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Abstract 
 

Stochasticity in gene regulatory network has become increasingly distinguished in the current 

thinking of system biology. So it is important to know the variety of noise in gene regulatory 

network. Here, we constructed different types of gene regulatory networks, two-gene regulated 

mutual activation network of positive feedback; two-gene regulated mutual repression network 

of positive feedback. We have investigated the dynamical behavior of noise i.e. noise induced 

bistable (bimodal), multistable (multimodal) of this gene regulatory networks in deterministic 

and stochastic approaches at the steady state level. Also, we have investigated the one gene 

with respect to another one in both deterministic, stochastic environments with non-cooperative 

transcription factor binding / unbinding on the promoter region by using non-symmetric kinetic 

parameters to predict the bimodal and multimodal gene expression.  

On the other hand, biological memory is a ubiquitous function that can generate a sustained 

response to a transient inductive stimulus. To better understand this function, we must consider 

the mechanisms by which different structures of genetic networks achieve memory. Here, we 

investigated two competitive gene regulatory network models: the regulated mutual activation 

network (MAN) and the regulated mutual repression network (MRN). Stochasticity 

deteriorated the memory function of both the MAN and the MRN models.  

Theoretical analysis was performed to support the simulation results. We exemplified the 

stochastic potential profile of the one-variable rate equation deriving from the MAN and MRN 

models. In the presence of noise, a stochastic potential and the mean first-time passage (MFTP) 

are used to investigate bistability and memory persistency by the Fokker-Planck equation 

(FPE), which is derived from the chemical Langevin equation. 
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Mathematical comparison by simulation and theoretical analysis identified functional 

differences in the stochastic memory between the competitive models: specifically, the MAN 

provided much more robust, persistent memory than the MRN. The stochastic memory pattern 

of the MAN can be adjusted by changing the binding strength of the activators, whereas the 

MRN required highly cooperative and strong binding repressors for robust memory. 

Therefore, we should select the MAN or MRN for an optimal, rational design. If a robust 

memory is required, a mutual activation network should be selected. If the opposite state of 

protein synthesis is necessary, a mutual repression network must be selected, although the 

memory effect is fragile. This fragility may be related to the fact that suppression cascades 

amplify noise compared with activation cascades. A mutual activation network comprising two 

protein kinases, p42 MAPK and Cdc2, is suggested to require robust memory. On the other 

hand, a mutual repression network comprising the cI and Cro proteins would require a gene 

expression system opposite to that of robust memory. A Notch-Delta mutual repression 

network is an intelligible example to communicate between neighboring cells. An increase in 

Notch activity within a cell decreases Notch activity in neighboring cells, and thus Notch-Delta 

mutual repression provides inhomogeneous or opposite protein synthesis in homogeneous cell 

populations. Our results expected to have significant implications on the dynamical behavior 

of the genetic network in cell populations. 
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CHAPTER1 

Introduction 

 

1.1 Background and motivation 

1.2 System biology and synthetic biology 

         The study of the mechanisms underlying complex biological processes as integrated 

systems of many interacting components of living cells has led to the development of two new 

fields: systems biology (Ideker T et al., 2001, Adam P, 2001, Kitano, H 2002, Csete, M. E. et 

al. 2002, Doyle F.J.et al., 2006) and synthetic biology. Systems biology involves to collection 

of sets of experimental data into models for the behavior of sets of coupled genes and make 

proposal of mathematical models that might account for at least some significant aspects of 

this data set, to understand the behavior of a living organism, from the simplest cell Escherichia 

coli (E. coli) to more complex living organisms, such as humans. To accurate computer solution 

of the mathematical equations to obtain numerical predictions, and assessment of the quality 

of the model by comparing numerical simulations with the experimental data. On the molecular 

level, the complexity of cellular pathways and networks sometimes makes it difficult to 

understand or reliably predict the dynamical behavior of a system from knowledge of its 

components in biochemistry and molecular biology, and therefore there is significant interest 

in the construction of quantitative and predictive the mathematical models of cellular functions.  

Thus, systems biology and theoretical biology have revealed the mechanisms of how a 

biochemical network generates a variety of functions such as switching, amplification, 

adaptation, pulse generation, oscillation and memory (Kurata et al., 2014).  
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Synthetic biology is understood as an emerging field which builds on the work in genetics and 

associated fields over the last few decades (Hasty et al., 2002, Kaern et al., 2003, Pawson and 

Linding, 2005, Tyo et al., 2007,). It has as one of its aims the expansion of a discipline of 

biology to design and engineer biologically based parts, novel devices, and systems as well as 

redesigning existing, natural biological systems and strives to make the engineering of biology 

easier and more predictable results such as in dynamical behavior in gene regulatory networks. 

This ability would have thoughtful implications, allowing medical interventions to be carried 

out at the cellular level. 

The above two fields can be shared a focus on quantitative and mathematical modeling of 

biological processes with the advancement of biotechnologies. Also, this happening together 

required correspondingly quantitative experimental data sets able to provide an accurate 

description of these processes as they proceed inside the cell and the proper modeling 

techniques able to accurately explain and predict the dynamical behavior of biological systems. 

1.3 Gene expression 

          Gene expression is the process by which genetic information are used to synthesize of 

functional gene products. These products are usually proteins, which go on to perform essential 

functions as enzymes, hormones, and receptors, for example, genes that code for the amino 

acid sequences are known as structural genes. The process of gene expression involves two 

main stages 

1.3.1. Transcription 

           It is the process of RNA synthesis which controlled by the interaction of promoters and 

enhancers. Several different types of RNA are produced, including messenger RNA (mRNA), 
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which specifies the sequence of amino acids in the protein product, plus transfer RNA (tRNA) 

and ribosomal RNA (rRNA), which play a role in the translation process. 

1.3.2. Translation 

        The use of mRNA to direct protein synthesis and the subsequent post-translational 

processing of the protein molecule. Some genes are responsible for the production of other 

forms of RNA that play a role in translation thus including transfer RNA (tRNA) and ribosomal 

RNA (rRNA). In translation, the mature mRNA molecule is used as a template to assemble a 

series of amino acids to produce a polypeptide with a specific amino acid sequence. The 

complex in the cytoplasm at which this occurs is called a ribosome. Ribosomes are a mixture 

of ribosomal proteins and ribosomal RNA (rRNA) and consist of a large subunit and a small 

subunit. 

 

 

Fig 1.1. The Schematic models of the gene expression 
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Gene regulation may also serve as a substrate for evolutionary change, since control of the 

timing, location, and amount of gene expression can have a profound effect on the functions 

(actions) of the gene in a cell or in a multicellular organism. 

 

1.3.3 Gene expression by activator and repressor 

         A transcriptional activator is a protein (transcription factor) that increases gene 

transcription of a gene or set of genes. Most activators are DNA-binding proteins that bind to 

enhancers or promoter-proximal elements in which function by binding sequence-specifically 

to a DNA site located in or near a promoter and making protein-protein interactions with the 

general transcription machinery (RNA polymerase and general transcription factors), thereby 

facilitating the binding of the general transcription machinery to the promoter. The DNA site 

bound by the activator is referred to as an activator site. The part of the activator that makes 

protein-protein interactions with the general transcription machinery is referred to as an 

activating region. The part of the general transcription machinery that makes protein-protein 

interactions with the activator is referred to as an activation target. Therefore, to increase the 

transcription rate by encouraging the promoter activity. 

 

Fig 1.2. The Schematic models of gene expression by activator and repressor 
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In molecular genetics, a repressor is a DNA or RNA binding protein that inhibits the expression 

of one or more genes by binding to the operator or associated silencers. A DNA-binding 

repressor blocks the attachment of RNA polymerase to the promoter, thus preventing 

transcription of the genes into messenger RNA. An RNA-binding repressor binds to the mRNA 

and prevents translation of the mRNA into protein. This blocking of expression is called 

repression. Thus, to decrease the transcription rate by inhibiting the binding of RNAP to the 

promoter. 

