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Abstract

We propose new explicit exponential Runge-Kutta methods for the weak approxima-
tion of solutions of stiff Itô stochastic differential equations (SDEs). These methods
have weak order two for multi-dimensional, non-commutative SDEs with a semi-
linear drift term, whereas they are of order two or three for semilinear ordinary
differential equations. These methods are A-stable in the mean square sense for a
scalar linear test equation whose drift and diffusion terms have complex coefficients.
We perform numerical experiments to compare the performance of these methods
with an existing explicit stabilized method of weak order two.



1 Introduction

For stiff ordinary differential equations (ODEs), there are some classes of explicit meth-
ods that are well suited. One such class is the class of Runge-Kutta Chebyshev (RKC)
methods. They are useful for stiff problems whose eigenvalues lie near the negative real
axis. Van der Houwen and Sommeijer [30] have constructed a family of first order RKC
methods. Abdulle and Medovikov [3] have modified this class and have proposed a family
of second order RKC methods. Another suitable class of methods is the class of explicit
exponential Runge-Kutta (RK) methods for semilinear problems [10, 14, 15, 16, 21, 26].
Although these methods were proposed many years ago, they have not been regarded as
practical until recently because of the cost of calculations for matrix exponentials, espe-
cially for large problems. In order to overcome this problem, new methods have been
proposed [12, 14, 15, 16].

Similarly, for stochastic differential equations (SDEs) explicit RK methods that have
excellent stability properties have been developed. Abdulle and Cirilli [1] have proposed
a family of explicit stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods
with extended mean square (MS) stability regions. Their methods have strong order one
half and weak order one for non-commutative Stratonovich SDEs, whereas they reduce to
the first order RKC methods when applied to ODEs. Abdulle and Li [2] have proposed
SROCK methods of the same order for non-commutative Itô SDEs. Komori and Burrage
[19] have developed these ideas and have proposed weak second order SROCK methods for
non-commutative Stratonovich SDEs. If the methods are applied to ODEs, they reduce
to the second order RKC methods of Abdulle and Medovikov [3]. Komori and Burrage
[20] have also proposed strong first order SROCK methods for non-commutative Itô and
Stratonovich SDEs, which reduce to the first or second order RKC methods for ODEs.
The weak second order SROCK methods given by Komori and Burrage [19] have the
advantage that the stability region is large along the negative real axis, but they still
have a drawback, that is, their stability region is not so wide. In order to overcome this
drawback, Abdulle, Vilmart and Zygalakis [5] have proposed a new family of weak second
order SROCK methods for non-commutative Itô SDEs, in which another family of second
order RKC methods is embedded.

On the other hand, Shi, Xiao and Zhang [28] have proposed an exponential Euler
scheme for the strong approximation of solutions of SDEs with multiplicative noise driven
by a scalar Wiener process. Cohen [7] and Tocino [29] have proposed exponential integra-
tors for second order SDEs with a semilinear drift term and multiplicative noise. Adamu
[6], Geiger, Lord and Tambue [11], and Lord and Tambue [22] have proposed exponential
integrators for stochastic partial differential equations with a semilinear drift term and
multiplicative noise. Komori and Burrage [18] have proposed another explicit exponential
Euler scheme for non-commutative Itô SDEs with a semilinear drift term, which is of
strong order one half and A-stable in the MS.

In the present paper, we derive stochastic exponential Runge-Kutta (SERK) methods
for the weak approximation of solutions of non-commutative Itô SDEs with a semilinear
drift term. We will achieve this on the basis of the derivative free Milstein-Talay (DFMT)
method proposed by Abdulle et al. [4, 5] and explicit exponential RK methods for ODEs
proposed by Hochbruck and Ostermann [15]. In Section 2 we will briefly introduce explicit
exponential RK methods for ODEs. In Section 3 we will derive our SERK methods, and
in Section 4 we will give their stability analysis. Section 5 will present numerical results
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and Section 6 our conclusions.

2 Explicit exponential RK methods for ODEs

We consider autonomous semilinear ODEs given by

y′(t) = Ay(t) + f(y(t)), t > 0, y(0) = y0, (2. 1)

where y is an Rd-valued function on [0,∞), A is a d × d matrix and f is an Rd-valued
nonlinear function on Rd. In order to introduce some exponential RK methods for (2. 1),
we make the following assumption [15]:

Assumption 2.1 For a given time T > 0, (2.1) satisfies the conditions below.

(1) There exists a constant C such that ∥∥etA
∥∥ ≤ C

for all t ∈ [0, T ].

(2) The nonlinear function f is (locally) Lipschitz continuous in a local region U which
contains the exact solution y on [0, T ], that is,

{y(t) | t ∈ [0, T ]} ⊂ U.

(3) The solution y is a sufficiently smooth function on [0, T ] and f is sufficiently often
differentiable in U . All occurring derivatives of y and f are uniformly bounded in
[0, T ] and U , respectively.

Remark that the global error estimation of all exponential RK methods introduced in this
section can be influenced by the constant C [15].

