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Abstract: In this paper, we 1) provide a real nursing data set for mobile activity recognition that can be used for
supervised machine learning, 2) provide big data combined with the patient medical records and sensors attempted for
2 years, and also 3) propose a method for recognizing activities for a whole day utilizing prior knowledge about the
activity segments in a day. Furthermore, we demonstrate data mining by applying our method to the bigger data with
additional hospital data. In the proposed method, we 1) convert a set of segment timestamps into a prior probability of
the activity segment by exploiting the concept of importance sampling, 2) obtain the likelihood of traditional recogni-
tion methods for each local time window within the segment range, and, 3) apply Bayesian estimation by marginalizing
the conditional probability of estimating the activities for the segment samples. By evaluating with the dataset, the pro-
posed method outperformed the traditional method without using the prior knowledge by 25.81% at maximum by a
balanced classification rate, and outperformed by 6.5% the F-measure with accepting 1 hour of margin. Moreover,
the proposed method significantly reduces duration errors of activity segments from 324.2 seconds of the traditional
method to 74.6 seconds at maximum. We also demonstrate the data mining by applying our method to bigger data in
a hospital.
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1. Introduction

In the field of healthcare, the standardization of care processes,
termed Clinical or Critical pathways, has been attempted [14],
[26], [34], [44], [47], [49]. In meeting such an objective, the
recognition and data mining of nursing activities can lead to a
better understanding and improvements in medical care, and they
can help prevent unnecessary activities and excessive work. At
the same time, these approaches are beneficial to patients because
the overall care process is optimized, thus resulting in shorter hos-
pitalization times and lower costs.

Recently, researchers have explored the possibility of hu-
man activity recognition with mobile sensors; for example, ac-
celerometers, gyroscopes, and low-frequency audio have been ex-
plored [2], [5], [10], [29], [31], [33], [35], [36], [46], [52], [58].
In addition, several researchers have applied such technology to
domain-specific applications in nursing activities [40], [43], [53].
However, in the available methods, several issues still remain:
The nature of the real activities is not clear

In the application of nursing activity recognition, the activity

classes — the types of activities — are defined in a domain-
specific manner (as listed in Table 1). Here, the activities are
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not always easy to recognize because the table includes feature
value varieties even for single classes, such as blood pressure
measurements starting by attaching the corresponding equipment
to a patient, followed by pushing air pumps periodically, and
finishing with detaching the equipment. Moreover, such activi-
ties have imbalance varieties, such as the number of occurrences
among classes, starting times in a day, and duration. For exam-
ple, complex activities, such as capturing X-ray, require dozens
of minutes, whereas other activities are completed more quickly.
Because the traditional approach normally assumes that activ-
ity classes have similar probabilities of being performed, similar
probabilities any time in a day, and similar durations, the way in
which the accuracy changes when we consider such imbalances
is not known.
The goal is not clear

In the application of nursing activity analysis, we can set up
clear goals, such as improving nursing activities effectively for
timing, duration, and patient satisfaction, or optimizing the costs
of the nursing process. For such goals, the technical objective is
not only improving the recognition accuracy each time, derived
from the traditional recognition from the current time window or
those in the vicinity (called local time windows), but also esti-
mating the segment — the range where the activity is performed
continuously — attached with correct timestamps and durations.
Thus, by clarifying the goals of the application, we could choose
the recognition aspects to which to assign importance, but this is
not the case with the existing work.
No dataset with clear goals

To overcome the aforementioned challenges, we require real

c© 2016 Information Processing Society of Japan 853



Journal of Information Processing Vol.24 No.6 853–866 (Nov. 2016)

data to evaluate or input into a machine learning algorithm. How-
ever, there is extreme shortage of such open datasets obtained
from multiple subjects, and a set of entire days with densely an-
notated labels. In the literature, there are several datasets, such
as Refs. [4], [7], [45] that provide data with longer times, but be-
cause they are not inteded for a clear application, it is not clear
what accuracy aspects to pursue.

For this paper, we collected 1) (labeled data) actual activities
from nurses wearing accelerometers in a hospital for approxi-
mately 2 weeks and combined them with training labels, which
resulted in 25 activity classes with 5,743 labels from 22 nurses,
and 2) (unlabeled data) the open big data for 60 nurses for 442
[days × people] in the trial for almost 2-years with the duty days
which could obtain agreements from the nurses and up to 100 pa-
tients, combined with patients’ wearable, vital, and environmen-
tal sensor data and medical records. From the obtained labeled
data, we observed that the activities have imbalances in the num-
ber of occurrences for each activity class, the starting times in a
day, and the duration of each activity class, as explained in Sec-
tion 2.

Then, we propose a method for recognizing whole day activ-
ities using prior knowledge on the information of a sequence of
activity segments which are obtained from a whole day training
dataset, such as the daily timestamps, duration, and imbalances
among activity classes, as explained in Section 3, based on our
papers [22], [23].

In the proposed method, we 1) convert the set of timestamps of
the training data into the prior probability of the activity segment
by exploiting the concept of importance sampling, 2) obtain the
likelihood for the test data with a traditional recognition method
for each local time window within the range of the segments, and
3) apply Bayesian estimation by marginalizing the conditional
probability of estimating the activities for the segment samples.

By evaluating with the nursing dataset in Section 4, the pro-
posed method outperformed the naive method without using prior
knowledge by 25.81% at maximum through the balanced classifi-
cation rate, and outperformed by 6.5% using the F-measure with
accepting 1 hour of margin. Moreover, the proposed method sig-
nificantly reduces the duration of errors of activity segments from
324.2 seconds of the naive method to 74.6 seconds in k-NN, from
173.5 seconds to 90.33 seconds in NaiveBayes, and from 122.2
seconds to 7.88 seconds in RandomForest.