1.4 Necessity to study gene regulatory network 

        Genes are not independent. They regulate each other and act collectively. This collective 

behavior can be observed using microarray and some genes control the response of the cell to 

changes in the environment by regulating other genes. Therefore, to study in the genomic area 

is leading to a complete map of the building blocks of cell biology. This knowledge of this map 

is in turn to set the stage for a fundamental description of cellular function at the DNA level in 

the living cell. Moreover, gene regulatory networks have a significant role in every process of 

life, including cell differentiation, metabolism, the cell cycle and signal transduction also 

responses to the environment are all controlled by proteins synthesis. Through understanding 

the dynamics of these gene networks we can shed light on the mechanisms of diseases that 

occur when these Imperfect cellular developments are dysregulated. Such an explanation will 

require an understanding of gene regulation, in which proteins often regulate their own 

production or that of other proteins in a complex web of interactions. This implication of the 

fundamental logic of genetic networks are sometimes difficult to deduce through experimental 

techniques alone, and successful approaches will probably involve the union of new 

experiments and computational modeling techniques (Hasty et.al. 2001.).To use this technique 

we are able to show the potential discovery of triggering mechanism and treatments for 

diseases. 
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1.5 Noise in gene expression 

       Noise is ubiquitous in gene regulatory networks are subject to fluctuation disturbances that 

might occur at various stages such as transcription, translation, transport, chromatin 

remodeling, and pathway-specific regulation. This noise can come about in two following 

ways. The noise arises partially from the fluctuations in reaction rates that occur when small 

numbers of molecules participate in the biochemical processes such as transcription and 

translation generate "intrinsic" noise. In addition, stochastic fluctuations in the amounts or 

states of other cellular components lead indirectly to variation in the expression of a particular 

gene and thus represent "extrinsic" noise that from cell-to-cell differences in the background 

(Thattai and van Oudenaarden, 2001, Peter S. Swain 2002). Gene expression is a complex and 

nonlinear system involving numerous components within a cell and always exposed to 

stochastic fluctuations (McAdams and Arkin, 1997, Zhang et al., 2012). Noise in gene 

expression is provided by intrinsic fluctuations such as molecular number per cell and 

uncertainty of kinetic parameters and by extrinsic perturbations deriving from upstream 

regulators (Blake et al., 2003). The stochastic behaviors of gene expressions and their 

regulation are essential sources of the observed noise in cellular events (Ozbudak et al., 2002). 

Translational efficiency is the predominant source of increased noise (Elowitz et al., 2002). 

While a negative feedback loop suppresses noise, a positive feedback loop can increase the 

amplitude of noise (Blake et al., 2003), leading to increased cell–cell variability in the target 

gene output (Eldar and Elowitz, 2010). The miRNA negative feedback loop involving miR-17-

92, E2F and Myc in cancer networks reduced noise buffering to improve the signal sensitivity 

(Zhang et al., 2012). 

 

 

 



7 
 

 

CHAPTER 2 

Simplification of gene expression model  

 

 

2.1 Introduction 

          Gene expression is a complex that a lot of biochemical processes in the cell involve low 

number of molecule or infrequent interactions and consequently give rise to stochastic 

fluctuation (Berg, 1978, McAdams and Arkin, 1997, Ozbudak et al., 2002). The gene 

expression that occurs in the stochastic diffusion of substances in the cell as well as a regulator 

by an activator, repressor, negative, positive feedback loop, transcription and translation 

cascade etc. Noise in gene expression can be characterized by the distribution of protein levels 

in individual cells and by the timescale of fluctuations, that is, the time over which a cell 

remains at a given position in the distribution. Modern experimental and hypothetical work has 

converged on a simple framework to understand gene expression noise. Similar to any physical 

quantity, gene expression level measurements are subject to noise (Pedraza and van 

Oudenaarden, 2005). The backgrounds of noise in gene expression proposed a stochastic model 

for gene expression in eukaryotic (Elowitz et al., 2002, Raser and O'Shea, 2004). Their model 

suggests that proteins are produced in random bursts in gene expression. As a single mRNA 

transcript can produce multiple copies of a protein, protein translation amplifies transcriptional 

noise. Several other models have further legalized and extended this hypothesis by analyzing 

the mechanisms contributing to noise in gene expression (Eldar and Elowitz, 2010). The 

numerical simulation of biochemical reactions can be carried out using deterministic or 
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stochastic approaches. Here we have shown the comparison between two approaches and find 

out the limitation due to the number of molecules in protein synthesis. 

2.2 Modelling of gene expression 

          The mathematical modeling has been applied to biological systems for decades, but with 

respect to gene expression, too few molecular components have been known to build useful, 

predictive models in both experimental and computational methods (Ay and Arnosti, 2011).  

The modeling of gene regulation is central to such efforts because gene expression is at the 

nexus of many biological processes that have combined to offer the prospect of developing a 

quantitative and systematic understanding of system biology, and this has been driven a flow 

in recent interest in the formulation of mathematical models in biology, especially of the 

molecular-level details of biochemical kinetics reactions processes (Kurata et al. 2007, Kaerm 

el al. 2005).  

 

2.3 Deterministic modelling  

          A deterministic model is developed applying first principals equations that are, mass 

balance, energy balances, kinetic rates, calculating physio-chemical parameters and so on. It is 

also called white-box model. These reactions rate of a biochemical reaction are equal to the 

rate constant multiplied by the product of the concentrations of species that participate in this 

reaction networks. As a deterministic point of view, with a reaction rate connected with each 

reaction, the rate of change of the concentration of every species is equal to the rate for this 

species to be produced minus the rate of this species being consumed or degraded. This concept 

allows us to consider only the effect of concentration of each species in the system. We have 

written down the differential equation for the rate of change of concentrations of specie, we 

can have got a set of coupled or single ordinary differential equations governing the time 

evolution of the system. Finally, we will be able to get the time evolution of the system of 
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interest by solving the set of differential equation with certain initial conditions if needed (Eq. 

2.1). We have to able to see the set of differential equations with corresponding network 

reactions. Here, we calculated the ordinary differential equations for deterministic simulation 

by the MATLAB (Math works). 

 

2.4 Stochastic modeling  

          A Stochastic model is sometimes called black box modelling. It is known as the input 

and output values and a non-deterministic model is applied to correlate the variables. The 

stochastic noise in gene expression which will be usually not negligible (Peter et al. 2006, 

Thattai and van Oudenaarden, 2001). Because biological systems are successful despite 

existing in a stochastic environment and despite the probabilistic nature of the biochemical 

reactions. Expressing biochemical network models by writing out sets of reactions and 

translating them into deterministic sets of ordinary differential equations does not capture this 

biological variability, so stochastic modelling approaches are often applied to intracellular 

biological models (Kaerm el al. 2005). Therefore, by simulating the fluctuations in a small 

number regimes, such as models can capture the intrinsic noise in biological systems, because 

the stochasticity arises from fluctuations (noise) in transcription and translation of gene 

expression is spite of the environmental conditions are constants, but extrinsic noise sources 

are not obviously handled and must be added by other meanings. Thus, the stochastic model of 

a biochemical reaction network can be solved by the following the process, it will be either 

analytically using master equations approach, or numerically using the Gillespie algorithm. It 

is a discrete and exact procedure in the sense that every reaction in individually simulated. On 

the other hand, chemical Langevin equation is a continuous process that also represents the 

molecular evolution. Outstanding to the complexity of master equations and stochastic 

simulations, approximations to both these two approaches have been described in the chemical 
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Langevin equation approach. Which gives an approximate solution; for the Tau-leap, Gillespie 

algorithm, and other similar approaches approximate to the exact Gillespie algorithm 

(Gillespie, 1977, Cao et al., 2006). Here the Gillespie algorithm was used to perform the 

stochastic simulation (Kurata et al., 2014) 

 

2.5 Deterministic vs stochastic simulations 

          Stochastic approaches are different to deterministic simulations (Jose et al. 2003). In the 

deterministic method, the output of the model is fully determined by the parameter values and 

the initial conditions. The deterministic models include several classes of models, associate the 

most usual is represented by systems of ordinary differential equations (Kurata et al. 2014). In 

here approaches the behavior of the model is predictable. In stochastic models possess some 

inherent randomness i.e. the probabilistic characteristics are taken into an explanation. 