By the variation-of-constants formula, the solution of (2. 1) is

y(tn+1) = eAhy(tn) +

∫ tn+1

tn

eA(tn+1−s)f(y(s))ds. (2. 2)

Let yn denote a discrete approximation to the solution y(tn) of (2. 1) for an equidistant

grid point tn
def
= nh (n = 1, 2, . . . ,M) with step size h = T/M < 1 (M is a natural

number). By interpolating f(y(s)) at f(yn) only, we obtain the simplest exponential
scheme for (2. 1) [16]:

yn+1 = eAhyn + hϕ1(Ah)f(yn), (2. 3)

where ϕ1(Z)
def
= Z−1(eZ − I) and I stands for the d× d identity matrix. This is called the

explicit exponential Euler method.
Higher order exponential RK methods have been proposed in [15, 16]. For example,

the following is a one-parameter family of second order exponential RK methods:

Y 1 = ec2hAyn + c2hϕ1(c2hA)f(yn),

yn+1 = ehAyn + h

{
ϕ1(hA) − 1

c2
ϕ2(hA)

}
f(yn) +

1

c2
hϕ2(hA)f(Y 1),

(2. 4)
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where c2 is a parameter and ϕ2(Z)
def
= Z−2(eZ − I − Z). In addition to Assumption 2.1,

let us assume that there exists a constant C such that∥∥∥∥∥hA
n−1∑
k=1

ekhA

∥∥∥∥∥ ≤ C

for n = 2, 3, . . . ,M . (Note that the global error estimation of the following family of
exponential RK methods can be also influenced by the above constant C [15].) Then, a
two-parameter family of third order exponential RK methods is given by

Y 1 = ec2hAyn + c2hϕ1(c2hA)f(yn),

Y 2 = ec3hAyn + h {c3ϕ1(c3hA) − ψ(hA)}f(yn) + hψ(hA)f(Y 1),

yn+1 = ehAyn + h

{
ϕ1(hA) − γ + 1

γc2 + c3
ϕ2(hA)

}
f(yn)

+
h

γc2 + c3
ϕ2(hA) {γf(Y 1) + f(Y 2)} ,

(2. 5)

where c2, c3 and γ are parameters satisfying

2(γc2 + c3) = 3
(
γc22 + c23

)
(2. 6)

and ψ(Z)
def
= γc2ϕ2(c2Z) +

c23
c2
ϕ2(c3Z).

3 Weak second order SERK methods

We shall now derive SERK methods of weak order two by utilizing some results for a
well-designed existing stochastic Runge-Kutta (SRK) method. For this, we give a brief
introduction to the SRK method in the first subsection. After this, we will present SERK
methods in the second subsection.

3.1 The derivative free Milstein-Talay method

Similarly to the case of ODEs, we are concerned with autonomous SDEs with a semilinear
drift term given by

dy(t) = (Ay(t) + f(y(t)))dt+
m∑

j=1

gj(y(t))dWj(t), t > 0, y(0) = y0, (3. 1)

where gj, j = 1, 2, . . . ,m are Rd-valued functions on Rd, the Wj(t), j = 1, 2, . . . ,m are
independent Wiener processes and y0 is independent of Wj(t) −Wj(0) for t > 0.

In order to deal with weak approximations for (3. 1), let g0(y) denote Ay +f(y) and
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let us consider the following DFMT method [4, 5]:

K1 = yn + hg0(yn), K2 = K1 +
√
h

m∑
j=1

gj(yn)ξj,

yn+1 = yn +
h

2
{g0 (yn) + g0 (K2)}

+
1

2

m∑
j=1

{
gj

(
yn + h

m∑
k=1

gk (yn) ζkj

)
− gj

(
yn − h

m∑
k=1

gk (yn) ζkj

)}

+

√
h

2

m∑
j=1

{
gj

(
yn + K1

2
+

√
h

2

m∑
k=1

gk (yn)χk

)

+gj

(
yn + K1

2
−
√
h

2

m∑
k=1

gk (yn)χk

)}
ξj,

(3. 2)

where the χj and ξj, j = 1, 2, . . . ,m are discrete random variables satisfying

P (χj = ±1) =
1

2
, P (ξj = ±

√
3) =

1

6
, P (ξj = 0) =

2

3

and the ζkj, j, k = 1, 2, . . . ,m are given by

ζkj
def
=


(ξjξj − 1)/2 (j = k),
(ξkξj − χk)/2 (j < k),
(ξkξj + χj)/2 (j > k).

Let CL
P (Rd,R) denote the family of L times continuously differentiable real-valued

functions on Rd, whose partial derivatives of order less than or equal to L have polynomial
growth. Whenever we deal with weak convergence of order q, we will make the following
assumption [17, p. 474]:

Assumption 3.1 All moments of the initial value y0 exist and gj (j = 0, 1, . . . ,m) are

Lipschitz continuous with all their components belonging to C
2(q+1)
P (Rd,R).

Then, we can give the definition of weak convergence of order q [17, p. 327]:

Definition 3.1 When discrete approximations yn are given by a numerical method, we

say that the method is of weak (global) order q if for all G ∈ C
2(q+1)
P (Rd,R), constants

C > 0 (independent of h) and δ0 > 0 exist, such that

|E[G(y(T )] − E[G(yM)]| ≤ Chq, h ∈ (0, δ0).

In order to consider numerical methods of weak order q, the following theorem is very
useful, which has been originally proposed by Milstein [24] (see [25, p. 100]) and which is
very often utilized by other researchers [4, 5, 27].