In order to demonstrate research probabilities with ubiquitous
healthcare research to the community, we introduce an analy-
sis of the unlabeled data utilizing the machine-learning result
of the labeled data, combined with nurses’ profiles and medical
records, and applying RandomForest algorithm to generate re-
gression models with considering generalizing ability, and to in-
vestigate importances of each predictor variables as well as avoid-
ing interactions between predictor variables, and visualize the ef-
fects between predictor and response variables.

The contribution of our paper is four-fold: 1) provide the real
dataset *1 of nursing activities that can be used for supervised ma-
chine learning, and also big data combined with patient medi-

*1 http://nurseact.sozolab.jp

cal records and sensors, 2) propose a method for utilizing prior
knowledge on activity segments in a day, 3) evaluate the proposed
method for improvements on the accuracy of activity recogni-
tion and the durations of activity segments, and 4) demonstrate
data mining by applying our method to bigger data in a hospital
merged with additional hospital data.

2. Sensor Data Collection for Nursing Activi-
ties

We collected mobile-sensor data from the nurses of a hospital’s
cardiovascular center [41]. The experiment was first examined
and agreed by the ethical committee of the hospital, and exclu-
sive to those nurses who agreed to usage of the sensor data, and
to the duties related to patients who consented to participate in
the experiment.

It includes labeled data for 2 weeks, and unlabeled data for the
duty days which we could obtain agreements from up to 100 pa-
tients in 2 years. In this section, we describe the protocols for
data collection and review both of the labeled and the unlabeled
datasets.

2.1 Protocol
We requested the nurses to wear mobile devices (iPod touches)

that record accelerations in their breast pockets in a generally
fixed direction. They also attached a small accelerometer device
on their right wrist, and another on the back of their waist. Fig-
ure 1 illustrates the attachments. Each sensor measured acceler-
ations on three axes in the range of ±2G at 20 Hz.
2.1.1 Labeled Data Collection

The daytime duties of 22 selected nurses over the period over
two weeks on Feb. 2014 were labeled with mobile tablets by other
nurses who acted as observers. Before the trial, we defined 41 ac-
tivity classes from the clinical path, and asked the observers to
record them. The activity classes were extracted from the clini-
cal path, and the terms in clinical path has consistency with other
medical information standard such as HL7 *2 and NANDA [20].

Naturally, the quality assessment of the labeled data with sen-
sors is not straightforward, because even if we visualize the sen-

Fig. 1 Nurses with three accelerometers: one on their right wrist, one at-
tached to their breast pocket, and one on the back hip.

*2 http://www.hl7.org/
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sor data, we cannot discriminate one activity class from another.
That means, annotating labels for real activities requires careful
design. In real nursing activities, nursing the patient has the high-
est priority, and there are occurences of a lot of missing labels
or incorrect timestamps. Therefore, another nurse acted as an
observer, and operated another iPod touch device to record the
activities of the subject nurse. On the software on the iPod touch,
the observer selects the activity class which the subject nurse is
about to start, and pushes the finish icon when the subject finishes.

In reality, if the observer waits for the subject nurse to start the
activity, the start timestamp will have a latency than the correct
one. Therefore, they collaborated with each other to have correct
start timestamps, such that the subject nurse declares the activity
to the observer before s/he will start it. Moreover, in reality, a
nurse could perform several activities concurrently, and the pro-
posed method in this paper assumes such concurrency. However,
for the data collection, we gave priority to assure the accuracy of
a single activity in that case, because we found that attempting
to annotate concurrent activities using the iPod touch tool makes
the annotation inaccurate, such that the finishing times are not
completed.
2.1.2 Unlabeled Data Collection

In the same department of the hospital as above, we collected
unlabeled sensor data for 2 years from the nurses who wear three
accelerometers in the same way as the labeled data collection.

Since we also collected the patients’ sensor and medical data
associated with the nurses’ mobile sensor data, — which are out
of the main scope of this paper — we specifically collected the
nurses’ sensor data for the duty days which could obtain agree-
ments. The data we used are collected carefully to be able to be
open data, by obtaining agreements from the subject nurses and
the patients.
2.1.3 Formatting the Dataset

To interoperate the data sets for labeled and unlabeled data,
they were formatted uniformly as well as possible. The ID for the
nurses are consistent, then an ID for a nurse is the same for both
data sets.

Moreover, while each sensor on each position on the body
stores their sensor data separately on the device, it is useful for
data analysis to be merged into one multi-column table. There-
fore, we joined the data for 3 devices’ data of a duty date to a
single table in an off-line manner. We first generated timestamps
increasing by 20 Hz, which means 0.05 seconds, and adopted the
closest sample within 0.025 seconds for each timestamp. If there
are no samples within 0.025 seconds, we reused the last times-
tamp value.

Since each device has its own clock and they have no interac-
tion for time synchronization with each other, there is a risk that
the clock is not synchronized. To avoid this, we shook the de-
vices together periodically — once in a day on average — as a
reference timestamp, and used the relative time from the shaking
time as well as possible.

2.2 Overview of the Dataset
As the result of the experiment, we collected 346.5 [hours ×

people] of sensor data from 22 nurses by the labeled data collec-

tion, and 1,655 [day × people] from 60 nurses by the unlabeled
data collection.

To review the collected labels, we review the labels obtained
by the labeled data collection in the following.

After the trial, the activity classes actually observed were 25,
listed in Table 1. The total number of labels was 5,743. The
labels for each activity class are also listed in Table 1.

Figure 2 shows the plot of the start times for each activity in a
day range. Figure 3 shows the duration of each activity class.

As shown in Fig. 2, the number of activities varies among ac-
tivity classes. Moreover, we can see that the activities do not all

Table 1 Observed activity classes and numbers of labels.