Consequently, the entirely predictable character is lost. When large numbers of molecules are 

present in biochemical reactions usually continue in a predictable manner because the 

fluctuations are averaged out. However, when only a few molecules take part in a reaction, as 

typically occurred in a cell, stochastic effects become distinguished. Obviously, the natural 

world is buffeted by stochasticity. But, stochastic processes are considerably more complicated 

with compare deterministic approach. 

 

2.5.1 Simple gene regulation network 

          We constructed the simple model of the gene regulatory network that consists of one 

gene )1(y encoding a transcription factor according to the graphical notation (Kurata et al. 

2003, Kurata et al. 2007), as shown Fig. 2.1.  
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Fig 2.1. The network map of the simple gene regulation. Here, the simple regulation protein 

)1(y synthesis with the first-order degradation. 

 

The mathematical equation of this model is described by the following: 

)1().2()1()1( ykk
dt

dy
−=                                                                                                      (2.1) 

where )1(k , )2(k  are transcription and first-order degradation rate constants respectively. 

      We have investigated this model for a large number of molecules and a small number of 

molecules in the comparison between deterministic and stochastic approaches at the steady 

state level. In both approaches, our simulation results have shown the average behavior is an 

appropriate representation of the system evolution in protein synthesis when the number of 

molecules involved is large (Fig. 2.2). In contrast, when the stochastic models can be predicted 

stochastic effects and give a more accurate representation of the system evolution when this 

evolution depends on the behavior of a small number of molecules. 
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Fig 2.2. Deterministic and stochastic simulations of the simple gene regulation network. 

(A) Deterministic vs stochastic simulation of protein )1(y  synthesis for a large number of 

molecules. (B) Deterministic vs stochastic simulation of protein )1(y  synthesis for a small 

number of molecules. 

    Thus, the deterministic behavior can be seen as a limitation of the stochastic behavior when 

the number of molecules is large (Fig. 2.2). Because deterministic simulation is failed to 
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explain the actual behavior (randomly fluctuating) for the small number of molecules in system 

biology. 

 

2.6. Conclusion 

          The Gillespie algorithm provides an exact simulation of the Master equation at a high 

computational cost, which increases rapidly with the number of species and the system size. It 

is very attractive for small systems or the small number of molecules to describe fluctuations 

as well as noise. We observed that the deterministic model is very accurate for large systems 

with a single study state. But deterministic approximation fails to show large concentration 

fluctuation for the small number of molecules. Also impossible to predict the motion of 

(classical) molecules due to the ignorance of positions and velocities of all components of the 

system (biochemical reactions). Stochastic simulations are best than deterministic when we 

consider the small number of molecules in system biology. 
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CHAPTER 3 

Noise analysis among different cascades of gene regulatory 

networks 

 

3.1 Introduction 

         Gene expression is subject to stochastic fluctuations or noise at the level of their 

components in cellular functions (Elowitz et al., 2002, Raser and O'Shea, 2004). The genetic 

networks that regulate the gene expression which can be characteristic by the distribution of 

protein levels in cellular functions (Eldar and Elowitz, 2010). In this chapter, to solve the 

distinct feature among the activation, repression or mutual activation-repression-positive 

feedback, open-loop, the close-loop system of networks under a stochastic environment. We 

constructed different types of gene regulatory networks, open-loop system activator cascade 

network (ACN); open-loop system repressor cascade network (RCN); closed-loop system 

activator cascade network (ACN); closed-loop system repressor cascade network (RCN). We 

have shown the noise among this gene networks due to mathematical presentations at the steady 

state level. In general, our results suggested that the strong dissociation constant of repressor 

cascades always increased the noise of gene expression. 

 

3.2 Methods and Materials 

3.2.1 Open-loop system ACN and RCN model 

        Here, we constructed the simple models of the gene regulatory networks that consist of 

four genes encoding a transcription factor according to the graphical notation (Kurata et al. 
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2003, Kurata el al. 2007), as shown Figs. 3.1, 3.2. The Open-loop system activator cascade 

network (ACN) consists of )0(y , )1(y , )2(y  and )3(y  proteins, thus activated with equal 

strength of dissociation constant rate as shown in Fig.3.1. Here, required outcomes protein 

synthesis are )1(y , )2(y  and )3(y  at the same steady state level. This model is described by the 

following mathematical equations: 

                )1().2(
)0(

)0().1()1( yk
yK

yk
dt

dy
−

+
=                                                     (3.1) 

               )2().4(
)1(

)1().3()2( yk
yK

yk
dt

dy
−

+
=                                                     (3.2)     

               )3().6(
)2(

)2().5()3( yk
yK

yk
dt

dy
−

+
=                                                      (3.3) 

where the employed parameters are described in Table 3.1. 

 

Fig 3.1. The network map of the open-loop system ACN model. The activation network 

cascades consist of )0(y , )1(y , )2(y  and )3(y  proteins synthesis with the first-order 

degradation. 
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Table 3.1. List of kinetic parameters used in the open-loop ACN and RCN model 

Kinetic parameters Definition 

)1(k , )3(k , )5(k  protein synthesis rate constants 

)2(k , )4(k , )6(k  degradation rate constants 

K  dissociation constant 

 

The open-loop system repressor cascade network (RCN) consists of )0(y , )1(y , )2(y  and )3(y  

proteins, thus repressed with equal strength of dissociation constant rate as shown in Fig. 3.2. 

Here, required outcomes protein synthesis are )1(y , )2(y  and )3(y  at the same steady state 

level. This model is described by the following mathematical equations: 

                )1().2(
)0(

).1()1( yk
yK

Kk
dt

dy
−

+
=                                                     (3.4) 

               )2().4(
)1(

).3()2( yk
yK

Kk
dt

dy
−

+
=                                                     (3.5)     

               )3().6(
)2(

).5()3( yk
yK

Kk
dt

dy
−

+
=                                                      (3.6) 

where the employed parameters are described in Table 3.1. 
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Fig 3.2. The network map of the open-loop system RCN model. The repression network 

cascades consist of )0(y , )1(y , )2(y  and )3(y  proteins synthesis with the first-order 

degradation. 

 

3.2.2 Closed-loop system ACN and RCN model 

       Here, we constructed the simple models of the gene regulatory networks that consist of six 

genes encoding a transcription factor according to the graphical notation (Kurata et al. 2003, 

Kurata el al. 2007), as shown Figs. 3.3, 3.4. The closed-loop system activator cascade network 

(ACN) consists of )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  proteins, thus activated with equal 

strength of dissociation constant rate as shown in Fig.3.3. Here, required outcomes protein 

synthesis are )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  at the same steady state level. This model 

is described by the following mathematical equations: 

                )1().2(
)6(

)6().1()1( yk
yK

yk
dt

dy
−

+
=                                                    (3.7) 

               )2().4(
)1(

)1().3()2( yk
yK

yk
dt

dy
−

+
=                                                   (3.8)     
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               )3().6(
)2(

)2().5()3( yk
yK

yk
dt

dy
−

+
=                                                   (3.9) 

                )4().8(
)3(

)3().7()4( yk
yK

yk
dt

dy
−

+
=                                                  (3.10) 

               )5().10(
)4(

)4().9()5( yk
yK

yk
dt

dy
−

+
=                                                 (3.11)     

               )6().12(
)5(

)5().11()6( yk
yK

yk
dt

dy
−

+
=                                                (3.12) 

 

where the employed parameters are described in Table 3.2. 