Theorem 3.1 In addition to Assumption 3.1, suppose that the following conditions hold:

(1) for sufficiently large r, the moments E[‖yn‖2r] exist and are uniformly bounded with
respect to M and n = 0, 1, . . . ,M ;
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(2) for all G ∈ C
2(q+1)
P (Rd,R), the local error estimation∣∣E[G(y(tn+1))] − E[G(yn+1)]

∣∣ ≤ |K(yn)|hq+1

holds if y(tn) = yn, where K ∈ C0
P (Rd,R).

Then, the scheme that gives yn (n = 0, 1, . . . ,M) is of weak (global) order q.

The second condition concerning the local error in the theorem provides us order
conditions for an SRK method to be of weak order q [27]. In addition, the DFMT method
is of weak order two [4]. These facts give us a way of deriving new SRK methods of weak
order two [4, 5]. For this, we propose a useful lemma to give a sufficient condition for
SRK methods based on the DFMT method to satisfy the second condition in Theorem
3.1.

Lemma 3.1 For an approximate solution yn, let yn+1 be given by (3. 2). For the yn, let
ŷn+1 be given by

ŷn+1 = ỹn+1 +
h

2
g0

(
Y 1 +

√
h

m∑
j=1

g0 (Y 2) ξj

)

+
1

2

m∑
j=1

{
gj

(
Y 3 + h

m∑
k=1

gk (Y 3) ζkj

)
− gj

(
Y 3 − h

m∑
k=1

gk (Y 3) ζkj

)}

+

√
h

2

m∑
j=1

{
gj

(
Y 4 +

√
h

2

m∑
k=1

gk (Y 5)χk

)

+gj

(
Y 4 −

√
h

2

m∑
k=1

gk (Y 5)χk

)}
ξj

and assume that ỹn and Y i, i = 1, 2, . . . , 5 have no random variable and satisfy

ỹn+1 +
h

2
g0 (Y 1) = yn + hg0 (yn) +

h2

2
g′

0 (yn) g′
0 (yn) +O

(
h3
)
, (3. 3)

Y i = yn + hai +O
(
h2
)

(i = 1, 2, 3, 5),

Y 4 = yn +
h

2
g0 (yn) + h2a4 +O

(
h3
)
,

where ai, i = 1, 2, . . . , 5 are vectors independent of h. (Note that the symbol O(hp) rep-
resents terms x such that ‖x‖ ≤ |K(yn)|hp for an K ∈ C0

P (Rd,R) and a small h > 0.)
Then, for all G ∈ Cr

P (Rd,R) (r ≥ 3)

E
[
G
(
ŷn+1

)]
− E

[
G
(
yn+1

)]
= O

(
h3
)
.
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Proof. As

g0

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)

= g0 (Y 1) +
√
h

m∑
j=1

g′
0 (yn) gj (yn) ξj +

h

2

m∑
j,k=1

g′′
0 (yn)

[
gj(yn), gk(yn)

]
ξjξk

+
h3/2

6

m∑
j,k,l=1

g′′′
0 (yn)

[
gj(yn), gk(yn), gl(yn)

]
ξjξkξl

+ h3/2

m∑
j=1

g′
0 (yn) g′

j (yn) a2ξj + h3/2

m∑
j=1

g′′
0 (yn)

[
a1, gj(yn)

]
ξj +O

(
h2
)
,

we have

ỹn+1 +
h

2
g0

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
−
{

yn +
h

2
(g0 (yn) + g0 (K2))

}
= h5/2r1 +O

(
h3
)

from (3. 3), where

r1 =
1

2

m∑
j=1

{
g′

0 (yn) g′
j (yn) a2 + g′′

0 (yn)
[
a1 − g0(yn), gj(yn)

]}
ξj.

As

1

2

m∑
j=1

{
gj

(
Y 3 + h

m∑
k=1

gk (Y 3) ζkj

)
− gj

(
Y 3 − h

m∑
k=1

gk (Y 3) ζkj

)}

= h
m∑

j,k=1

g′
j (yn) gk (yn) ζkj + h2r2 +O

(
h3
)

where

r2 =
m∑

j,k=1

{
g′′

j (yn) [a3, gk (yn)] + g′
j (yn) g′

k (yn) a3

}
ζkj,

we have

1

2

m∑
j=1

{
gj

(
Y 3 + h

m∑
k=1

gk (Y 3) ζkj

)
− gj

(
Y 3 − h

m∑
k=1

gk (Y 3) ζkj

)}

− 1

2

m∑
j=1

{
gj

(
yn + h

m∑
k=1

gk (yn) ζkj

)
− gj

(
yn − h

m∑
k=1

gk (yn) ζkj

)}
= h2r2 +O

(
h3
)
.
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As

m∑
j=1

{
gj

(
Y 4 +

√
h

2

m∑
k=1

gk (Y 5)χk

)
+ gj

(
Y 4 −

√
h

2

m∑
k=1

gk (Y 5)χk

)}
ξj

=
m∑

j=1

{
gj

(
yn +

h

2
g0 (yn) +

√
h

2

m∑
k=1

gk (yn)χk

)

+gj

(
yn +

h

2
g0 (yn) −

√
h

2

m∑
k=1

gk (yn)χk

)}
ξj + 2h2r3 +O

(
h5/2

)
where

r3 =
m∑

j=1

{
g′

j (yn) a4 +
1

2

m∑
k,l=1

g′′
j (yn) [gk (yn) , g′

l (yn) a5]χkχl

}
ξj,

we have

√
h

2

m∑
j=1

{
gj

(
Y 4 +

√
h

2

m∑
k=1

gk (Y 5)χk

)
+ gj

(
Y 4 −

√
h

2

m∑
k=1

gk (Y 5)χk

)}
ξj

−
√
h

2

m∑
j=1

{
gj

(
1

2
(yn + K1) +

√
h

2

m∑
k=1

gk (yn)χk

)

+gj

(
1

2
(yn + K1) −

√
h

2

m∑
k=1

gk (yn)χk

)}
ξj

= h5/2r3 +O
(
h3
)
.

