-ordering π on the partitions such that for any v1 ∈ V1, v2 ∈ V2, v3 ∈ V3, and v4 ∈ V4, π(v1) <
π(v2) < π(v3) < π(v4). If N(V1) ∩ (V3 ∪ V4) ̸= ∅ or N(V4) ∩ (V1 ∪ V2) ̸= ∅, there is no B-orderings

in the second phase, clearly. We define (V1, V2, V3, V4) as a valid partition if N(V1) ∩ (V3 ∪ V4) = ∅
and N(V4) ∩ (V1 ∪ V2) = ∅.

In our algorithms, we construct all valid partitions in the first phase. For each partition, we compute

the B-ordering in the second phase. The second phase of our two algorithms are same. In this section,

we first describe the second phase of the algorithms. Then, we explain the first phase of the algorithms,

respectively.

3.1 The Second Phase of the Algorithms

The second phase of the algorithms finds a B-ordering from a valid partition of V using dynamic pro-

gramming. This phase is a combination of the second phase of the algorithms (d) and (h) in Table 1. We

first assign the vertices in V2 and V3 to slots {s+1, . . . , s+B+1} and {s+B+2, . . . , s+2B+2}, re-

spectively. After that, the vertices in V1 and V4 are assigned to slots {1, . . . , s} and {s+2B+3, . . . , n},

respectively.
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Figure 1: Each box corresponds to a slot, and each block is assigned the vertices Vi. The numbers in the

slots are the assigned order of the second phase.

We first describe how to assign the vertices in V2 and V3. We define an order of pairs of slots

(s + 1, s + B + 2), (s + 2, s + B + 3), . . . , (s + B + 1, s + 2B + 2) (see Figure 1). Our algorithms

assign the vertices in V2 and V3 in the order. Let a vertex set Ai ⊆ V2 ∪ V3 be assigned vertices, that is,

the slots {s + 1, . . . , s + i} and {s + B + 2, . . . , s + B + i + 1} have already assigned by Ai. Now,

we try to assign the vertices (v2, v3) to the slots (s + i + 1, s + B + i + 2), where v2 ∈ V2 \ Ai and

v3 ∈ V3 \ Ai. We consider the conditions of the assignable vertex pair (v2, v3) in G[V2 ∪ V3]. If there

is a vertex v′3 ∈ V3 \ Ai such that {v2, v′3} ∈ E, then we call the vertex v2 invalid, otherwise valid. If

a vertex v2 is invalid, we cannot be assigned v2 the slot s + i for Ai, because v′3 will assigned a slot

k ∈ {s +B + i+ 2, . . . , s+ 2B + 2} and the distance of the slots s+ i and k is at least B + 1. Here,

we have the following lemma.

Lemma 1. For a given partition V2 and V3, there is a B-ordering π in G[V2 ∪ V3] such that for each

vertex v2 ∈ V2, π(v2) ∈ {1, . . . , B + 1} and for each vertex v3 ∈ V3, π(v3) ∈ {B + 2, . . . , 2B + 2}
if and only if there is a sequence of vertex sets ∅ = A0, A1, . . . , AB+1 = V2 ∪ V3 such that for every

i ∈ {0, 1, . . . , B}, Ai ⊂ Ai+1 and Ai+1\Ai = {v2i , v
3
i } where v2i ∈ V2\Ai, v2i is valid, and v3i ∈ V3\Ai.

Proof. Let v2i be a vertex where π(v2i ) = s+ i. Let v2i be a vertex where π(v2i ) = i. Since the ordering

π is a B-ordering, there is no vertex v′3 such that {v2i , v
′
3} ∈ E and π(v′3) ∈ {B + i + 2, . . . , 2B + 2}.

Thus, the vertex v2i is valid for every i ∈ {1, . . . , B + 1}.

We construct an ordering π from the sequence A0, A1, . . . , AB+1. Let Ai+1 \ Ai = {v2i , v
3
i } where

v2i ∈ V2 \Ai and v3i ∈ V3 \Ai. For each i ∈ {1, . . . , B +1}, we set π(v2i ) = i and π(v3i ) = B + i+1,

respectively. Since v2i is valid, there is no vertex v′3 ∈ V3 which is adjacent to v2i and π(v′3) ≥ B+ i+1.

Therefore, the ordering π is a B-ordering in G[V2 ∪ V3].

From Lemma 1, our algorithms construct a sequence ∅ = A0, A1, . . . , AB+1 = V2 ∪ V3 such that

for every i ∈ {0, 1, . . . , B}, Ai ⊂ Ai+1 and Ai+1 \ Ai = {v2i , v
3
i } where v2i ∈ V2 \ Ai, v2i is valid,

and v3i ∈ V3 \ Ai. We call such a sequence crucial. From the crucial sequence, we set π(v2i ) = s + i
and π(v3i ) = s + B + i + 1 for each i ∈ {1, . . . , B + 1}. To find a crucial sequence, our algorithms

use the dynamic programming. However, even if there is a crucial sequence, a B-ordering in G does

not necessarily exist because the assignments of the vertices in V1 and V4 are not considered. Namely,

for every ordering of V1 or V4, there might be an edge (v1, v2) ∈ V1 × V2 or (v3, v4) ∈ V3 × V4 with

distance at least B+1 in the ordering constructed by a crucial sequence. To avoid such case, we check

that there is a B-ordering including the vertices V1 and V4 when we construct a crucial sequence for V2

and V3. For this check, we give the following lemma by slightly extending of Corollary 4 in [3].

