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Abstract 

In this paper, the stress intensity factors (SIFs) of a single edge interface crack in the bi-material bonded strip 
subjected to in-plane tension and bending moment are investigated systematically. The SIFs are computed for 
arbitrary material combinations with varying the relative crack size a/W. Specifically, some necessary skills as 
refined mesh and extrapolations of the stress intensity factors are used to improve the accuracy of the calculation. For 
the edge interface crack, it is found that the dimensionless SIFs are not always finite for the edge interface cracks in 
the bonded semi-infinite plate depending on Dundurs’ material composite parameters. 
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1. Introduction 

There are many cases in engineering design to employ the bonded structures or multiple layers in 
industries. The presence of cracks negatively affects a structure’s performance and may result in the 
damage. Therefore, a lot of research has been pursued on the analysis of the edge interface crack where 
stresses diverge and oscillate. However, according to the author’s best knowledge, most published 
literatures are about the tensile loading case. There are only few solutions concerning the in-plane bending 
case of the edge-cracked bonded strip problems. 

In this research, the zero element method is used to compute the stress intensity factors (SIFs) for the 
edge-cracked bonded strip subjected to in-plane tensile and bending loading conditions. In the zero 
element method, very refined meshes and exact analytical solutions of the reference are utilized for extract 
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SIFs. Furthermore, the use of post-processing technique of extrapolation reduces the computational cost 
and improves the accuracy significantly. New results for the edge-cracked bonded strip under bending 
moment are computed for various material combinations and relative crack sizes. Then, the SIFs are 
compared systematically for the bonded strip under tensile and bending loading conditions for the whole 
range of material combinations and crack sizes. Furthermore, an empirical relation for the factor K for any 
material combinations within the zone of dominance of the free-edge singularity will also be presented in 
this paper. 
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Fig. 1. The reference problem 

2. Numerical methods for the determination of the stress intensity factors 

Recently, an effective method was proposed for calculating the stress intensity factors in homogenous 
plates. Then, the method is successfully extended to the interface crack problems [1]. Both of those 
methods utilize the stress values at the crack tip computed by FEM. For a given bi-material bonded 
structure, the stress intensity factors are defined as shown in Eq. (1).  
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Here, , xyy  denote the stress components along the interface. From Eq. (1), the stress intensity factors 
may be separated as 
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Where, r and Q can be chosen as constant values since the reference and given unknown problems have 
the same FEM mesh patterns and material combinations in the process of analysis. Therefore, expression 
(9) may be derived from Eq. (5) and Eq. (6) if only Eq. (7) is satisfied. Here, the subscript * denotes the 
value of the reference problem. 

yxyxyxy
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The stress intensity factors of the given unknown problem can be obtained by : 
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Here, 0 0  are the stress components at the crack tip (the zero element) of the reference problem 
calculated by FEM, and 0 0  are those of the given unknown problem. In this study, stress 
intensity factors of the reference problem are given by the exact theoretical solution of the single central 
interface crack in an infinite dissimilar plate (Fig.1) subjected to tension and shear .

( ) (1 2 )I IIK iK T iS a i (10) 
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By assuming , the value of S can be obtained from Eq. (11) and Eq. (12) as:  
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The condition shown in Eq. (7) can be satisfied by applying 1  to the reference problem. Then, the 
zero element method can be extended to the interfacial crack problems, and the stress intensity factors can 
be calculated using Eq.(9). For more details about the zero element method, see Oda K et al.,2000[1].  
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Fig. 2. (a) a bonded strip subjected to tensile and bending loads; (b) loading boundaries to counter the bending moment 

3. Numerical results and discussion 

3.1. Formulation of the problem 

The geometric configuration for the bonded strip is shown in Fig.2(a). It is composed of two elastic 
isotropic and homogenous strips that are perfectly bonded along the interface. It is supposed that an 
interface crack with a length of a has initiated at the free edge corner. The strip is subjected to in-plane 
tensile and bending loading conditions. The material above the interface is termed material 1, and the 
material below is termed material 2. The length  is assumed to be much greater than the width 

( ). The counter-moments can be modeled using the tensile stresses applied at the top and the 
bottom boundaries of the strip shown in Fig.2(b). 