From these results,

ŷn+1 − yn+1 = h2r2 + h5/2r1 + h5/2r3 +O
(
h3
)
.

From this and (3. 2), thus,

G
(
ŷn+1

)
−G

(
yn+1

)
= G′ (yn+1

) (
ŷn+1 − yn+1

)
+O

(
h4
)

= G′

(
yn +

√
h

m∑
j=1

gj (yn) ξj +O(h)

)(
ŷn+1 − yn+1

)
+O

(
h4
)

= G′ (yn)
(
ŷn+1 − yn+1

)
+ h5/2G′′ (yn)

[
m∑

j=1

gj (yn) ξj, r2

]
+O

(
h3
)
.

Consequently, we obtain

E
[
G
(
ŷn+1

)]
− E

[
G
(
yn+1

)]
= O

(
h3
)

because
E[r1] = E[r2] = E[r3] = E[ξjr2] = 0 (j = 1, 2, . . . ,m).

2
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3.2 SERK methods

We shall propose weak second order SERK methods for (3. 1). As a simple case, let us
begin with

yn+1 = Y 1 + hϕ2(hA)

{
f

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f(yn)

}

+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj + H .

(3. 4)

Here and in what follows, we set Y 1, Y 2 and H by

Y 1
def
= ehAyn + hϕ1(hA)f(yn), Y 2

def
= e

h
2
Ayn +

h

2
ϕ1

(
h

2
A

)
f(yn)

H
def
=

1

2

m∑
j=1

{
gj

(
Y 1 + h

m∑
k=1

gk (Y 1) ζkj

)

−gj

(
Y 1 − h

m∑
k=1

gk (Y 1) ζkj

)}
(3. 5)

+

√
h

2

m∑
j=1

{
gj

(
Y 2 +

√
h

2

m∑
k=1

gk (Y 2)χk

)

+gj

(
Y 2 −

√
h

2

m∑
k=1

gk (Y 2)χk

)}
ξj.

If the diffusion terms vanish, (3. 4) is equivalent to (2. 4) with c2 = 1.

Theorem 3.2 Let g0(y) denote Ay + f(y) and suppose that (3. 1) satisfies Assumption
3.1 for q = 2. Suppose also that g′

j(y)gk(y) (j, k = 1, 2, . . . ,m) satisfy the linear growth
condition: ∥∥g′

j(y)gk(y)
∥∥ ≤ C (1 + ‖y‖) (3. 6)

for a constant C > 0. Then, (3. 4) is of weak order two.

Proof. First, let us consider

ŷn+1 = ỹn+1 +
h

2
g0

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
+ H ,

where

ỹn+1 = yn +
h

2
g0 (yn) , K1 = yn + hg0 (yn) .

By Lemma 3.1, the local error of this method is of weak order three because

Y 1 = yn + hg0 (yn) +O
(
h2
)
, Y 2 = yn +

h

2
g0 (yn) +

h2

8
Ag0 (yn) +O

(
h3
)
.
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Using g0(y) = Ay + f(y), we can rewrite this as follows:

ŷn+1 = yn +
h

2
(Ayn + f (yn)) +

h

2
AK1

+
h

2
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj + H .

(3. 7)

The last term is the same in (3. 4) and (3. 7). If gj ≡ 0 for j = 1, 2, . . . ,m, then

yn+1 − ŷn+1 = O
(
h3
)

because (3. 4) and (3. 7) are of order two for semilinear ODEs. Hence, all that remains
concerning the local error is to check the difference between

hϕ2(hA)

{
f

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 1)

}
+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj

and
h

2

{
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

}
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj.

As Y 1 = K1 +O (h2), we have

hϕ2(hA)

{
f

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 1)

}
+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj

=
h

2

{
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

}
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj + h5/2r +O
(
h3
)
,

where

r =
1

2

m∑
j=1

{
1

4
A2gj (Y 2) +

1

3
Af ′ (K1) gj (Y 2)

}
ξj.