 

 

Fig 3.3. The network map of the closed-loop system ACN model. The activation network 

cascades consists of )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  proteins synthesis with the first-

order degradation. 
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Table 3.2. List of kinetic parameters used in the closed loop ACN and RCN model 

Kinetic parameters Definition 

)1(k , )3(k , )5(k , )7(k , )9(k , )11(k  protein synthesis rate constants 

)2(k , )4(k , )6(k , )8(k , )10(k , )12(k  degradation rate constants 

K  dissociation constant 

 

The closed-loop system repressor cascade network (RCN) consists of )1(y , )2(y , )3(y , )4(y , 

)5(y  and )6(y  proteins, thus repressed with equal strength of dissociation constant rate as 

shown in Fig. 3.4. Here, required outcomes protein synthesis are )1(y , )2(y , )3(y , )4(y , )5(y  

and )6(y  at the same steady state level. This model is described by the following mathematical 

equations: 

              )1().2(
)6(

).1()1( yk
yK

Kk
dt

dy
−

+
=                                                    (3.13) 

               )2().4(
)1(

).3()2( yk
yK

Kk
dt

dy
−

+
=                                                   (3.14)     

               )3().6(
)2(

).5()3( yk
yK

Kk
dt

dy
−

+
=                                                   (3.15) 

                )4().8(
)3(

).7()4( yk
yK

Kk
dt

dy
−

+
=                                                  (3.16) 

               )5().10(
)4(

).9()5( yk
yK

Kk
dt

dy
−

+
=                                                 (3.17)     

               )6().12(
)5(

).11()6( yk
yK

Kk
dt

dy
−

+
=                                                (3.18) 

where the employed parameters are described in Table 3.2. 
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Fig 3.4. The network map of the closed-loop system RCN model. The repression network 

cascades consists of )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  proteins synthesis with the first-

order degradation. 

              The Gillespie algorithm was used to perform the stochastic simulation (Gillespie, 

1977). The MATLAB (Mathworks) was employed for this simulation results. We estimated 

the noise in gene expression by the coefficient of variation (CV) is defined as the ratio of the 

standard deviation to the mean. 

 

3.3 Results and discussion 

        We have investigated the noise effect just before our proposed of genetic network models 

at the steady state level when the value of disassociation constant K is low and high (strong-

weak), we compared the stochastic noise while the values of the corresponding kinetic 

parameters within each model and between the competitive models and the steady state levels. 
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3.3.1 Noise analysis of open-loop system ACN and RCN model 

         We investigated the open-loop system ACN and RCN model at strong dissociation 

constants of 01.0=K , where the other corresponding kinetic parameters were set as synthesis 

rate 10)5()3()1( === kkk  and degradation rate 1)6()4()2( === kkk . The steady-state 

simulation of )1(y , )2(y  and )3(y  proteins as shown in Fig. 3.5. To estimate the effect of 

stochasticity, we calculated the CVs of )1(y , )2(y  and )3(y  from time 0 to 100, when their 

steady state levels were the same. The ACN model provided 303.0=CV  for )1(y , 287.0=CV  

for )2(y   and 286.0=CV  for )3(y , while RCN model did 361.0=CV  for )1(y , 467.0=CV  for

)2(y   and 484.0=CV  for )3(y . The strong binding was suggested to increases the CV in the 

RCN than ACN model. The increased CV or increased noise among the cascades in both 

models. 

On the other hand, the Fig. 3.6 shown the steady-state stochastic simulation of )1(y , )2(y  and 

)3(y  proteins at weak dissociation constants of 10=K ,  where the other corresponding kinetic 

parameters were set to be the same as previous. To estimate the effect of stochasticity, we 

calculated the CVs of )1(y , )2(y  and )3(y  from time 0 to 100, when their steady state levels 

were the same. The ACN model provided 315.0=CV  for )1(y , 312.0=CV  for )2(y   and 

283.0=CV  for )3(y , while RCN model did 323.0=CV  for )1(y , 385.0=CV  for )2(y   and 

473.0=CV  for )3(y . The weak binding was suggested to decreases the CV in the RCN than 

ACN model. The increased CV or increased noise among the cascades in both models. 

To analyze the effect of noise comparisons in ACN and RCN models, we simulated the mean 

and CV for  )1(y , )2(y  and )3(y  with respect to a change in dissociation constants of K , while 

keeping the same steady-state level (Fig. 3.7). In the ACN model, the CVs of )1(y , )2(y  and 
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)3(y  were less than those of the RCN model at a strong dissociation constant, i.e., ACN 

decreases noise at a strong dissociation constant and vice-versa for weak dissociation constant . 

 

 

Fig 3.5. Stochastic simulations of open-loop system ACN and RCN model for strong 

dissociation constant. (A) ACN model, (B) RCN model, stochastic simulation of proteins )1(y , 

)2(y  and )3(y  at dissociation constants 01.0=K with synthesis rate 10)5()3()1( === kkk  

and degradation rate 1)6()4()2( === kkk . The blue, green and red appearances indicate )1(y
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, )2(y  and )3(y  respectively with the corresponding fluctuations amplitude, noise amplification 

cascades, and histograms.  

 

 

Fig 3.6. Stochastic simulations of open-loop system ACN and RCN model for weak 

dissociation constant. 

(A) ACN model, (B) RCN model, stochastic simulation of proteins )1(y , )2(y  and )3(y  at 

dissociation constants 10=K with synthesis rate 10)5()3()1( === kkk  and degradation rate
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1)6()4()2( === kkk . The blue, green and red appearances indicate )1(y , )2(y  and )3(y  

respectively with the corresponding fluctuations amplitude, noise amplification cascades, and 

histograms.  

 

 

Fig 3.7. Comparisons of open-loop system between ACN and RCN model  

(A) ACN model, (B) RCN model, stochastic fluctuations between the ACN and RCN models 

of proteins )1(y , )2(y  and )3(y . The means and CVs are simulated with respect to a change in 
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dissociation constants K  while keeping the steady state at a constant level among all the 

models. 

 

3.3.2 Noise analysis of closed-loop system ACN and RCN model 

We investigated the closed-loop system ACN and RCN model at strong dissociation constants 

of 1.0=K , where the other corresponding kinetic parameters were set as synthesis rate 

10)11()9()7()5()3()1( ====== kKkkkk  and degradation rate 

1)12()10()8()6()4()2( ====== kkkkkk . The steady-state simulation of )1(y , )2(y , )3(y

, )4(y , )5(y  and )6(y  proteins as shown in Fig. 3.8. To estimate the effect of stochasticity, we 

calculated the CVs of )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  from time 0 to 100, when their 

steady state levels were the same. The ACN model provided 328.0=CV  for )1(y , 349.0=CV  

for )2(y , 280.0=CV  for )3(y , 313.0=CV  for )4(y , 291.0=CV  for )5(y   and 333.0=CV  

for )6(y , while RCN model did 341.0=CV  for )1(y , 672.6=CV  for )2(y , 310.0=CV  for

)3(y , 983.3=CV  for )4(y , 278.0=CV  for )5(y   and 756.3=CV  for )6(y . The strong binding 

was suggested to increases the CV in the RCN than ACN model. The increased CV or increased 

noise among the cascades in both models. 

Three cascades )1(y , )3(y  and )5(y  are highly stable and others )2(y , )4(y and )6(y  are 

opposite them when the protein concentration is held at the same level .Because they are 

affected highly positively and negatively. 

 Then the Fig. 3.9 shown the steady-state stochastic simulation of )1(y , )2(y , )3(y , )4(y , )5(y  

and )6(y   proteins at weak dissociation constants of 50=K ,  where the other corresponding 

kinetic parameters were set to be the same as previous.    
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To estimate the effect of stochasticity, we calculated the CVs of )1(y , )2(y , )3(y , )4(y , )5(y  

and )6(y  from time 0 to 100, when their steady state levels were the same. The ACN model 

provided 461.0=CV  for )1(y , 417.0=CV  for )2(y , 419.0=CV  for )3(y , 417.0=CV  for

)4(y , 395.0=CV  for )5(y   and 415.0=CV  for )6(y , while RCN model did 325.0=CV  for

)1(y , 321.0=CV  for )2(y , 364.0=CV  for )3(y , 310.0=CV  for )4(y , 344.0=CV  for )5(y   

and 353.0=CV  for )6(y . The weak binding was suggested to decreases the CV in the RCN 

than ACN model. The increased CV or increased noise among the cascades in both models. 