No. Activity class # labels

1 Anamnese (patient sitting) 2
4 Measure height 45
5 Measure weight (dorsal) 8
8 Measure blood pressure (dorsal) 529
10 Sample blood (dorsal) 16
12 Start intravenous injection 61
13 Finish intravenous injection 40
15 Change drip/line 38
18 Assist doctor 19
19 Find artery 257
20 Examine edema (lie on back) 118
22 Check bedsore (sacrum/back heel) 10
23 Measure ECG 22
24 Attach ECG 54
25 Remove ECG 5
27 Attach bust bandage 29
28 Portable X-ray (prone) 5
29 Changebandage 30
31 Change posture 77
32 Clean body 27
36 Assist wheelchair 86
37 Assist walk 35
38 Move bed 19
39 Wash hands 117
41 Record work (PC) 912

Fig. 2 Start time for each activity in a day range. Each row corresponds to
an activity class (the number corresponds to the No. in Table 1), and
the x-axis is the hour in a day. The dots are the recorded starting time
of an activity. We can see imbalances between activity classes and
times in a day.
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Fig. 3 Durations of each activity label in the dataset.

occur at any time uniformly. Some activities, such as No. 27, oc-
cur only during several hours in the morning or afternoon, and
others occur continuously, such as No. 12. Compared with tradi-
tional experiment settings where the training data are collected in
a balanced way or in a short time without considering the time of
day, this may result in difficulties during activity recognition.

Moreover, as shown in Fig. 3, the activity duration also varies
considerably. For example, the maximum median duration in the
dataset we collected was 9.35 minutes for “clean body,” whereas
the minimum was 0.03 minutes for “measure height.” The vari-
ances within a class are large, such that “measure weight” has a
standard deviation of 8.40 minutes, and “other” has 8.09. These
phenomena are considered more significant than other research
fields, such as segmentation in voice recognition [8], [37], [38],
[57], and chunking in natural language processing [6], [13].

In summary, the real activity dataset attempted for several en-
tire days has imbalances in several aspects, such as class-wise,
times of day, and activity duration. If such information is ob-
tained in the training phase, we can expect it to be instructive for
improving the activity recognition.

3. Activity Recognition for a Whole Day

In this section, we propose a method for recognizing activities
of a whole day.

3.1 Approach
As shown in Fig. 2, nursing activities have different possibili-

ties, depending on the time of day. If we have training data with
labels and timestamps, we can convert the set of timestamps into
the prior probability of the activity being performed. In addition,
if we use both the starting and ending times of an activity, we
can obtain information on the activity’s duration. As explained in
Section 2, such information of when and how long nursing activ-
ities are performed is important for analysis. In our approach, in
addition to the traditional method for estimating activities from

Table 2 Basic expressions used in the paper.

Symbol Summary

C The set of activity classes to be recognized.
1 : T := (1, 2, · · · ,T ) The time sequence in a day.
xt The feature vector at time t (t ∈ 1 : T ).
ac

t Whether the activity at time t is c or not (c ∈ C).
Lc The number of segments for activity c ∈ C.
sc

l := (b(l), e(l)) The l′th segment (l ∈ 1 : Lc).
b(l) ∈ 1 : T The start time of the l′th segment.
e(l) ∈ 1 : T The end time of the l′th segment.

Fig. 4 Overview of one-day activities for a single activity class c ∈ C.

the sensor input of neighborhood time windows, we exploit the
timestamp information in order to construct a prior probabilis-
tic distribution on the activities of an entire day, implement them
based on importance sampling, and utilize them for the Bayesian
estimation of activities.

3.2 Preliminary
As a preliminary step, we introduce the mathematical expres-

sions used throughout this paper. Table 2 provides a summary of
expressions, and Fig. 4 shows an overview of the expression for a
single activity class c.

For simplicity, we assume that the time of day is expressed
as an integer between one and T . We abbreviate the sequence
(1, 2, · · · ,T ) as 1 : T . For each t, we assume that a feature vec-
tor is extracted t. For each t, we assume that a feature vector is
extracted that contains several statistic values from the time win-
dow of the sensor input around t. For example, if we adopt a
time window of 5 seconds with a shift of 2.5 seconds — which
we adopted throughout this paper —, we can assume that T =

24 [hour]×60 [minutes]×60 [seconds]/2.5 [seconds]−1 = 34,559.
We specify the sequence of feature vectors (x1, x2, · · · , xT ) as x1:T .

Moreover, C refers to the set of activity classes to be recog-
nized. We assume that at any time t multiple activities might be
included, either because the nurse is performing several activities
concurrently, or because the activity-recognition algorithm con-
ducts fuzzy estimations. Therefore, we define whether the activ-
ity at time t is c ∈ C or not as the binary value ac

t .
In the remainder of the section, we focus on the recognition of

a single activity c ∈ C. In reality, we could apply the proposed
method for each activity c ∈ C, and adopt either the most proba-
ble class argc max P(ac

t ), or adopt all classes estimated for a time
t. In Section 4, we evaluated the accuracy using the latter strategy.

We use the term segment as the continuous time range where
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the activity c is performed, and represent it as a pair of start and
end times. When we assume that Lc segments are repeated for
activity c in a day, the lth segment from time b(l) to e(l) is defined
as:

sc
l := (b(l), e(l)), where 1 ≤ b(l) ≤ e(l) ≤ T.

The traditional activity recognition such as that from Bao et
al. [2], can be modeled as the problem of obtaining the maximum
argument c ∈ C of

P(ac
t |xt) (1)

for the local time window t only. Note that obtaining P(xt |ac
t ) is

easy following Bayes’ theorem. For the rest of this paper, we call
P(xt |ac

t ) a local time likelihood.
In contrast, our goal can be represented as the problem of ob-

taining the probability of an entire day’s activities

P(ac
1:T |x1:T ). (2)

For the remainder of this section, we describe the method used to
conduct this.