Since E[r] = 0, the local error of (3. 4) is also of weak order three.
As a sufficient condition for (1) in Theorem 3.1, it is known that the following two

inequalities hold for sufficiently small h > 0:∥∥E [yn+1 − yn | yn

]∥∥ ≤ C (1 + ‖yn‖)h,
∥∥yn+1 − yn

∥∥ ≤ Xn (1 + ‖yn‖)
√
h,

where C is a positive constant and Xn is a random variable which has moments of all
orders [25, p. 102]. From the definition of Y 1 in (3. 4) and the linear growth of g′

jgk, we
have

1

2

∥∥∥∥∥gj

(
Y 1 + h

m∑
k=1

gk (Y 1) ζkj

)
− gj

(
Y 1 − h

m∑
k=1

gk (Y 1) ζkj

)∥∥∥∥∥
≤ C1

∥∥∥∥∥g′
j (yn)h

m∑
k=1

gk (yn) ζkj

∥∥∥∥∥
≤ C2 (1 + ‖yn‖)h

9



for constants C1, C2 > 0. As gj(y) (j = 0, 1, . . . ,m) are Lipschitz continuous, they also
satisfy the linear growth conditions of them. From these facts, we can see that the two
inequalities requested above hold for (3. 4). Consequently, (3. 4) is of weak order two by
Theorem 3.1. 2

As another case, let us consider the family of SERK methods given by

yn+1 = Y 1 +
h

γc2 + c3
ϕ2(hA)

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)

+f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− (γ + 1)f(yn)

}
(3. 8)

+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj + H ,

where

Y 3 = ec2hAyn + c2hϕ1(c2hA)f(yn),

Y 4 = ec3hAyn + h {c3ϕ1(c3hA) − ψ(hA)}f(yn) + hψ(hA)f(Y 3)

and b1 and b2 are parameters as well as c2, c3 and γ satisfying (2. 6). If the diffusion terms
vanish, (3. 8) is equivalent to (2. 5).

Theorem 3.3 Let g0(y) denote Ay + f(y) and suppose that (3. 1) satisfies Assumption
3.1 for q = 2. Suppose also that g′

j(y)gk(y) (j, k = 1, 2, . . . ,m) satisfy (3. 6). Then, (3.
8) is of weak order two if the parameters satisfy

γb1 + b2
γc1 + c2

= 1,
γb21 + b22
γc1 + c2

= 1 (3. 9)

as well as (2. 6).

Proof. The last term is the same in (3. 7) and (3. 8). If gj ≡ 0 for j = 1, 2, . . . ,m, then

yn+1 − ŷn+1 = O
(
h3
)

because (3. 7) and (3. 8) are of order two and three for semilinear ODEs, respectively.
Hence, all that remains concerning the local error is to check the difference between

h

γc2 + c3
ϕ2(hA)

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)
− γf (Y 3)

+f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 4)

}

+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj

and
h

2

{
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

}
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj.

10



As Y 3 = K1 + (c2 − 1)hg0 (yn) +O (h2) and Y 4 = K1 + (c3 − 1)hg0 (yn) +O (h2), using
(3. 9) we have

1

γc2 + c3

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)
− γf (Y 3)

+f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 4)

}

=
√
h

m∑
j=1

f ′ (K1) gj (Y 2) ξj +
h

2

m∑
j,k=1

f ′′ (K1)
[
gj (Y 2) , gk (Y 2)

]
ξjξk + h3/2r1

+
γb32 + b33

6(γc2 + c3)
h3/2

m∑
j,k,l=1

f ′′′ (K1)
[
gj (Y 2) , gk (Y 2) , gl (Y 2)

]
ξjξkξl +O

(
h2
)
,

where

r1 =

(
γb2c2 + b3c3
γc2 + c3

− 1

) m∑
j=1

f ′′ (K1)
[
g0 (yn) , gj (Y 2)

]
ξj.

On the other hand,

f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

=
√
h

m∑
j=1

f ′ (K1) gj (Y 2) ξj +
h

2

m∑
j,k=1

f ′′ (K1)
[
gj (Y 2) , gk (Y 2)

]
ξjξk

+
h3/2

6

m∑
j,k,l=1

f ′′′ (K1)
[
gj (Y 2) , gk (Y 2) , gl (Y 2)

]
ξjξkξl +O

(
h2
)
.

By utilizing these results and hφ2(hA) = (h/2)I + (h2/6)A+O (h3) , thus, we obtain

h

γc2 + c3
ϕ2(hA)

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)
− γf (Y 3)

+f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 4)

}

+
√
h
(
e

h
2
A − I

) m∑
j=1

gj (Y 2) ξj

=
h

2

{
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

}
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj

+
h5/2

2
r1 + h5/2r2 +O

(
h3
)
,

11



where

r2 =
1

12

(
γb32 + b33
γc2 + c3

− 1

) m∑
j,k,l=1

f ′′′ (K1)
[
gj (Y 2) , gk (Y 2) , gl (Y 2)

]
ξjξkξl

+
1

2

m∑
j=1

{
1

4
A2gj (Y 2) +

1

3
Af ′ (K1) gj (Y 2)

}
ξj.

Since E[r1] = E[r2] = 0, the local error of (3. 8) is of weak order three. In a similar way
to the proof of Theorem 3.2, we can see that (1) in Theorem 3.1 holds. Consequently, (3.
8) is of weak order two if the parameters satisfy (2. 6) and (3. 9). 2

Remark 3.1 As a simple solution of (2. 6) and (3. 9), we can find

c2 =
1

2
, c3 = 1, γ = 4, b1 =

6 ±
√

6

10
, b2 =

3 ∓ 2
√

6

5

(double sign in order). For this solution, the intermediate values Y 3 and Y 4 satisfy

Y 3 = Y 2, Y 4 = Y 1 + hψ(hA) {f (Y 2) − f (yn)} .