To evaluate the effect of noise comparisons in ACN and RCN models, we simulated the mean 

and CV for )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y   with respect to a change in dissociation 

constants of K , while keeping the same steady-state level (Fig. 3.10). In the ACN model, the 

CVs of )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y   were less than those of the RCN model at 

strong dissociation constant, i.e., ACN decreases noise at strong dissociation constant and vice-

versa for weak dissociation constant . 
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Fig 3.8. Stochastic simulations of closed-loop system ACN and RCN model for strong 

dissociation constant. (A) ACN model, (B) RCN model, stochastic simulation of proteins )1(y

, )2(y , )3(y , )4(y , )5(y  and )6(y  at dissociation constants 1.0=K with synthesis rate 

10)11()9()7()5()3()1( ====== kKkkkk  and degradation rate 
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 1)12()10()8()6()4()2( ====== kkkkkk . The blue, green, red, black, magenta and cyan 

appearances indicate )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  proteins respectively with the 

corresponding fluctuations amplitude, noise amplification cascades, and histograms.  

 

 

Fig 3.9. Stochastic simulations of closed-loop system ACN and RCN model for weak 

dissociation constant. (A) ACN model, (B) RCN model, stochastic simulation of proteins )1(y

, )2(y , )3(y , )4(y , )5(y  and )6(y  proteins at dissociation constants 50=K with synthesis 
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rate 10)11()9()7()5()3()1( ====== kKkkkk  and degradation rate 

1)12()10()8()6()4()2( ====== kkkkkk . The blue, green, red, black, magenta and cyan 

appearances indicate )1(y , )2(y , )3(y , )4(y , )5(y  and )6(y  respectively with the 

corresponding fluctuations amplitude, noise amplification cascades, and histograms.  

 

 

Fig 3.10. Comparisons of the closed-loop system between ACN and RCN model. (A) ACN 

model, (B) RCN model, stochastic fluctuations between the ACN and RCN models of proteins

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(1

)

Closed-loop ACN:Statistical Analysis of Noise

Mean CV

0

0.4

0.8

C
V

 o
f y

(1
)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(2

)

Mean
CV

0

0.4

0.8

C
V

 o
f y

(2
)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(3

)

Mean CV

0

0.4

0.8
C

V
 o

f y
(3

)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(4

) Mean
CV

0

0.4

0.8

C
V

 o
f y

(4
)

10 20 30 40 50

Dissociation Constant K

0

10

20

M
ea

n 
of

 y
(5

)

Mean CV

0

0.4

0.8

C
V

 o
f y

(5
)

10 20 30 40 50

Dissociation Constant K

0

10

20

M
ea

n 
of

 y
(6

)

Mean CV

0

0.4

0.8

C
V

 o
f y

(6
)

(A)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(1

)

Close-loop RCN:Statistical Analysis of Noise

Mean CV

0

0.4

0.8

C
V

 o
f y

(1
)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(2

) Mean CV

0

0.4

0.8

C
V

 o
f y

(2
)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(3

) Mean CV

0

0.4

0.8

C
V

 o
f y

(3
)

10 20 30 40 50
0

10

20

M
ea

n 
of

 y
(4

)

Mean CV

0

0.4

0.8

C
V

 o
f y

(4
)

10 20 30 40 50

Dissociation Constant K

0

10

20

M
ea

n 
of

 y
(5

)

Mean CV

0

0.4

0.8

C
V

 o
f y

(5
)

10 20 30 40 50

Dissociation Constant K

0

10

20

M
ea

n 
of

 y
(6

) Mean CV

0

0.4

0.8

C
V

 o
f y

(6
)

(B)



30 
 

)1(y , )2(y , )3(y , )4(y , )5(y  and )6(y .The means and CVs are simulated with respect to a 

change in dissociation constants K  while keeping the steady state at a constant level among all 

the models. 

 

3.4 Conclusion 

In open-loop system ACN and RCN model, noise always amplified from )1(y , )2(y  and )3(y  

proteins cascade for strong dissociation constant of repressor and vice-versa for strong 

dissociation constant of activation, when the same concentration of protein level is kept. 

In closed-loop system RCN model, not only noise always amplified separately among the 

cascades, but also the )1(y , )3(y  and )5(y  are highly stable and others )2(y , )4(y and )6(y  

are very poorly stable for strong dissociation constant of repression, when the same 

concentration of protein level is kept. Noise reduced for weak dissociation constant among the 

cascades. Consequently, we have shown that closed loops of long repressor cascade increased 

the noise for strong dissociation constant. 
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CHAPTER 4 

 

Gene expression noise can induce stochastic bimodality, even 

multimodality in deterministically monostable description with 

non-cooperative binding 

 

 

4.1 Introduction 

              Bistability gene expression has been studied widely through theoretical analysis and 

numerically simulations (Shu et al. 2011 and Tian et al. 2006). This system characterized by 

two stable states under the same external conditions in deterministic approaches while the 

intrinsic and extrinsic noises can be neglected in the system. To date there are several 

mechanisms underlying the deterministic bistability gene expression have been identified in 

the system which consist of a single positive feedback loop with cooperative ligand binding 

(Wilhelm, 2009 and Cherry et al. 2000), reverse tetracycline transactivation switch in 

Saccharomyces cerevisiae (Becskei et al. 2001), MAPK cascade in Xenopus oocytes (Ferrell 

et al.1998), bacteriophage λ (Isaacs et al. 2003), lac operon in Escherichia coli (Ozbudak et al. 

2004), also for multiple feedback loops with cooperativity (Ferrell et al. 2002) and toggle 

switch between a mutual repression network consisting of LacI and TetR in E. coli (Gardner et 

al 2000). On the other hand, the distribution of gene products in stochastic approaches that has 

two maxima is known as bimodal gene expression. Bimodal gene expression is caused by 



32 
 

phenotypic diversity in genetically identical cell populations, and it is critical for population 

survival in a stochastic fluctuating environment (Acar et al. 2008), some of the bimodal gene 

expression reported based on geometric construction (Ochab-Marcinek et al. 2010). 

  The focus of this chapter, to solve the distinct feature among the mutual activation-repression 

makes the positive feedback system of networks under a stochastic environment. We 

constructed different types of gene regulatory networks, two-gene regulated mutual activation 

network (tMAN) comprising p42 MAPK and Cdc2 (Xiong et al. 2003) and cyclinB-Cdc2 and 

Weel1 (Pomerening et al.2005) of positive feedback; two-gene regulated mutual repression 

network (tMRN) consisting of LacI and TetR in E. coli (Cherry et al. 2000) makes positive 

feedback.  Here, we have investigated the one gene with respect to another one in both 

deterministic, stochastic environments by using non-symmetric kinetic parameters to predict 

the bimodal and multimodal gene expression. Our results suggested that the stochastic 

bimodality, even multimodality exist in deterministically monostable regime while non-

cooperative binding occurred. 

 

4.2 Methods and Materials 

4.2.1 The regulated tMAN model 

          Here, we constructed the simple models of the gene regulatory networks that consist of 

two genes encoding a transcription factor according to the graphical notation (Kurata et al. 

2003 and, Kurata et al. 2007), as shown Figs. 4.1-4.2.  

The two-gene regulated mutual activation network (tMAN) model consists of )1(y  and )2(y  

proteins, thus the syntheses of )1(y  and )2(y  are mutually activated in the way that )2(y  

activated )1(y  in a simple binding of non-cooperativity, whereas )1(y  activated )2(y  

ultrasensitively, as describe by Hill function (cooperativity in binding); as shown in Fig 1. We 

employed two types of required outcomes, )1(y  and )2(y  protein synthesis while they are 
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mutually activated with cooperativity, and only )1(y  protein synthesis while they are mutually 

activated with non-cooperativity at the steady state level. This model is described by the 

following mathematical equations: 

 

                )1().2(
)2()1(

)2().1()1( yk
yK

yk
dt

dy
−

+
=                                                     (4.1) 

               )2().4(
)1()2(

)1().3()2( yk
yK

yk
dt

dy
nn

n
−

+
=                                                (4.2)     

where the employed parameters are described in Table 4.1. 