2

The stress intensity factors for the aforementioned problems in plane strain or plane stress are only 
determined on the two elastic mismatch parameters  and (Dundurs,1969). And the Dundurs’ material 
composite parameters are defined as 

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1
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where, the subscripts denote material 1 or 2, , and  denote shear modulus, Young’s modulus and 
Poisson’s ratio for material , respectively. In this research, only the stress intensity factors for 0 in 

 space has been investigated since switching material 1 and 2 ( 1 2 ) will only reverse the 
signs of  and ( ). As a result, all the data are only given for the right part of the 

 space ( ).0

3.2. Comparison of the SIFs for the bonded strip subjected to tensile and bending loads 

The dimensionless stress intensity factors at the crack tip of the edge interface crack in bi-material 
bonded strip are systematically investigated by varying the relative crack size , as well as material 



X.Lan et al. / Procedia Engineering 10 (2011) 1053–1058 1057

parameters  and . In this paper, we restrict our discussions to material combinations with 0 3 ,
and the same phenomenon can be found from others material combinations. The double logarithmic 
distributions of the dimensionless stress intensity factors  and  at the crack tip are shown in Fig. 3(a) 
and Fig. 3(b) respectively. In Fig.3, 2  for the bonded plate subjected to remote tension are plotted in 
solid curves and those for bending loading condition are plotted in dashed ones. From this figure, it can 
be found that the double logarithmic distributions behave linearity when 

1 2

1

and differ within 
about  at 

0 01
10 0 05 . Furthermore, the slopes correspond to the oscillatory stress singularities  of 

the bonded strip. It means that the stress intensity factors at the crack tip in a bonded semi-infinite plate 
are significantly determined by the free-edge singularity. For an arbitrary bonded strip, the values of 1

and  behave good linearity within the zone of dominance of the free-edge singularity. It can also be 
found from Fig.3 that the sign of slope for each curve varies with the changing of 

2

2 . Specifically, 
the slope for each line is positive when 2 0 , zero when 2 0  and is negative when 

. Thus, it can also be deduced for the limiting case (02 0 ), see, the bonded semi-infinite 
plate ( 0

1 20 0

2

1 2

), the following relations can be deduced as  

 when ,

1

2 0

2 0

2 0

  are finite when ,

 when .

Here, all the results and phenomenon are in agreement with those for the bonded strip subjected to remote 
tension[2]. Moreover,  are in good agreement with the two loading conditions within the whole range 
of zone of dominance of free-edge singularity when 

1 2

2 0 . The values of  for a joint under 
remote tensile loading condition are bigger than those for bending loading condition within the zone of 
free-edge singularity when . However, a reverse conclusion can be given for the singular 
zone when .

1 2

2 0

2 0

3.3. Empirical expression for a bonded strip under bending moment 

In the author’s previous research, an empirical expression as 

1 2C1 2
1 1,( ) ( )CF Fa W a W  (15)

has been proposed to compute the SIFs at the crack tip for a shallow edge interface crack in a joint 
subjected to remote tension. Here, 

1 2
 are constants depending upon the relative elastic properties of 

materials. In this research, it has been proved that Eq.(15) is also suitable for the case of bending moment 
except with different coefficients 1 2 . Similarly, the coefficients 1 2  are systematically computed 
against material composite parameters, and are plotted in Fig. 4(a) and Fig. 4(b), respectively. The 
parameters for a bonded strip subjected to remote tension are plotted in solid curves, and those for the 
case of bending moment are plotted in dashed ones. It can be easily found that 1 2  are the same for the 
two loading conditions when , here, the points in well agreement are clearly marked by 
square frames in Fig.(4). By comparing the coefficients for the two loading conditions, it can be 
concluded that there are reflection points (marked in box) at 

2 0

2 0 for curves of a given . The 
values of 

1 2
 for the case of bending loads are always bigger than those for tensile case before this 

reflection point, and an inverse relationship will be found after this point. The conclusion again confirms 
the relationship for  of the two loading conditions deduced in Section 3.2.  1 2



1058  X.Lan et al. / Procedia Engineering 10 (2011) 1053–1058

10-6 10-5 10-4 10-3 10-2 10-1
10-1

100

101

102

100

Bending
1 1,

W

Ga

2 2,

M

M

G

P

P

1 1,

W

Ga

2 2,

M

M

G

P

P

1 1,G

2 2,G

a

Mat.1

Mat.2

Interfacial 
Crack

M

M
P

P

1 1,G

2 2,G2 2,G

a

Mat.1Mat.1

Mat.2Mat.2

Interfacial 
Crack

M

M
P

P

Tension

F

a/W
10-6 10-5 10-4 10-3 10-2 10-1

10-3

10-2

10-1

100

101

100

ab
s(

F
)

a/W

Tension
Bending

1 2 1 2 1 2K iK a F iF i
1 2 1 2 1 2K iK a F iF i
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4. Conclusions 

The SIFs at the crack tip for a bonded joint under tensile and bending loading conditions are computed 
and compared for the whole range of material combinations. Within the zone of free-edge singularity, it is 
certified that the bending loading condition is more dangerous than the tensile case when  ,
but is safer when . Furthermore, they are totally equivalent for the two loading conditions 
when .2 0
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