Lemma 2. Let A0, A1, . . . , AB+1 be a crucial sequence. The order corresponding to the crucial se-

quence of V2 is a suffix of some B-ordering of V1 ∪ V2 if and only if for every i ∈ {1, . . . , B + 1},

|N(V2 \ Ai+1) ∩ V1| ≤ B − i− 1. The order corresponding to the crucial sequence of V3 is a prefix of

some B-ordering of V3 ∪ V4 if and only if for every i ∈ {1, . . . , B + 1}, |N(Ai+1) ∩ V4| ≤ i. We call

such sets Ai+1 valid.
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By using this lemma, our algorithms check the validity when vertices v2i and v3i are assigned. After

assigned the vertices in V2 and V3, we compute an ordering of V1 and V4 in greedy manner [3]. Because

this process runs correctly when |V1| and |V4| are at most B, B is restricted at least n/4. We describe

the second phase of the algorithms in Algorithm 1.

Algorithm 1: The second phase of the algorithms

Input : A natural number B, a graph G, and a valid partition V1, V2, V3, and V4 of V .

Output: A B-ordering π if there is a B-ordering under the input partition, or “No” otherwise.

begin

Initialize A0 = ∅ and A0 = {A0};

for i = 0 to B do

if Ai is empty then

return “No”;

for each Ai ∈ Ai do

for each pair (v2i , v
3
i ) ∈ (V2 \ Ai)× (V3 \ Ai), where v2i is valid do

Let Ai+1 = Ai ∪ {v2i , v
3
i };

if Ai+1 is valid then

Add Ai+1 to Ai+1;

Order the vertices V1 and V4, respectively;

Next, we discuss the time complexity of the second phase. The dynamic programming described in

Algorithm 1 takes O∗(22B) time and space. Concretely, we have to consider the all sets Ai, and the size

of the family Ai of the sets is at most 22B space. Since B is smaller than n/3, 22B ≤ 2
2

3
n ≈ 1.59n.

Therefore, this phase can be computed in O∗(1.59n) time and space.

Theorem 3. Given a natural number B, a graph G = (V,E) and a valid partition V1, V2, V3, and V4,

we can decide whether there is a B-ordering of G on the partition in O∗(22B) time and space. Since

n/4 ≤ B < n/3, it takes O∗(1.59n) time and O∗(1.59n) space.

3.2 The First Algorithm

In this section, we describe the first phase of the first algorithm. This is the same process to the first

phase of the algorithm (c) in Table 1.

Let T be any spanning tree of G and r be a root in T . We process the vertices in preorder of the

depth first search from r. Let a vertex sequence r = v1, v2, . . . , vn be the order. The first algorithm

assigns the root r in one of V1, V2, V3, and V4. For every i = 2, . . . , n, we set vi in one of Vk−1, Vk,

and Vk+1, where the parent of vi is assigned Vk, V0 = V1 and V5 = V4. Finally, the algorithm checks

whether the partition is valid. Thus, we compute such all partitions in every possible way. The number

of assignments of the root has four cases and that of other vertices have at most three cases. Therefore,

we have the following lemma [3].

Lemma 4. The first phase of the first algorithm generates at most 4× 3n−1 partitions.

We discuss the complexity of the first algorithm. The first phase of the first algorithm runs in O∗(3n)
time and polynomial space. It takes O∗(22B) time and space in the second phase. The first algorithm

takes O∗(22B × 3n) time and O(22B) space. Because of B < n/3, it takes O∗(1.59n × 3n) time and

O∗(1.59n) space.
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Theorem 5. The first algorithm runs in O∗(22B ×3n) time and O∗(22B) space. Since n/4 ≤ B < n/3,

it takes O∗(4.77n) time and O∗(1.59n) space.

3.3 The Second Algorithm

In this section, we describe the first phase of the second algorithm. The second algorithm first partition

V into V23 and V14 such that |V23| = 2(B + 1) and |V14| = n − 2(B + 1) in every possible way. For

each partition, we next compute all partitions V2 and V3 from V23, where |V2| = |V3| = B+1. Then, the

algorithm computes a partition of V14 in the following way. Since neighbors of V2 cannot be in V4, we

assign neighbors of V2 in V14 to V1. Then, we assign the set N(V1) ∩ V14 to V1 and repeat this process

until the set becomes empty. After assignment of V1, the algorithm makes V14 \ V1 into V4. Since the

input graph is connected, all vertices in V14 are assigned. Thus, this process terminates in polynomial

time. Finally, we check validity of the partition.

We discuss the complexity of the second algorithm. The first phase of this algorithm takes O∗(2n+2B)
time. The second phase of the algorithm runs in O∗(22B) time and space. Thus, the second algorithm

runs in O∗(2n+4B). Since B is smaller than n/3, 2n+4B ≤ 2
7

3
n ≈ 5.04n. If B ≤ n

2 (log2 1.5) ≈
0.29n, 2n+4B ≤ 22B × 3n. Therefore, the second algorithm is faster than the first algorithm when

B ≤ n
2 (log2 1.5) ≈ 0.29n.

Theorem 6. The second algorithm runs in O∗(2n+4B) time and O∗(22B) space. When n/4 ≤ B <
n
2 (log2 1.5), it takes O∗(4.5n) time and O∗(1.5n) space.
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