 

 

Fig 4.1. The network map of the tMAN model. This mutual activation network consists of

)1(y  and )2(y  proteins synthesis with the first-order degradation 

 

Table 4.1. List of kinetic parameters used in the tMAN and tMRN models 

Kinetic parameters Definition 

)1(k , )3(k  protein synthesis rate constants 

)2(k , )4(k  degradation rate constants 

)1(K , )2(K  dissociation constant 

n  Hill coefficient 
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4.2.2 The regulated tMRN model 

          The two-gene regulated mutual repression network (tMRN) model consists of )1(y  and 

)2(y  proteins, thus the syntheses of )1(y  and )2(y  are mutually repressed in the way that )2(y  

repressed )1(y  in a simple binding of  non-cooperativity, whereas )1(y  repressed )2(y  

ultrasensitively, as describes by Hill function (cooperativity in binding); as shown in Fig.4.3. 

Also, we employed two types of required outcomes which are )1(y  and )2(y  protein synthesis 

while they are mutually repressed with cooperativity; only )1(y  protein synthesis while they are 

mutually repressed with non-cooperativity at the steady state level. This model is described by 

the following mathematical equations: 

 

                )1().2(
)2()1(

)1().1()1( yk
yK

Kk
dt

dy
−

+
=                                                     (4.3) 

               )2().4(
)1()2(

)2().3()2( yk
yK

Kk
dt

dy
nn

n
−

+
=                                                (4.4)     

where the employed parameters are described in Table 4.1. 

 

 

Fig 4.2. The network map of the tMRN model. This mutual repression network consists of

)1(y  and )2(y  proteins synthesis with the first-order degradation 
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The Gillespie and Tau-Leap stochastic algorithm was used to perform the stochastic simulation 

(Gillespie 1977). The MATLAB (Mathworks) was employed for this simulation results. 

 

4.3 Results and discussion 

        We have investigated the noise effect just before our proposed of genetic network models 

at the steady state level when the value of hill coefficient 1=n  (non-cooperative binding). In 

which case we employed the stochastic activities of one gene with respect to another 

gene when the corresponding kinetic parameters are non-symmetric at the steady state 

level. 

 

 

4.3.1 Robustness of bimodal, multimodal in the tMAN model 

           We examined the tMAN model at non-cooperative binding i.e. hill coefficient 1=n  and 

of )1(y  protein was an outcome while changing the degradation rate constant of )2(y , 

0008.0)4( =k , 008.0)4( =k and 8.0)4( =k at fixed dissociation constants of 5)1( =K , 

1)2( =K  and where the other corresponding kinetic parameters were set as fixed-synthesis rate 

30)1( =k , 001.0)3( =k with a degradation rate of )1(y , 1.0)2( =k . The deterministic 

simulations showed the only one stable state i.e. monostable position of )1(y  protein synthesis 

in Fig. 4.3 (A). But, the steady-state stochastic simulation of )1(y  protein showed  one stable, 

bistable and multistable states as well as the unimodal, bimodal and multimodal distribution in 

Fig. 4.3 (B).  
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Fig 4.3. Deterministic and stochastic simulations of the tMAN model for non-cooperative 

binding 

(A) Equilibrium points of )1(y protein at hill coefficient 1=n  and different dissociation 

constants 5)1( =K , 1)2( =K  with synthesis rate 30)1( =k , 001.0)3( =k and degradation rate

1.0)2( =k . The black lines indicate the degradation and red, blue and magenta lines indicates 

the synthesis of )1(y  protein at the degradation rate constants 0008.0)4( =k , 008.0)4( =k and 
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8.0)4( =k respectively. (B) Stochastic simulations of )1(y  protein with corresponding 

probability distributions. 

 

4.3.2 Robustness of bimodal, multimodal in the tMRN model 

               We investigated the tMRN model at non-cooperative binding i.e. hill coefficient 

1=n  and of )1(y  protein was an outcome while changing the degradation rate constant of )2(y , 

001.0)4( =k , 01.0)4( =k and 1.0)4( =k at dissociation constants of 1)1( =K , 7)2( =K  and 

where the other corresponding kinetic parameters were set as synthesis rate 10)1( =k , 

01.0)3( =k with a degradation rate of )1(y , 1.0)2( =k . The deterministic simulations showed 

the only one stable state i.e. monostable position of )1(y  protein synthesis in Fig. 4.4 (A). But, 

the corresponding steady-state stochastic simulation of )1(y  protein showed  one stable, bistable 

and multistable states as well as the unimodal, bimodal and multimodal distribution in Fig. 4.4 

(B-C).  
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Fig 4.4. Deterministic and stochastic simulations of the tMRN model for non-cooperative 

binding 

(A) Equilibrium points of )1(y protein at hill coefficient 1=n  and different dissociation 

constants 1)1( =K , 7)2( =K  with synthesis rate 10)1( =k , 01.0)3( =k and degradation rate

1.0)2( =k . The red lines indicate the degradation and black, blue and magenta lines indicates 

the synthesis of )1(y  protein at the degradation rate constants 001.0)4( =k , 01.0)4( =k and 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time 10 4

0

50

100

150

y(
1)

Gillespie stochastic simulation

0 50 100 150 160

Number of Molecules y(1)

0

0.01

0.02

0.03

0.04

P
ro

ba
bi

lit
y

k(4)=0.001
k(4)=0.01
k(4)=0.1

(B)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time 10 4

0

50

100

150

y(
1)

Tau-Leap stochastic simulation

0 50 100 150

Number of Molecules y(1)

0

0.02

0.04

0.05

P
ro

ba
bi

lit
y

k(4)=0.1

k(4)=0.01

k(4)=0.001

(C)



39 
 

1.0)4( =k respectively. (B) Stochastic simulations of )1(y  protein with corresponding 

probability distributions. (C) Tau-Leap stochastic simulations of )1(y  protein with 

corresponding probability distributions. 

4.4 Discussion 

        We analyzed the mechanism of how mutual activation and repression networks generate 

a robust noise induced bistable (bimodal), multistable (multimodal) of this gene regulatory 

networks in deterministic and stochastic respectively approaches at the steady state level. The 

tMAN and tMRN model demonstrated the unimodal, bimodal and multimodal distribution with 

corresponding deterministic simulation showed monostable when changing the degradation 

rate constant of y(2) proteins in Figs. (4.3, 4.4). These distributions peaks were not coincided 

with the corresponding equilibrium points of proteins synthesis except for unimodal. Also, the 

lower peak coincided with the monostable point in the stochastic bimodal system and the 

middle peak coincided with the monostable point for the stochastic multimodal system. 

Therefore, exhibited the stochastic bimodality, even multimodality in these two lower 

corresponding deterministically monostable regime without cooperative binding as a result 

based on the discreteness amplification of the molecular concentration. 

A mutual activation network that comprises two protein kinases p42 MAPK and Cdc2 (Xiong 

et al. 2003) and a mutual repression that consists of cI and Cro proteins (Casadesus et al. 2002) 

have shown stochastic bimodality, even multimodality exist in deterministically monostable 

regime while non-cooperative binding. 