4 MS stability analysis for SERK methods

Let us investigate the stability properties of our SERK methods. We consider the following
scalar test SDE [13]:

dy(t) = λy(t)dt+
m∑

j=1

σjy(t)dWj(t), t > 0, y(0) = y0, (4. 1)

where y0 6= 0 with probability one (w. p. 1) and where λ and σj (1 ≤ j ≤ m) are complex
numbers satisfying

2<(λ) +
m∑

j=1

∣∣σj

∣∣2 < 0. (4. 2)

Because of (4. 2), the solution of (4. 1) is MS stable (limt→∞E[|y(t)|2] = 0).
When an SRK method is applied to (4. 1), it is generally expressed by

yn+1 = R
(
h, λ, {σj}m

j=1 ,η
)
yn,

where η is a random vector whose elements are random variables appeared in the method.
The method is said to be MS-stable for particular h, λ, σj (j = 1, 2, . . . ,m) if

E

[∣∣∣R(h, λ, {σj}m
j=1 ,η

)∣∣∣2] < 1,

which means that E[|yn|2] → 0 as n→ ∞ for the given h, λ, σj (j = 1, 2, . . . ,m). Further,
the method is said to be A-stable in the MS if it is MS-stable for any h > 0 whenever (4.
2) holds [13].

12



Theorem 4.1 The SERK method (3. 4) is A-stable in the MS for the test equation (4.
1).

Proof. If we apply (3. 4) to (4. 2), then, we have

yn+1 = R
(
h, λ, {σj}m

j=1 , {ξj}
m
j=1 , {ζjk}

m
j,k=1

)
yn,

where

R
(
h, λ, {σj}m

j=1 , {ξj}
m
j=1 , {ζjk}

m
j,k=1

)
= ehλ

{
1 +

m∑
j=1

√
hσjξj +

m∑
j=1,k

hσjσkζkj

}
.

From this, the MS stability function R̂ of (3. 4) is given by

R̂(pr, q)
def
= E

[
|R|2

]
= e2pr

(
1 + q +

q2

2

)
,

where pr
def
= <(λ)h and q

def
=
∑m

j=1 |σj|2h. As we can rewrite (4. 2) by 2pr + q < 0, we
have

R̂(pr, q) < e2pr(1 − 2pr + 2p2
r).

The function in the right-hand side is less than 1 for any pr < 0. Thus, R̂(pr, q) < 1
whenever 2pr + q < 0. Consequently, (3. 4) is A-stable in the MS. 2

Theorem 4.2 The SERK method (3. 8) is A-stable in the MS for (4. 1).

Proof. The method (3. 8) is equivalent to (3. 4) except the second term, and both
second terms disappear when they are applied to (4. 2). By Theorem 4.1, thus, (3. 8) is
also A-stable in the MS 2

As a comparison, let us look at stability properties of the SROCK2 method. When
m = 1, its MS stability function is given by

R̂(p, q) = |A(p)|2 + |B(p)|2q + |C(p)|2 q
2

2
,

where p
def
= λh and A(p), B(p), C(p) are polynomial functions of p. For details, see [5].

Now, we can plot the MS stability domain, that is, {(p, q) | R̂(p, q) < 1}. For the SROCK2
method with six stages, the MS stability domain and its profile are given in Figure 1. The
MS stability domain is indicated by the colored part in the left of the figure, and pi denotes
=(λ)h. The other part enclosed by the mesh indicates the domain in which the solution
of the test SDE is MS stable. In the right part of the figure, the colored area indicates the
profile of the MS stability domain when pi = 0. We can see that the MS stability domain
is large along the negative axis of pr, but it is thin in the axis of pi. On the other hand,
we plot the MS stability domain of our SERK methods in Figure 2.
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Figure 1: MS stability domain (left) and its profile (right) for the SROCK2 method with
six stages

pr

pi

q

pr

pi

q

Figure 2: MS stability domain for our SERK methods

5 Numerical Experiments

In Section 3, we have derived our SERK methods. For example, (3. 4) is of weak order
two and deterministic order two. In what follows, let us call this the SERKW2D2 method.
As we have seen in Remark 3.1, (3. 8) with c2 = 1/2, c3 = 1, γ = 4, b1 = (6+

√
6)/10, b2 =

(3 − 2
√

6)/5 is of weak order two and deterministic order three. Let us call this the
SERKW2D3 method. As an implementation of the SROCK2 method, we do not directly
use the Fortran codes from http://anmc.epfl.ch/Pdf/srock2.zip, but have implemented C
codes by including rectp.f from the Fortran codes. Thus, the SROCK2 method in our C
codes has the same parameter values as that in the Fortran codes.

In order to confirm the performance of the methods, we investigate some statistics in
numerical experiments. As first two examples, let us consider the following scalar, nonstiff,
nonlinear SDEs [5, 9] for which some functions of the exact solution are analytically
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Figure 3: Log-log plots of the relative error versus h in the examples (5. 1) and (5. 2)
(Solid: SERKW2D2, dash-dotted: SERKW2D3, dash: SROCK2, dotted: reference line
with slope 2)

obtained. One of the examples is

dy(t) =

(
1

4
y(t) +

1

2

√
(y(t))2 + 1

)
dt+

√
(y(t))2 + 1

2
dW (t), t > 0,

y(0) = 0 (w.p.1).