3.3 Proposed Method
We assume the Bayesian network as shown in Fig. 5.
Figure 5 represents the conditional probabilities for one seg-

ment sc
l . We assume that the probabilities between any two seg-

ments sc
l and sc

l′ (l � l′) are independent.
The marginal probability of the figure is written as

P(xb(l):e(l), a
c
b(l):e(l), s

c
l )

= P(sc
l )
∏

t∈b(l):e(l)

P(xt |ac
t )P(ac

t |sc
l )

when sc
l is fixed, then ac

t for b(l) ≤ t ≤ e(l) is straightforward, and
we can eliminate P(ac

t |sc
l ) . Accordingly,

= P(sc
l )
∏

t∈b(l):e(l)

P(xt |ac
t )

To obtain the conditional probability between ac
b(l):e(l) and

xb(l):e(l), we marginalize sc
t , then

P(ac
b(l):e(l), xb(l):e(l)) =

∑

sc
l

P(sc
l )
∏

t∈b(l):e(l)

P(xt |ac
t ). (3)

Fig. 5 Overview of the proposed method.

Next, we divide the time sequence 1 : T to the segments

{b(1) : e(1)}, {b(2) : e(2)}, · · · , {b(Lc) : e(Lc))}
and consider the marginal probability for all the times 1 : T as

P(ac
1:T , x1:T )

= P
(

ac
b(1):e(1), xb(1):e(1),

ac
b(2):e(2), xb(2):e(2),

· · · ,
ac

b(Lc):e(Lc), xb(Lc):e(Lc)

)

Assuming any pairs of segments are independent of each other,
The formula is written as the product of the segment marginal
probabilities, as

=
∏

l∈1:Lc

P(ac
b(l):e(l), xb(l):e(l)).

Substituting Eq. (3),

=
∏

l∈1:Lc

{∑

sc
l

P(sc
l )
∏

t∈b(l):e(l)

P(xt |ac
t )
}

Therefore, given the input x1:T ,

P(ac
1:T |x1:T )

∝
∏

l∈1:Lc

{∑

sc
l

P(sc
l )
∏

t∈b(l):e(l)

P(xt |ac
t )
}

(4)

This formula utilizes not only the local time likelihood P(xt |ac
t )

as the traditional approach in Eq. (1), but also the prior probability
of the segments P(sc

l ). We use the local time likelihood P(xt |ac
t )

from the result of the naive method, and also prepare and utilize
the prior probability P(sc

l ) using the samples from the training
data. Because P(sc

l ) can be informative when we obtain training
data for an entire day, our method can lead to accuracy improve-
ment for activity recognition of an entire day.

3.4 Implementation
In the implementation, we calculate Eq. (4) according to the

following steps, where we adopt the logarithmic probability to
avoid underflows, and exploit the idea of importance sampling
to obtain those samples weighted by the prior knowledge of the
segments.
( 1 ) Train local time log likelihood

log P(xt |ac
t ) for each t ∈ 1 : T

with the naive method, and store the results.

( 2 ) Construct P(sc
l ) from the training data. This probability is

implemented as a set of k samples from the training data. We
represent the sampled segment numbers as l[1], l[2], · · · , l[k],
and i’th sample as sc

l[i], where 1 ≤ i ≤ k.

( 3 ) For each sc
l[i] in Step 2, calculate

exp
( ∑

t∈b(l[i]):e(l[i])

log P(xt |ac
t )
)

(5)

using the result of Step 1).

( 4 ) The average of Eq. (5) for l[1], l[2], · · · , l[k] can be regarded
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Table 3 List of feature variables after feature selection.

Feature No. Feature Sensor Axis (if any)

1 Mean intensity Chest
2 Mean intensity Right wrist
3 Mean Chest Y
4–6 Mean Waist X, Y, and Z
7–9 Mean Right wrist X, Y, and Z
10 Variance of intensity Right wrist
11–13 Variance Right wrist X, Y, and Z
14–15 Variance Chest Y and Z
16 Variance Right wrist Z
17–18 Mean FFT-domain energy Chest Y and Z
19–20 Mean FFT-domain energy Right wrist X and Z
21 Mean sum of the absolute values of each axis Chest
22 Mean sum of the absolute values of each axis Waist
23 Number of samples out of mean intensity ±0.1G Right wrist
24 Number of samples out of mean intensity ±0.1G Waist
25 Number of crosses of the zone of the mean intensity ±0.1G Waist
26 Number of crosses of the zone of the mean intensity ±0.1G Right wrist
27 Covariance between intensities Chest and Waist

as importance sampling of and an approximation of Eq. (3),
where the occurrence of sampled segment sc

l[i] follows the
former term of Eq. (3): P(sc

l ), and Eq. (5) is the same as the
latter term of Eq. (3):

∏
t∈b(l):e(l) P(xt |ac

t ) except for the exp-
sum-log calculation to avoid underflows. Because Eq. (3) is
the same function for any l ∈ 1 : Lc, we can utilize this func-
tion directly to estimate sc

l rather than completely calculate
Eq. (4). In practice, to simplify the calculation of the aver-
age for day wise, we can pick up some l ∈ 1 : Lc with larger
Eq. (3) values by a threshold such as the average of Eq. (3).

Note that log P(xt |ac
t ) can be used multiple times for different sc

l[i]

in Step 3, and thus they are pre-calculated and stored in Step 1 to
avoid redundant calculations.

4. Evaluation

In this section, we describe the dataset collected from actual
nurses wearing accelerometers in a hospital for approximately
two weeks, and we evaluate our proposed method by applying
it to this collected data.

4.1 Objective
The goal of the evaluation is to answer the following questions:

( 1 ) Can the proposed method improve the recognition accuracy?
( 2 ) Can the proposed method estimate better segments?
( 3 ) Can we obtain knowledge about nursing activities or clinical

pathways from the real data?
For Question ( 1 ), we evaluate accuracy compared with the

naive method indicated in Section 4.5.1 and Section 4.5.2. For
Question ( 2 ), we evaluate the activity durations indicated in Sec-
tion 4.5.3. Moreover, for Question ( 3 ), we discover knowledge
about the nursing activities by applying our method to the two
years of data collected, and explore correlations with the medical
data.