 

4.5 Conclusion 

        The results were generalized for both mutual activation and repression networks. We used 

non-symmetric kinetics parameters set for a range of biologically relevant conditions thus 
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shown stochastic bimodality, even multimodality exist in deterministically monostable regime 

while non-cooperative binding. Bimodality, multimodality are observed not only for parameter 

values corresponding to deterministic but also beyond it occurred as the discreteness 

amplification of the molecular concentration. Our results expected to have significant 

implications on the dynamical behavior of gene in cell populations. 
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CHAPTER 5 

 Mathematical comparison of memory functions between 

mutual activation and repression networks in a stochastic 

environment 

 

The work in this chapter has been accepted in Journal of Theoretical Biology 

 

5.1. Introduction 

Systems biology and theoretical biology have revealed the mechanisms by which a biochemical 

network generates a variety of functions such as switching, amplification, adaptation, pulse 

generation, oscillation and memory (Kurata et al., 2014), allowing biologists to design useful 

genetic circuits based on this rational understanding of biological networks (Tan et al., 2009; 

Tabor et al., 2009; Auslander et al., 2012; Daniel et al., 2013; Ajo-Franklin et al., 2007; Basu 

et al., 2005; Elowitz and Leibler, 2000; Moon et al., 2012). Feedback loops are common control 

mechanisms (Brandman and Meyer, 2008): a negative feedback loop generates adaptation and 

oscillation (Elowitz and Leibler, 2000), and a positive feedback loop generates amplifiers, 

bistable switches (Hasty et al., 2000) and memory (Ajo-Franklin et al., 2007). For example, 

genetic circuits with a two-molecule input have been engineered to execute sophisticated 

computational logic functions (Tabor et al., 2009; Auslander et al., 2012; Daniel et al., 2013; 

Moon et al., 2012), and genetic logic gates capable of generating a Boolean function play 

critically important roles in synthetic biology. Each Boolean circuit integrates a two-molecule 
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input into a digital ON/OFF expression decision, following the processing logic of NOT, AND, 

NAND and N-IMPLY gates. Other noteworthy developments include an AND gate designed 

on the basis of the σ54-dependent hrpR/hrpS hetero-regulation module in Escherichia coli 

(Wang et al., 2011). The SynBioLGDB database provides the synthetic biology community 

with a useful resource for efficient browsing and visualization of genetic logic gates (Wang et 

al., 2015).  

 

Memory plays pivotal roles in cellular development, survival and growth (Xiong and Ferrell, 

2003; Shopera et al., 2015; Freeman, 2000), and is a ubiquitous function embedded in complex 

gene regulatory networks and signal transduction pathways (Cheng et al., 2008;    Casadesus 

and D'Ari, 2002; Burrill and Silver, 2010). Cellular memory indicates that transient signals 

lock cells into one of two or more regulatory sates. Common features of memory mechanisms 

have been experimentally and theoretically revealed to be based on positive feedback loops 

(Xiong and Ferrell, 2003; Shopera et al., 2015; Cheng et al., 2008; Kim and Ferrell, 2007; Acar 

et al., 2005; Gardner et al., 2000; Ferrell, 2002). An ultrasensitive positive feedback loop is a 

typical approach for generating two stable states that can exhibit irreversibility or hysteresis 

(Xiong and Ferrell, 2003; Kim and Ferrell, 2007; Acar et al., 2005). It is a building block of 

synthetic gene circuits and is useful for rational design in biotechnology, biocomputing, and in 

gene therapy (Cherry and Adler, 2000; Becskei et al., 2001; Alon, 2007). The bistable modules 

consisting of two genes have extensively been investigated. Mutual activation networks 

comprises p42 MAPK and Cdc2 (Xiong and Ferrell, 2003), cyclinB-Cdc2 and Weel1 

(Pomerening et al., 2005), and a mutual repression network consists of LacI and TetR in E. coli 

(Gardner et al., 2000). Mutual repression of the two repressors cI and Cro provided a lysis-

lysogen decision-making module in a bacteriophage λ switch (Casadesus and D'Ari, 2002). 

Although these mutual activations and repressions were shown to form a positive feedback 
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loop to generate a bistable function, to our knowledge they have not been compared with the 

intent of identifying functional differences. The quantitative or mathematical characterization 

of these loops will allow selection of a bistable or memory module optimal for the rational 

design of a specific function, as well as an understanding of how different types of a positive 

feedback loop have evolved under a given environment.  

 

Gene expression is a complex and nonlinear system involving numerous components within a 

cell and this system is continuously exposed to stochastic fluctuations (McAdams and Arkin, 

1997; Ozbudak et al., 2002; Elowitz et al., 2002; Blake et al., 2003; Pedraza and van 

Oudenaarden, 2005; Eldar and Elowitz, 2010). Noise in gene expression is provided by 

intrinsic fluctuations such as the number of molecules per cell and the uncertainty of kinetic 

parameters, as well as by extrinsic perturbations from upstream regulators (Pedraza and van 

Oudenaarden, 2005). The intrinsic and extrinsic stochastic behaviors are essential sources of 

the noise observed in cellular events (McAdams and Arkin, 1997), with translational efficiency 

being the predominant source of increased noise (Ozbudak et al., 2002). A negative feedback 

loop suppresses noise, whereas a positive feedback loop can increase the amplitude of noise 

(Elowitz et al., 2002), leading to increased cell–cell variability in the target gene output (Blake 

et al., 2003).  

 

Recently noise has been reported to induce multimodality or stochastic memory in a wide class 

of regulatory networks whose corresponding deterministic description lacks bistability 

(Thomas et al., 2014). On the other hand, noise can drive a bistable system to undergo 

stochastic transitions between multiple states, which impair memory functions. The ability to 

sustain memory functions under noise is a key property of cellular systems (Cheng et al., 2008). 
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A memory module needs to sustain the states induced by the transient signals for a long time. 

It is important to address the mechanism by which cellular memory is sustained in the presence 

of stochasticity.  

 

In this study we focus on a typical property of the bistable networks achieved by a positive 

feedback loop with ultrasensitivity. We aim to identify the feature distinguishing mutual 

activation and repression networks under a stochastic environment. To this end, we constructed 

two gene regulatory networks, namely, a regulated mutual activation network (MAN) and a 

regulated mutual repression network (MRN), in which the input signal works as a triggering 

stimulus for the expression of target genes. Numerical and theoretical comparison of the 

deterministic and stochastic models allowed identification of essential differences in the 

memory functions between these competitive models. 

 

5.2. Methods  

5.2.1. Competitive network models 

We constructed two gene regulatory networks, each of which consists of two genes encoding 

a transcription factor, according to graphical notation (Kurata et al., 2003; Kurata et al., 2007), 

as shown Fig. 5.1. The regulated mutual activation network (MAN) consists of )1(y , )2(y  and 

)3(y  proteins, as shown in Fig. 5.1A. The MAN shows a memory function. Signal-induced 

)1(y  activates the synthesis of )2(y  and )3(y , in which )2(y  and )3(y  are mutually and 

cooperatively activated. Once the input signal activates the synthesis of )2(y  and )3(y , their 

activated protein levels are locked ON or sustained after the input signal disappears. This model 

is described by: 



45 
 

                )1().2().1()1( ykSk
dt

dy
−=                                                                              (5.1) 

               )2().5(
)2()3(

)3().4(
)1()1(

)1().3()2( yk
Ky

yk
Ky

ykb
dt

dy
nn

n
−

+
+

+
+=                    (5.2)     

               )3().8(
)4()2(

)2().7(
)3()1(

)1().6()3( yk
Ky

yk
Ky

ykb
dt

dy
nn

n
−

+
+

+
+=                   (5.3) 

where the employed parameters are described in Table 5.1. We used a very low rate constant 

of 01.0=b  for basal synthesis of the activators to prevent protein synthesis from being shut 

down (Cheng et al., 2008).  

 

The regulated mutual repression network (MRN) consists of )1(y , )2(y  and )3(y   proteins, as 

shown in Fig. 5.1B. An input signal induces the synthesis of )1(y , which activates the synthesis 

of )2(y  and represses that of )3(y . The synthesis of )2(y  and )3(y  is mutually and 

cooperatively repressed. Consequently, the two protein levels can be locked ON and OFF even 

after the input signal disappears. This model is described by: 
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where the employed parameters are described in Table 5.1.  
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Fig. 5.1 Two competitive network maps 

(A) The MAN. Protein )1(y  acts as a switch for mutual activation of proteins )2(y and 

)3(y . (B) The MRN. Protein )1(y  acts as a switch for mutual repression of proteins )2(y  

and )3(y . 
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Table 5.1 List of kinetic parameters used in gene regulatory networks 

Kinetic parameters Definition 

)1(k , )3(k , )4(k , )6(k , )7(k  protein synthesis rate constants 

)2(k , )5(k , )8(k  degradation rate constants 

)1(K , )2(K , )3(K , )4(K  dissociation constants of activators/repressors 

n  Hill coefficient  

 

 

5.2.2. Mathematical comparison 

To set a sound basis for comparison between the two competitive models, their equivalence 

should be guaranteed with respect to their function and corresponding kinetics. It is important 

to identify different structures between the competitive models and to understand the 

characteristics of the structures within each model. This is very much in the spirit of 

mathematically controlled comparisons (Alves and Savageau, 2000; Kurata et al., 2006). To 

compare a specific function between the two competitive models, we fix or conserve the other 

functions of the models while reducing the search space by setting the corresponding kinetic 

parameters to the same values. The network structure between the MAN and MRN is the same, 

except that activators are replaced by repressors in the MRN. The interactions between the two 

components of )2(y  and )3(y  within each model show a symmetric structure. 

