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Abstract 

In this study, we propose a planate actuator which can transform only its central part 

locally. We have developed a planate conducting polymer actuator based on polypyrrole (PPy) and 

two types of acids, such as p-phenol sulfonic acid and dodecylbenzene sulfonic acid, by 

electrodeposition. Its structure was patterned bimorph structure with anion-driven, cation-driven and 

bimorph layers. The planate conducting polymer actuator could deform only its central part locally. 

Moreover, we introduce a micro pump that operates by planate conducting polymer actuator as the 

drive source. The water level in the flow channel of micro pump shows the reciprocating motion 

measuring ±2 mm in accordance with the oscillation of the bimorph conducting polymer actuator 
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which was approximately 28 µl/min. The oscillating volume can be controlled by the application of 

electrochemical potential and its scan rate applied to the actuator. 

Keywords : Conducting polymer, Actuator, Electrochemomechanical deformation, Micro pump 

Introduction 

The most outstanding feature of conducting polymer is drastic enhancement of 

electroconductivity upon oxidation and reduction. The conducting polymers can be utilized as a 

semiconductor device such as light emitting diodes, solar cells and transistors as well as metallic 

conductors. On the other hand, upon oxidization and reduction, the conducting polymers change 

physical properties as swelling or shrinking [1]. The variation of the dimension is induced by an 

electrochemical cycle, which is called electrochemomechanical deformation (ECMD) and can be 

utilized as a soft actuator and artificial muscles [2,3]. The soft actuator based on the conducting 

polymer has attracted much attention recently. 

The authors have already reported the ECMD in conducting polymers, such as polyaniline 

(PAn) [4,5], poly(o-methoxyaniline) (PmAn) [6,7], poly(3-alkylthiophene)s [8] and polypyrroles 

(PPy) [9, 10, 11, 12]. In particular, ECMD of PPy freestanding films have been clarified sufficiently. 



The electrodeposition is a simple way to obtain high quality PPy thin films. The electrochemical 

activity range of PPy films is found to be as wide as pH from 3 to 10 [9]. Takashima et al [13] 

investigated bimorph soft actuator by anion-driven layer and cation-driven layer in PPy film and 

large bending motions were observed in 1 M NaCl solution. Bay et al has improved electrochemical 

strain of PPy doped with dodecylbenzensulfonate (DBS) from 2.5% to 5.6% by the addition of 

pentanol as a co-surfactant to DBS [14], and from 5.6% to 12% by using a compliant gold electrode 

[15]. Hara et al [16] have developed a novel PPy actuator that induces maximum strain of 12-15 % 

and maximum stress of 18-22 MPa electrochemically. They have developed a PPy actuator that 

bends electrochemically with TBACF3SO3 as electrolyte, and the actuator showed force of 13.7 N. 

Moreover, they [17] have developed TFSI-doped PPy actuator and reported its maximum strain and 

maximum stress were 26.5 % and 6.7 MPa, respectively. 

Recently, a various shapes of actuators based on the conducting polymer have also 

attracted attention. We have proposed ring type and lip type soft actuators, using bimorph soft 

actuator based on PPy [18]. Takashima et al [19] have developed patternable bi-ionic PPy actuator 

similar to a spring. Hara et al [20] have developed a polypyrrole-metal coil composite actuator and a 

PPy-zigzag metal wire composite actuator. Wu et al [21] have developed the Tube In Tube Actuator 

Node structure based on PPy for microfluidic pump. Ding et al [22] have reported that the tube 

actuators with helical wire interconnects provide up to 5% axial strain. Moreover, the conducting 



polymer actuator have been recently used in the construction of valves for microfluidic systems [23, 

24]. 

In this study, we propose a planate actuator which can transform only its central part 

locally. We developed a planate actuator based on PPy using bimorph structure actuator by 

electrodeposition and measured displacement of central part on the actuator. Moreover, we introduce 

a micro pump that operates by the planate PPy actuator. 

Experimental 

Sample preparation 

Planate PPy actuator films were electrodeposited from aqueous acids. A titanium (Ti) plate, 

a platinum (Pt) plate and a silver wire were employed as working, counter and reference electrodes, 

respectively, and p-phenol sulfonic acid (PPS) and dodecylbenzene sulfonic acid (DBS) were 

employed assupporting electrolyte for the electrodeposition in this study. Firstly, electrodeposition 

was performed on the central part measuring 15×15mm2 of Ti plate measuring 30×30mm2 by 

aqueous electrolyte solution containing 0.15 M of pyrrole monomer and 0.25 M of PPS. A region 

except for the central part on Ti plate is covered with insulating tape. The deposition was conducted 



in galvanostatic mode with 1 mA/cm2 of current density for 2000 s at a room temperature. As shown 

in Fig. 1, the PPy.PPS film with a thickness of approximately 30µm was deposited on the central 

part of Ti plate. 