4.2 Preprocessing
From the labeled data, we extracted feature vectors from the

three axes using the accelerometer data. For the sensor data, time
windows of 5 seconds were extracted, shifting every 2.5 seconds,
as in Bao et al. [2]. For each time window, we calculated 47 fea-
ture values, following Refs. [60], [61].

We reduced the 47 feature variables to 27 by applying
stepwise-feature selection [15] to 1,000 randomly sampled vec-
tors over ten iterations. The feature variables that were selected
are listed in Table 3.

4.3 Applying the Method
In order to evaluate our proposed method, we compared the

proposed method with the prior knowledge about P(sc
l ), and the

naive method without the prior knowledge. As underlying ma-
chine learning algorithms for P(xt |ac

t ), which is the same as the
naive method after applying the Bayes’ theorem, we adopted k-
Nearest Neighborhood (k-NN), naive Bayes (NaiveBayes) and
RandomForest, and evaluated each of them. We adopted a
Gaussian distribution for the naive Bayes method, which is a
parametric model of probabilities. Because it assumes a spe-
cific probability function, it may lead to an incorrect modelling of
the probability. Therefore, we also adopt k-NN, which can non-
parametrically approximate the probability by using the powered
inverse of distances with the k’th samples, as addressed in many
literatures. Random forest does not have such a proven approxi-
mation, as far as we know, but we can apply Bayes’ rule to the ma-
jority rate obtained from each weak-decision tree. Random forest
is popular and achieves a better accuracy in many papers, then we
adopted this to demonstrate the use of a high-performance base-
line.

The detail of the methods are described in the following: In
order to evaluate the accuracy of real usage where the training
and usage data are different, we applied 1-duty-day-left-out cross
validation, which means testing each nurse’s working day with
the model trained with the data that have either different days or
different nurses.

4.4 Evaluation method
To evaluate the proposed method, precisions, recalls, and F-

measures for each time window are not necessary for the follow-
ing reasons:
( 1 ) The targeted real data are imbalanced, as discussed previ-

ously. Standard measures, such as precision and F-measure,
are affected by these imbalances, because they use the ratio
of positive samples to negative samples. For example, for
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a rare activity type, the negative samples increase, the false
negatives tends to increase, and thereby the precision varies
depending on the imbalances. Thus, it is preferable to use
imbalance-independent measures.

( 2 ) The accuracy for time windows does not consider the close-
ness between true and estimated segments. No matter
whether the mis-estimated segment is 1 second away or 1
hour away, the traditional accuracy measure concludes the
same value. Since our method tries to estimate activities
considering a probable segment with start and end times, we
need to develop the measures to reflect such a closeness.

( 3 ) The activity duration is also important. The traditional mea-
sures do not consider the fragmentation of estimated activ-
ities. If the fragmentation remains in the estimated activity
sequences, this can result in many segments of shorter dura-
tions. In order to analyze nursing activities, duration is one
of the critical values.

To overcome these problems, we adopted the evaluation meth-
ods introduced in this section.

With regard to point 1, we adopted BCR, a measure used by
Refs. [11], [12] and defined as follows:

BCR =
TP-rate + TN-rate

2
where TP-rate is defined as T P/(FN+T P), and TN-rate is defined
as T N/(T N+FP), where T P (FP, T N, FN) is the number of true
positives (false positives, true negatives, or false negatives, re-
spectively). In contrast with other measures such as precision and
F-measure, these values are not affected by imbalanced positive
and negative samples at the ground truth level, and accordingly,
BCR — the mean of them — is also imbalance independent.

With regard to point 2, in order to measure the accuracy that
considers the closeness between true and estimated segments, we
introduce the idea of adding time margin δ as the parameter.

When we represent the true label as

ŝc
l = (b̂l, êl) for 1 ≤ l ≤ L̂c,

and the estimated label as

s̃c
l = (b̃l, ẽl) for 1 ≤ l ≤ L̃c,

the normal precision/recall/F-measure is calculated between

(b̂l, êl) and (b̃l, ẽl).

Here,
• δ-precision is defined as the precision between

(b̂l − δ, êl + δ) and (b̃l, ẽl),

• δ-recall is defined as the recall between

(b̂l, êl) and (b̃l − δ, ẽl + δ), and,

• δ-F-measure is the harmonic mean between δ-precision and
δ-recall.

That is, these measures relax the numerator by increasing T P.
To avoid double counting, these calculations have to be done

keyed by each time t, which equals to be that the overlapped seg-
ments are merged. By this, we can include the sample that re-
sides within distance δ, with the counterpart as the correct sample.

Note that the previous definitions are the same as the traditional
definitions of precision, recall, or F-measure when δ = 0.

With regard to point 3, we evaluate the difference between the
mean durations of the estimated and true labels for each activ-
ity. If the value is smaller, the estimated segments have closer
durations to the true segments.

4.5 Results
Following the evaluation approach discussed above, we explain

the results shown in Figs. 6 and 8. From here, to easily visualize
the result, we omit the result of the activity classes for no more
than 5 labels (activity class No. 25 and 28) and “Other” class.
Note that these samples were used in the evaluation for reality,
but just removed when showing the result.
4.5.1 Accuracy by the Balanced Classification Rate

Figure 6 shows the results for k-NN, NaiveBayes, and Ran-
domForest as the underlying machine learning algorithm.

As we can see from the figure, most of the activity classes im-
prove with our method. Averaging all activity classes, when we
adopt k-NN as the underlying algorithm, BCR for naive method
is 56.10% (σ = 9.6), and for the proposed method, it is 73.18%
(σ = 14.2). When we adopt Naive Bayes as the underlying al-
gorithm, BCR for the naive method is 55.15% (σ = 15.8), and
for the proposed method, it is 80.96% (σ = 14.5). Moreover,
when we adopt RandomForest as the underlying algorithm, BCR

Fig. 6 BCR for naive/proposed methods for each activity with k-NN
(NaiveBayes, RandomForest) (Average: 56.10 (55.15, 59.03)% for
the naive method and 73.18 (80.96, 67.83, respectively)% for the
proposed method).
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Fig. 7 δ-precision, δ-recall, and δ-F-measure for varying margin δ.