(5. 1)

For the solution y(t), E[(arcsinh y(t))2] = t2/4 + t/2. The other is

dy(t) = y(t)dt+
10∑

j=1

1

aj

√
y(t) +

1

bj
dWj(t), t > 0,

y(0) = 1 (w.p.1),

(5. 2)

where a1 = 10, a2 = a8 = 15, a3 = a7 = a9 = 20, a4 = a6 = a10 = 25, a5 = 40,
b1 = b6 = 2, b2 = b7 = 4, b3 = b8 = 5, b4 = b9 = 10, b5 = b10 = 20. For the solution y(t),

E
[
(y(t))2] =

(
−68013 − 458120et + 14926133e2t

)
/14400000.

In these examples, using the Mersenne twister algorithm [23] we simulate 1024×106 inde-
pendent trajectories for a given h, and seek numerical approximations to E[(arcsinh y(1))2]
and E[(y(1))2] for (5. 1) and (5. 2), respectively. The results are indicated in Figures 3.
The solid, dash-dotted and dash lines denote the SERKW2D2 method, the SERKW2D3
method, and the SROCK2 method with 13 stages [5], respectively. The dotted one is a
reference line with slope 2. Note that the results of the SERKW2D2 and SERKW2D3
methods in (5. 2) are the same because the drift term is linear. As a whole, we can ob-
serve that all methods achieve theoretical convergence order (weak order two), although
the error of the SERKW2D2 method seems to be influenced by statistical errors when
h = 2−4, 2−5, in the right plot.

In order to deal with stiff cases, let us consider the following SDE

dy(t) =

[
α 1

−ω2 α

]
y(t)dt+

[
σ 0
0 σ

]
y(t)dW (t), t > 0,

y(0) = [1 1]> (w.p.1)

(5. 3)
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Table 1: Step size for Numerical stability in (5. 3)

Method Step size Absolute errors

Case 1) SROCK2 (10 stages) h = 1/2 9.1 × 10−5 (stable)
SERKW2D2 h = 1/2 9.1 × 10−5 (stable)

Case 2) SROCK2 (3 stages) h = 1/29 1.9 (stable)
SROCK2 (all stages) h = 1/28 ∞ (unstable)

SERKW2D2 h = 1/2 4.1 × 10−5 (stable)
Case 3) SROCK2 (3 stages) h = 1/27 9.1 × 10−5 (stable)

SROCK2 (5 stages) h = 1/26 9.1 × 10−5 (stable)
SROCK2 (all stages) h = 1/25 ∞ (unstable)

SERKW2D2 h = 1/2 9.1 × 10−5 (stable)

for α, ω, σ ∈ R. Since the eigenvalues of the matrix in the drift term are α ± iω,
limt→∞E[‖y(t)‖2] = 0 holds if 2α+ σ2 < 0. We investigate three cases:

Case 1) α = −100, ω = 1, σ =
√

199, Case 2) α = −1
4
, ω = 30π, σ = 1

4
,

Case 3) α = −100, ω = 30π, σ =
√

199.

In this example, we simulate 1 × 106 independent trajectories for a given h until t = 10
and seek numerical solutions to E[‖y(10)‖2] by the SROCK2 and SERKW2D2 methods.
Note that the SERKW2D2 and SERKW2D3 methods are equivalent for (5. 3) because
the drift term is linear. For the solution y(t) in each case, we have

Case 1) E
[
(y1(10))2

]
= {1 + sin(20)}e−20, E

[
(y2(10))2

]
= {1 − sin(20)}e−20,

Case 2) E
[
(y1(10))2

]
= E

[
(y2(10))2

]
= e−35/8,

Case 3) E
[
(y1(10))2

]
= E

[
(y2(10))2

]
= e−10.

Table 1 gives numerical results, which indicate how small step size is necessary for each
method to solve (5. 3) numerically stablely. In Case 1) the SROCK2 method with 10
stages can solve it for h = 1/2, but those with less than 10 stages cannot. In Case 2) the
SROCK2 method cannot solve the SDE for h = 1/28 even if we make the stage number
large. This is understandable because increasing stage number does not lead to making
the MS stability domain large enough in the axis of pi. Remember Fig. 1. In Case 3) the
SROCK2 method with three stages cannot solve the SDE for h = 1/26, but those with
five stages can. However, for h = 1/25 the SROCK2 method cannot solve by making the
stage number large. On the other hand, the SERKW2D2 method can solve for h = 1/2
in all cases.

The fourth example comes from a stochastic Burgers equation with white noise in time
only. Da Prato and Gatarek [8] have proved the existence and uniqueness of the global
solution of a scalar Burgers equation with multiplicative noise driven by a scalar Wiener
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Figure 4: Log-log plot of the relative error of the variance versus h (Solid: SERKW2D2,
dash-dotted: SERKW2D3, dash: SROCK2, dotted: reference line with slope 2)

process. Now, we consider an extended version of their equation:

du(t, x) =

(
∂2u

∂x2
(t, x) + u(t, x)

∂u

∂x
(t, x)

)
dt+ k1u(t, x)dW1(t)

+ k2

√
1 +

(
u(t, x)

)2
dW2(t), t > 0, x ∈ [0, 1], (5. 4)

u(t, 0) = u(t, 1) = 0 (w.p.1), t > 0,

u(0, x) = 2 sin(πx) (w.p.1), x ∈ [0, 1],

where k1, k2 ∈ R. If we discretize the space interval by N + 2 equidistant points xi (0 ≤
i ≤ N +1) and define a vector-valued function by y(t)

def
= [u(t, x1) u(t, x2) · · · u(t, xN)]>,

then we obtain the following non-commutative SDE

dy(t) =
(
Ay(t) + f(y(t))

)
dt+ k1y(t)dW1(t) + b

(
y(t)

)
dW2(t), t > 0,

y(0) = [2 sin(πx1) 2 sin(πx2) · · · 2 sin(πxN)]> (w. p. 1)
(5. 5)

by applying the central difference scheme to (5. 4), where

A
def
= (N + 1)2


−2 1 01 −2 1

. . . . . . . . .