Secondly, the insulating tape put on the area other than the central part of the titanium 

plate was pealed, the central part of PPy.PPS film measuring 7.5×7.5mm2 was covered with 

insulated tape and the electrodeposition was performed on the Ti plate measuring 30×30mm2 by 

aqueous electrolyte solution containing 0.15 M of pyrrole monomer and 0.25 M of DBS. PPy.DBS 

film with a thickness of approximately 30µm was deposited on the Ti plate, as shown in Fig. 1. 

Moreover, PPy.PPS/PPy.DBS film of the bimorph structure was deposited on the outside the 

PPy.PPS film and it was approximately 60µm in thickness. 

Finally, the deposited PPy actuator film was peeled off from the Ti plate and we have 

obtained a planate PPy actuatore film, as shown in Fig. 1. Its structure was patterned bimorph 

structure with anion-driven, cation-driven and bimorph layers. 

In order to investigate characteristics of the planate PPy actuator, we have also prepared 

other actuators, a single layer PPy actuator and a simple bimorph PPy actuator which were not 

patterned, as shown in Fig. 2 (a) and (b), respecively. The single layer PPy actuator was prepared by 

the electrodeposition with aqueous electrolyte solution containing 0.15 M of pyrrole monomer and 

0.25 M of DBS. We have obtained a PPy.DBS actuator, as shown in Fig. 2 (a), and it was 



approximately 30µm in thickness. The bimorph PPy actuator was prepared by the patterning 

technique of bimorph structure. The electrodeposition was performed on the Ti plate measuring 30×

30mm2 with aqueous electrolyte solution containing 0.15 M of pyrrole monomer and 0.25 M of DBS 

and PPy.DBS actuator was deposited on Ti plate. PPy.PPS actuator measuring 7.5×7.5 mm2 with 

aqueous electrolyte solution containing 0.15 M of pyrrole monomer and 0.25 M of PPS was 

electrodeposited on the central part of the PPy.DBS actuator. We have obtained the simple bimorph 

PPy actuator, as shown in Fig. 2 (b), the single and bimorph layers were approximately 30µm and 

60µm in thickness, respectively. 

Measurement setup 

Displacement of the central part of the planate PPy actuator was measured by a laser 

displacement meter with accuracy of 8 µm (Keyence LB-1000), as shown in Fig. 3. In this study, 

the Pt plate and the silver wire were employed as counter and reference electrodes, respectively, and 

the outside of the planate PPy actuator was fixed by the Pt plates as the working electrode and Teflon 

plates, as shown in Fig. 1. The electrochemical potential was applied by a potentiostat (Hokuto 

Denko HB-105). The electrolyte solution was an aqueous 1.0 M sodium chloride (NaCl) solution. 

All data were supplied as analogue voltages and converted to digital data by an A/D converter. In the 



displacement of the actuators, the positive and negative values indicate the deformation to laser 

displacement meter and counter electrode sides, respectively, as shown in Fig. 4. 

 

 

Results and discussion 

Deformation of planate PPy actuator 

 

Figure 5 shows cyclic voltammetry (CV) curve and the displacement of the central part 

of the planate PPy actuator. A broken line, a dash-dotted line and a solid line show the results from 

single layer, bimorph and patterned bimorph PPy actuators, respectively. Application of 

electrochemical potential was from –1.1 [V] to 0.6 [V] and its scan rate was 20 [mV/sec]. The 

arrows indicate the moving direction of current and displacement. The current and displacement 

data for one hundred cycles were translated into averaged data for one cycle. 

 In the CV curve results oxidation and reduction peaks are found at approximately 0.3 [V] 

and –0.6 [V], respectively, in all planate PPy actuators. The current obtained during CV of patterned 

bimorph PPy actuator was larger than that of single layer and bimorph PPy actuators.  

The central part of the single layer PPy actuator oscillated in the range of ±0.5 [mm]. 

The oscillation of the central part of bimorph actuator became as large as ±1.0 [mm]. The 



deformation of the bimorph PPy actuator was larger than that of single layer actuator by the same 

principle of a beam type bimorph PPy actuator13). In patterned bimorph PPy actuator, moreover, 

the central part oscillated approximately ±2.5 [mm]. The deformation of patterned bimorph 

PPy actuator became larger than that of single layer and bimorph PPy actuators. The central part of 

PPy actuator deforms toward the laser displacement meter at the oxidized state and deforms 

toward the counter electrode at the reduced state. It is found that the anion-driven layer on the 

central part of the planate PPy actuator deforms predominantly. 