Fig. 8 Errors for activity durations for k-NN (NaiveBayes, RandomForest)
(Average: 324.2 (173.5, 122.2) seconds for the naive method and
74.6 (90.33, 7.88, respectively) seconds for the proposed method).

for the naive method is 59.03% (σ = 17.3), and for the proposed
method, it is 67.83% (σ = 13.4).
4.5.2 Accuracy Considering Margins

Figure 7 shows δ-precision, δ-recall, and δ-F-measure for va-
rieties of δ from 0 to 3 hours. To know the margin effects, we
omit dates with neither true nor estimated activities. From the
figures, we can observe that all values increase as the margin δ
increases. The precisions are relatively lower than the recalls,
but the proposed method outperforms at maximum approximately
5.7% between 1 and 1.5 hours. On the other hand, the δ-recall
of the proposed method underperforms at δ = 0, but increases
rapidly until δ = 0.5 hours, and slightly outperforms the naive
method. This implies that many true activities fail to be estimated
in the proposed method, but often reside within 30 minutes away.
Also, the underperformance of the δ-recall at δ = 0 implies that
the proposed method too passively estimates positive considering
the segment effect. Considering the harmonic accuracies with δ-
F-measure, our method outperforms the proposed method. The
maximum improvement is 5.5% at 2.5 hours in k-NN, and 6.5%
at 1hour in RandomForest.
4.5.3 Accuracy of Activity Durations

Figure 8 shows the error for the mean activity durations for the
naive and proposed methods for each activity. Because the y-axis
is the error, the smaller the y-axis, the better is the accuracy. From
the figure, in any activity class, the proposed method greatly out-
performs the naive method. The mean errors are 324.2 seconds
for the naive method and 74.6 seconds for the proposed method,
with k-NN. When using NaiveBayes, they are 173.5 seconds for
the naive method and 90.33 seconds for the proposed method.
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Moreover, when we use RandomForest, they are 122.2 seconds
for the naive method and 7.88 seconds for the proposed method.

4.6 Discussion
As a result of the evaluations with BCR, our proposed method

outperformed the naive method by 17.08 (25.81, 8.8)% with k-
NN (NaiveBayes, Random Forest, respectively). Although the
best absolute accuracy of the naive methods is by RandomFor-
est, the best improvement and absolute accuracy of the proposed
method is by NaiveBayes, and the second is k-NN. The reason
why RandomForest was not improved so much would be because
the probability approximation is not perfect, as addressed in Sec-
tion 4.3, compared with other probabilistic methods.

On the other hand, the accuracy of activity durations was the
best in RandomForest even in the absolute error value. Com-
pared with the prior knowledge about the timestamps of seg-
ments, knowledge about the activity durations seems to be ef-
fective in any underlying algorithms.

From the result considering margins, we can get better accu-
racies if we allow 0.5–2.5 hours of margins. Our method can
partly replace the manual work for recording their nursing care
to the electronic medical record system, which takes long time as
shown in Section 5. In the current manual work, such margins
often occur such that records in the morning are input at once be-
fore lunch time. Taking into account such current situation, the
above-mentioned margins can be acceptable for such application.

Although we achieved improvements for BCR, further work
for other types of improvements such as the precision and the F-
measure, are important. The low precision shown in the result is
not still sufficient. However, in the rest of the paper, we focus on
the analysis of activity segments, which includes the information
of activity durations, and applied big data analytics in Section 5,
where we believe that we could avoid the problem of low preci-
sion as much as possible. This is inherently difficult to achieve,
for example, prediction of disasters or diseases that hardly oc-
cur, but other approaches, such as feature engineering, and con-
sidering state-transition probabilities, such as Ref. [56] should be
explored as future work.

Overall, from the underperformance of the δ-recall at lower δ
in Fig. 7, the proposed method seems to passively estimates pos-
itive, considering the segment effect, whereas the BCRs in Fig. 6
improved relatively well, which means that the TN-rate was gen-
erally improved. On the other hand, our method allows to esti-
mate concurrent activities, but the dataset is labeled serially, so
there is a possibility that the false positives in the evaluation may
be true positives if we use concurrent labels for training and test
data. However, the inference that the TN-rate was improved im-
plies that it will still be effective even when we use concurrently
labeled data.

Instead of the prior knowledge about the timestamps, it is pos-
sible to use the timestamps (in our example, time-of-day) as a
feature. However, the prior knowledge about the activity dura-
tion cannot be utilized. Since the activity duration is only known
when the segment is defined, it is not applicable for the features
in the traditional method. The activity durations are drastically
improved on our method as in Fig. 8, it would be an advantage of

our method.
We assume that we can obtain a multiple activity classes simul-

taneously. If we assume that we can restrict to a single activity
class at a time, the problem is more difficult. Approaches such as
optimizing multi-class ROC [16], [51] can be the candidates for
solving this problem.

In this paper, we adopt k-NN, NaiveBayes, and RandomForest
as the underlining algorithms. Nonetheless, our approach can be
used as a post-process of any type of estimation algorithm that
can output local-time likelihood.

5. Applying to Bigger Data

Using our method, we demonstrate an example of recognizing
and analyzing bigger datasets, such as correlation with nurses’
experience, correlation with patients’ levels of nursing needs, and
the relationship between delays of discharges.

For the unlabeled data, we extracted 265,002 time windows,
which corresponded to 771 duty days × nurses, and applied our
proposed method in order to estimate the real activities involved
in nursing duties.

In this section, for each nursing activity durations in a day, we
1) first show their average durations, 2) show the correlation be-
tween nurses’ profiles and them, and 3) show the correlation be-
tween them and patients’ discharge delays.