1 −2 1
0 1 −2

 ,

f(y)
def
=
N + 1

2


y1y2

y2(y3 − y1)
...

yN−1(yN − yN−2)
yN(−yN−1)

 , b(y)
def
= k2


√

1 + y2
1√

1 + y2
2

...√
1 + y2

N

 .

For N = 127, k1 = 2 and k2 = 3/2, we seek an approximation to the variance of each
element of y(t) at t = 1. As we do not know the exact solution of the SDE, we seek
numerical approximations by the SROCK2 method with six stages for h = 2−12 and use
them instead of the exact variance.

In this example, we simulate 1024×104 independent trajectories for a given h. In order
to solve the SDE numerically stably with reasonable cost by the SROCK2 method, we
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Figure 5: Approximations to E[u(t, x)] at t = 1 given by the SROCK2 method
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Figure 6: Approximation to E[u(t, x)] at t = 1 given by the SERKW2D2 method for
h = 2−6

set the stage number of the method at 49, 35, 24, 17, 12 and 8 corresponding to the step
size 2−6, 2−7, 2−8, 2−9, 2−10 and 2−11, respectively. The results are indicated in Figure 4.
The solid, dash-dotted and dash lines denote the SERKW2D2 method, the SERKW2D3
method and the SROCK2 method, respectively. The dotted one is a reference line with
slope 2. The figure indicates that the SERKW2D2 and SERKW2D3 methods have almost
the same error, whereas the SROCK2 method seems to be inferior to them.

In Figures 5 and 6 plots for E[u(t, x)] at t = 1 are shown. These are obtained by
the SROCK method with 35 stages for h = 2−7, the SROCK method with 6 stages for
h = 2−12 and the SERKW2D2 method for h = 2−6.

Finally, Table 2 indicates comparisons of computational cost for each method in one
step and one trajectory. In the table, ne, nr and nm stand for the number of evaluations
on the drift or diffusion coefficients, the number of generated pseudo random numbers and
the number of the products of a matrix exponential function with a vector, respectively.

6 Concluding remarks

We have derived explicit SERK methods which achieve weak order two for non-commutative
Itô SDEs with a semilinear drift term, and simultaneously achieve order two or three for
ODEs. Using a scalar test SDE with complex coefficients, we have investigated the sta-
bility properties of the methods. As a result, we have proved that they are A-stable in
the MS for the test SDE. To our best knowledge, there seems to be no weak second order
method for which the A-stability in the MS is proven using the test SDE with complex
coefficients, except a drift-implicit method of weak order two and deterministic order two
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Table 2: comparisons of computational cost in one step and one trajectory

Method ne nr nm

SROCK2 with s stages s+ 5m+ 2 2m 0
SERKW2D2 6m+ 2 2m 6
SERKW2D3 6m+ 4 2m 7

in [4]. In addition, as one of explicit stabilized methods we have picked up the SROCK2
method, and have plotted its MS stability domain.

In order to check numerical performance of the methods as well as their stability prop-
erties, we have performed four numerical experiments. In the first two experiments, scalar,
nonstiff, nonlinear SDEs have been considered. The experiments have confirmed the the-
oretical convergence order, weak order two for our SERK methods and the SROCK2
method.

In the third experiment, we have dealt with three stiff cases. The experiment indicates
that if the imaginary part of eigenvalues in the drift term is large, the SROCK2 method
needs a very small step size for stability, whereas the SERK methods do not need.

In the last experiment, we have considered a stochastic Burgers equation with white
noise, and compared our SERK methods with the SROCK2 method with several stages.
This experiment has shown the superiority of the SERK methods to the SROCK2 method
in terms of computational accuracy for relatively large step size.

Finally, we should make the following remarks. As we have seen, we can apply our
methods to SDEs with a semilinear drift term and they have very good performance if the
stiffness of the problem is in the matrix A, not in the nonlinear function f . The SROCK2
method is applicable to more general SDEs without such restriction and they can also
cope with stiff problems by increasing the stage number. When the dimension of a system
of SDEs is not large and the stiffness is very strong, our methods will have a significant
advantage over the SROCK2 method. This is because the method has to increase the
stage number significantly, which leads to high computational cost. On the other hand,
when the dimension of SDEs is very large, the SROCK2 method can still cope with
high dimensional stiff SDEs by just increasing the stage number, but our methods need
techniques in order to calculate matrix exponentials efficiently, such as known methods.
Although we have not used such approaches for matrix exponentials in this paper, the
application of these techniques will give considerably important impact on our methods
to challenge very high dimensional SDEs with a semilinear drift term.
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[9] K. Debrabant and A. Rößler. Families of efficient second order Runge-Kutta methods
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