 Figure 6 shows the displacement of the patterned bimorph PPy actuator. The solid and 

dash-dotted lines show the results from the anion layer and the bimorph layer. The displacement of 

the anion layer on the central part of the planate PPy actuator was larger than that of bimorph layer 

and the outside of the actuator, the cation layer, did not deform. More specifically, it was clarified 

that only the central part of the planate PPy actuator could deform locally. 

 Figures 7 (a) and (b) show the cross-section drawings of planate PPy actuators, such as 

bimorph and patterned bimorph actuators, respectively. In the case of the bimorph actuator, as shown 

in Fig. 7 (a), the anion layer actuator expanded due to the insertion of anion, Cl-, and the cation layer 

actuator shrunk due to the extraction of cation, Na+, in the oxidation. Furthermore, the anion layer 

actuator shrunk due to the extraction of Cl- and the cation layer actuator expanded due to the 

insertion of Na+ in the reduction. These mechanisms were the same as the case of beam type 



bimorph PPy actuator13). In the case of the patterned bimorph PPy actuator, on the other hand, the 

central pat of the planate PPy actuator was easy to deform since the central part was a single anion 

layer and the outside of the anion layer was bimorph structure, as shown in Fig. 7 (b). Therefore, the 

deformation of the central part became large. 

 Figure 8 shows the relationship between the maximum displacement and the frequency of 

the central part of the planate PPy actuators. The broken and solid lines show the results in bimorph 

and patterned bimorph actuators, respectively. 

 The maximum displacements of both planate PPy actuators were inversely proportional to 

its frequency. In other words, the maximum displacement decreased as its frequency increased. The 

maximum displacement of the bimorph PPy actuator was ±1.0 mm at 0.006 Hz and the oscillation  

can be periodic up to 0.6 Hz. However, the displacement was extremely small and we have not 

obtained the periodical oscillation over 0.6 Hz. On the other hand, the maximum displacement of 

the patterned bimorph PPy actuator was ±2.1 mm at 0.006 Hz and the oscillation can be periodic 

even at 3.0 Hz. The maximum displacement of the patterned bimorph PPy actuator becomes larger 

than that of the simple bimorph actuator in all frequencies. 

 

Micro pump by planate PPy actuator 

 



 We have proposed a micro pump using a patterned bimorph PPy actuator. A tank 

measuring 20×20×3 mm3 was placed in an acryl plate measuring 30×30×5 mm3 and a flow 

channel with a diameter of 3 mm was connected with the tank, as shown in Fig. 9. The patterned 

bimorph PPy actuator as a drive source was connected with the bottom of the tank, as shown in 

Fig. 10. A vinyl sheet with a thickness of 100 µm was placed between the patterned bimorph PPy 

actuator and the bottom of the tank, and the outside of the patterned bimorph PPy actuator was 

fixed to the platinum plates. The Pt plate and the silver wire were employed as counter and 

reference electrodes, respectively, as shown in Fig, 10, and an aqueous 1.0 M sodium chloride 

(NaCl) solution was used as an electrolyte solution. The distilled water was filled in the tank and the 

flow channel. This pump was not connected with the valve and we have measured the oscillating 

volume by calculating the water level in the flow channel oscillated by the patterning bimorph PPy 

actuator. 

 Figure 11 shows the change of water level in the flow channel. The application of 

electrochemical potential was from –1.1 V to 0.6 V and its scan rate was 20 mV/sec. The water 

level in the flow channel shows the reciprocating motion measuring ±2 mm in accordance with the 

oscillation of the pattered bimorph PPy actuator which was approximately 28 µl/min. The 

oscillating volume can be controlled by the application of electrochemical potential and its scan 

rate applied to the actuator. It is well known that the required flow rate is from 1.0 to 50.0 µl/min 



for a µ-TAS system and an insulin pump [25, 26]. The micro pump proposed by our study can satisfy 

these flow rates and the authors presume that it can be applied to micro pumps. 

 

Conclusions 

 

We have developed a planate conducting polymer actuator based on polypyrrole (PPy) and 

two types of acids, such as p-phenol sulfonic acid and dodecylbenzene sulfonic acid, by 

electrodeposition. Its structure was patterned bimorph structure with anion-driven, cation-driven and 

bimorph layers. The planate conducting polymer actuator could deform only its central part locally. 

And, we have proposed a micro pump using the planate conducting polymer actuator as 

the drive source. The water level in the flow channel of micro pump shows the reciprocating motion 

measuring ±2 mm in accordance with the oscillation of the bimorph conducting polymer actuator 

which was approximately 28 µl/min. The oscillating volume can be controlled by the application of 

electrochemical potential and its scan rate applied to the actuator. It is well known that the required 

flow rate is from 1.0 to 50.0 µl/min for a µ-TAS system and an insulin pump. The micro pump 

proposed by our study can satisfy these flow rates and the authors presume that it can be applied to 

micro pumps. 
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