5.1 Nursing Times in a Day
For 658 daytime duties, the average time for the defined care

time is 277.8 minutes with σ = 55.7.
Figure 9 is the estimated average care times for each activ-

ity class in one daytime. From the figure, we can see the types
of activity on which the nurses spend more time, such as “Mea-
sure blood pressure”, and “Find artery”. We can also see that
the nurses spend significant time recording their work on a PC,
which were introduced after the electronic medical record system
was introduced, and hence there is an opportunity for reducing
this time.

5.2 Correlation with the Nurses’ Profile
If we join the results with additional data, such as nurses’ pro-

files, we can data mine further knowledge. To demonstrate this,
we joined the results with the number of experienced years, age,

Fig. 9 The nursing times for each activity class in one daytime.
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Fig. 10 Regression trees for each activity duration in a day by nurses’ profiles with over 20% of pseudo
R squared with RandomForest. Each caption shows the mean of squared residuals (MSR) and
the pseudo R squared with RandomForest.

gender, title, and the ward (west/east, where the west ward is for
internal medicine, and the east is for surgery) for each nurse. The
mean experienced years is 7.36 years with σ = 5.65, the mini-
mum is 1, and the maximum is 25. The joined data consists of 64
samples each of which corresponds to each nurse.

For the joined data, we applied RandomForest algorithm for
each activity class as an response variable, and the profiles as
predictor variables.

When we use RandomForest for correlation analysis, there
are several advantages compared with a traditional regression:
1) RandomForest automatically avoids overfitting, and outputs
general models, 2) we can see the importances of variables af-
ter neutralizing interactions among variables unlike a traditional
regression, 3) also with neutralizing interactions, we can see the
effect of each variable to the response variably by a partial depen-

dent plot, 4) if we pick up a tree from the set of obtained trees,
we can easily understand the partitioning conditions compared to
other algorithms such as SVM.

For the models for each activity class as response variable, we
picked up the models which have the pseudo R2, which is defined
as 1 − (mean squared error)/(variance of the response variable),
are more than 20%, and showed the scores and (no-random but
naive) regression trees in Fig. 10 to visualize example trees.

In any tree in the figure, the first partitioning is done by “ward”.
They have higher activity durations for the east ward, and are di-
vided to experienced years < 4.5 [years] with middle durations
and the rest with lower durations. It seems that there are dif-
ferences in nursing activity durations in a day between the west

internal medicine department ward and the east surgery one. For
the internal medicine department, it seems that there are varieties
of durations, and unexperienced nurses performed longer com-
pared with experienced ones.

From such results, we or the nurses can estimate the differ-
ences of work load between wards or the years of experiences,
and reallocate and equalize unbalanced work load, if any.

5.3 Correlation with Patients’ Discharge Delays
We joined the estimated activity data with the patient record,

and compared the amount of time spent by nurses for each activ-
ity with the duration of hospitalization, where 4 inpatient days are
normal, and over 5 days increase in medical costs. In the exper-
iment, we asked the nurses to attach RFID tags, which commu-
nicates with readers which were equipped at the entrances of the
patients’ rooms, each of which is a personal room. Therefore, the
log of the RFID readings provides relationships between nurses
who took care and patients who have been taken care of during the
day. We first joined the RFID records with the estimated activity
data, and then joined with the patients’ data about the hospitaliza-
tion days. The number of patients after joining with the patient
record is 28 with 24 nurses for 35 days, and the number of the
samples is 54.

For the joined data, we applied the Random Forest algorithm
again with the numbers of hospitalization days as a response vari-
able, and with the activity durations in a day as predictor vari-
ables.

Then, we can obtain the importances for each predictor vari-
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Fig. 11 Partial dependent plots to show the effect of each nursing activity
time in a day (with high importance) to hospitalization durations of
the cared patients.

ables, each of which are the mean increase of accuracy by the
variable. For the importances, we picked up the variables with the
importances of over 50, and showed the partial dependent plots in
Fig. 11. The partial dependent plot is a plot between a predictor
and the response variable, which plots the effect of the predictor
to the response after marginalizing the other predictor variables.
Unlike traditional regression, it can approximately eliminate the
interaction effects between predictor variables.

From the figure, we can observe that “Measure blood pres-
sure” takes shorter times for patients with longer hospitalizations,
the times for “Assist doctor” and “Find artery” increase if the
patients have longer hospitalizations, “Finish intravenous injec-
tions” takes slightly longer if the hospitalizations take longer,
and “Clean body” takes quite longer if the hospitalizations take
longer. As such, we can estimate the effect of each nursing ac-
tivity time to the hospitalization duration, and we can estimate
the work load for each patient. For example, if we observe a pa-
tient with longer activity durations such as “Assist doctor”, “Find
artery”, “Finish intravenous injection”, and “Clean body”, then
we can estimate the patient might delay for the discharge, and
vise versa for “Measure blood pressure”. On the other hand, if
we can predict the delay of a patient from other data such as the
result of the operation, we can estimate and prepare some nursing
activities with longer durations.

As shown in this section, by linking our proposed method with
additional data which already exist in hospitals, we can produce
a valuable knowledge for reflecting and improving medical pro-
cesses.

6. Related Work

In the literature, many works attempted mobile activity recog-
nition [2], [5], [10], [29], [31], [33], [35], [36], [46], [52], [58].
Recently, in the medical field, many experiments have collected
activity data from doctors, nurses, and patients; many studies
make use of these collected (big) data for improving the ef-
ficiency of duties or for offering the appropriate medical ser-
vices [3], [39], [42], [48], [53]. In Ref. [40], activity recognition
of nurses and development of a labeling automation system using

activity label information such as nurse activity, meeting infor-
mation, audio and video data collected through the sensor net-
work comprised of wearable acceleration sensors or environmen-
tal setting type sensors was conducted. Also, Ref. [1] collected
labeled nursing activity sensor data from nurses coat pockets for
14 days, as in our paper, and tried activity recognition for 14 ac-
tivity classes, with/without combining with nurses workflow data.
However, unlike our paper, they do not define the activity classes
based on the standardized clinical processes, which makes recog-
nition accuracy higher, but less realistic. Moreover, we also con-
tribute to make the real nursing activity data publicly open.

Because activity recognition manages sequential data, tech-
niques for sequential data such as Hidden Markov Model
(HMM) [9], [29] and Conditional Random Fields (CRF) [9], [19],
[30], [32], used in speech recognition and natural language pro-
cessing, are related. Some works have attempted to apply these
techniques to mobile activity recognition [50], [54], [55], [59].
Here, we claim that using HMM and CRF are independent of our
contribution. Basically, HMM and CRF are not segmenting wise,
but they are time window wise if we use them straightforwardly.
Then, we can apply our method to utilize prior knowledge in-
dependently. Applying HMM and CRF for segment wise is not
straightforward since they are not determined from the first. And,
HMM and CRF are complex to estimate the parameter, but our
method can simply integrate and utilize other popular methods of
non-sequential machine learning.

Another approach that is applicable to sequential data is Bag-
of-Features (BoF), which makes histograms of feature values and
utilizes their statistic features [60], [61]. However, this can only
be applicable to data that is already segmented. The segmentation
technique is common in speech recognition [6], [13] and natural
language processing [8], [37], [38], [57].

However, among the aforementioned work, to the best of our
knowledge, none addresses the challenges of real-world applica-
tions, nor tries to utilize the prior knowledge on a daily basis,
like our method. Class-wise prior probability, timestamps in a
day, and activity durations have large variances. These can result
in difficulties in activity recognition when applying the existing
work.

With regard to activity durations, Ref. [56] adopts the CRF
model that can integrate the knowledge of activity duration using
Semi-CRF, which learns segmentation in addition to the Markov
transitions, as well as the traditional CRFs. Moreover, it im-
proves computation costs by considering omitting “other” activi-
ties. This work generates promising results in accuracy, although
the computation and parameter estimation often becomes com-
plex in such a high-dimensional approach. Our method manages
the duration and segments as a prior knowledge obtained from
the training dataset, and infers the activities considering them by
Bayesian network and importance sampling approaches, which is
demonstrated to be tractable in real nursing big data.

In addition, the challenge lies in recognizing complex domain-
specific activities such as nursing activities which, we resolve in
our paper.

For machine learning from imbalanced data, problems and ap-
proaches are addressed in the literature. Classification for im-
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balanced data is highly important in the area of risk management,
such as medical decision domains, where a positive instance, such
as a specific disease, hardly occurs. Reference [18] introduced
several assessment metrics, such as ROC that is robust for im-
balanced data, and reviewed several approaches, such as impor-
tance sampling, cost-sensitive methods, and active learning. It
also addresses the effectiveness of one-class learning, a binary
classification of positive or negative. Reference [27] applied the
empirical evaluation of RandomForest algorithm for imbalanced
data. Reference [21] proposed a sampling method for bagging,
and evaluated their method using AUC. Reference [28] evalu-
ated several boosting and bagging algorithms comprehensively
for noisy and imbalanced data, and concluded that bagging gen-
erally outperforms boosting. In this paper, we incorporate the
robustness of one-class learning to our method.

In the literature, several datasets for mobile activity recogni-
tion are available. Reference [17], with their large-scale activ-
ity collection, collected over 35,000 activities from more than
200 people over approximately 13 months. Reference [24] pro-
vided a dataset that consists of 28 days of sensor data from a
single person with annotations added by their proposed system.
Reference [25] was a unique trail to collect activity recognition
datasets from the laboratories of multiple universities. In the 5
years, the total number of activities reached over 50,000 samples.
Reference [7] provided a dataset with varieties of sensor displace-
ment status for 33 fitness activities from 17 participants. Refer-
ences [4], [45] provided an activity dataset with sensor-rich en-
vironment where the subjects wore multiple sensors on the body,
with more than 27,000 activities from 12 subjects. Among them,
Refs. [4], [7], [45] provided an entire day data/multi-day data as a
part of them. However, the activity classes are of common types,
such as those that appear in Activity in Daily Life (ADL) records,
and not similar to our dataset, which is closely coupled with the
application domain and domain data, such as medical records.

7. Conclusion

In this paper, we collected a real nursing dataset for mobile ac-
tivity recognition that can be used for supervised machine learn-
ing, and proposed a method for recognizing activities for an en-
tire day utilizing prior knowledge about the activity segments in
a day. The results showed accuracy improvement compared with
the baseline method that did not employ our method; in particu-
lar, there were significant improvements in activity durations. It
implies that the dataset are valid, and that the proposed method is
effective.

We also demonstrated data mining by applying our method to
bigger data combined with 2 years of patient medical records, and
demonstrated the value of linking with additional day utilizing
RandomForest regression. The future work includes expanding
the data mining in order to explore the knowledge about clini-
cal paths, such as finding important activities that lead to earlier
discharge from the hospital.

Because activity recognition in nursing domain is new and
challenging, there is no statement or reference how much accu-
racy is required, and our method cannot be benchmarked. How-
ever, we believe the result of the paper can be a reference of how

challenging it is, and moreover, we claim that we could achieve a
non-negligible improvement for the durations of activities, and
demonstrated the durations could be used for nursing activity
analysis.

The data we used were collected carefully to be used as open
data by obtaining agreements from the subject nurses and pa-
tients. The data are also related to RFID tag data in order
to recognize nurses’ entry into patients’ rooms, vital data from
hospitalized patients (e.g., cardiograms, bed sensors to measure
heart rate/breathing/body movements), accelerometer, in-room
sensors, and medical information recorded in the electronic clin-
ical pathways, and indirectly, inpatient sensor data. As future
work, data mining these whole data combined with the activity
recognition result and extracting valuable knowledge which con-
tributes to efficient clinical pathways and better health care will
be important.
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