 

An objective of the proposed models is to sustain the memory function for an extended period 

of time. The memory function is characterized by the persistence of gene expression after the 

input stimulus disappears. Since the models show bistability, they have two steady states: a 
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high level and a low level. For the MAN, both the high and low steady states of )2(y  and )3(y  

are readily set to the same levels, as shown in Table 5.2. For the MRN, the steady-state levels 

of )2(y  and )3(y  are always opposite: when the steady-state level of )2(y  is high; that of )3(y  

is low. When the high steady-state level of )2(y  in the MRN is set to the same level as that in 

the MAN, the low steady-state level of )2(y  in the MRN cannot be set to the same level as that 

in the MAN, as shown in Appendix A and B. Thus, we conserved the high steady-state level 

of )2(y  between the MAN and MRN. In addition, to reduce the search in the parameter space, 

we set the corresponding parameters between the two models to the same values and set the 

corresponding parameters within each model to the same values, as shown in Table 5.3. To 

reveal the difference in memory function between the two models, we selected two parameters 

responsible for gene regulation: the Hill coefficient (n), and the dissociation constant 

( )4()2( KK = ). These two parameters indicate the cooperativity of gene expression by activators 

and repressors and their binding strengths for each other. 

 

Table 5.2 Steady-state levels of gene expression in the MAN and MRN models  

 MAN MRN 

Conserved function 

within each network  

The low and high steady-state 

levels of )2(y  and )3(y  

The high steady-state levels of 

)2(y  and )3(y  

Conserved function 

between the MAN 

and MRN models  

The high steady-state levels of )2(y  and )3(y  

The low steady-state cannot be kept at the same level between the 

MAN and MRN networks. 
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Table 5.3 Corresponding kinetic parameters for the two competitive models 

 MAN  MRN 

Corresponding parameters 

within each network 

1.18)6()3( == kk  

)7()4( kk =  

8.0)8()5( == kk  

9)3()1( == KK  

43)4()2( == KK  

 

1.18)6()3( == kk  

)7()4( kk > , 1.43)7( =k  

8.0)8()5( == kk  

9)3()1( == KK  

43)4()2( == KK  

Corresponding parameters 

between the MAN and MRN 

models 

100)1( =k  1)2( =k  

)3(k  )5(k  )6(k  )8(k  

)1(K  )2(K  )3(K  )4(K  

 

5.2.3. Time-course simulation of memory  

The deterministic and stochastic time courses of )1(y , )2(y  and )3(y were simulated from time 

0 to 1,000. Signal S was input from time 250 to 500. The memory is divided into deterministic 

memory and stochastic memory. In deterministic memory, the protein levels are sustained after 

signal S disappears at 500. The stochastic time-course of )2(y  and )3(y  during the period from 

500 to 1,000 is simulated by the Gillespie stochastic simulation algorithm (Gillespie, 1977) to 

determine whether the memory is sustained or persistent. In this analysis, stochastic persistent 

memory was defined that sustains a gene expression level after an input signal disappears. This 

term can be distinguished from widely-used stochastic memory showing frequent transitions 

between two states and was effective in characterizing the memory persistence. In this 

simulation, the requirement of the stochastic persistent memory was empirically defined as the 
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requirement that the sustained expression of )2(y  and )3(y  during the period of time from 500 

to 1,000 after the signal disappears is more than 8 times obtained from 10 repetitions of 

simulations.  

 

5.2.4. Potential and probability density 

To theoretically perform deterministic and stochastic potential analysis, we converted the 

reaction rate equations (Eqs. (5.1-5.3)) into one-variable rate equations )(2 yf MAN  and  

)(3 yf MAN  by the quasi-steady-state approximation (Appendix C). In the same manner, the 

reaction rate equations (Eqs. (5.4-5.6)) were converted into )(2 yf MRN  and  )(3 yf MRN  

(Appendix D). Here, we illustrated how a one-variable equation )(2 yf MAN  is given under a 

stochastic environment by: 

yk
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kKy
ykb

kKy
ykb

kbyf
dt
dy

nn
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This equation can be described by the birth-and-death stochastic processes (Cheng et al., 2008, 

Scott et al., 2007): 

1[{ (7). }. ]
(2) (8)( ) (4).

1[{ (7). }. ] (2)
(2) (8)
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n n
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n n

n n
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+
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+ +
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                         (5.8) 

( ) (5).deathW y k y=                              (5.9) 

The corresponding chemical master equation was given by: 
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( , ) ( 1) ( 1, ) ( 1) ( 1, )

{ ( ) ( )} ( , )

birth death

birth death

P y t W y P y t W y P y t
t

W y W y P y t

∂
= − − + + +

∂
− +

           (5.10) 

where ),( tyP  was the probability density of protein concentration y. Next, the chemical master 

equation was transformed into the Fokker-Planck equation (Gillespie, 2000, Gardiner, 2009; 

Cheng et al., 2008, Scott et al., 2007): 

             )],()([
2
1)],()([),(

2

2
tyPyB

x
tyPyA

xt
tyP

∂

∂
+

∂
∂

−=
∂

∂
                                 (5.11) 
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The noise function is given by: 
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In the same manner, the Fokker-Planck equations of the four one-variable equations including 

)(2 yf MAN  were solved under the following conditions (Appendix C and D): 

      2

3

( )  (2)
( )

( )  (3)
MAN

MAN

f y for y y
A y

f y for y y
=

=  =
for the MAN model                              (5.14) 

2

3

( )  (2)
( )

( )  (3)
MRN

MRN

f y for y y
A y

f y for y y
=

=  =
for the MRN model                              (5.15) 

and the noise functions were given by: 
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2

3

( )  (2)
( )

( )  (3)
MAN

MAN

g y for y y
B y

g y for y y
=

=  =
   for the MAN model                           (5.16) 

2

3

( )  (2)
( )

( )  (3)
MRN

MRN

g y for y y
B y

g y for y y
=

=  =
   for the MRN model                           (5.17) 

 

Finally, we consider the stochastic potential analysis. The limit of ),( tyP  as ∞→t  yields 

)(yPst , the stationary probability density function of y  (Scott et al., 2007; Cheng et al., 2008), 

which is given by: 

                        ]
)(
)(2exp[

)(
)( ∫= xc

st dz
zB
zA

yB
N

yP                                                   (5.18) 

where cN  is the normalization constant. Eq. (5.18) can be recast in the form: 

                       )(2)( y
cst

seNyP Φ−=                                                         (5.19) 

where  

                      
)(

)()](ln[
2
1)(

zB
dzzAyBy y

s ∫−=Φ                         (5.20) 

is called the stochastic potential of )(yf  (Gardiner, 2009; Risken and Frank, 1996; Scott et 

al., 2007).  

 

5.2.5. Mean first-passage time analysis  

The robustness or persistency of steady states is estimated in the presence of noise. The 

persistency of the steady state of a stochastic system can be estimated by the mean first-passage 



53 
 

time (MFPT). An equilibrium point can exit from its minimum potential due to the effect of 

noise. The exit time depends on the specific realization of the random process and it is known 

as the first passage time. The MFPT is the average of the first passage times over many 

realizations. In the context of anticipating phase shifts, the MFPT provides a useful 

characterization of the time-scale on which a phase transition is likely to happen. 

 

Let us consider st
ly and st

uy ( st
u

st
l yy < ) as two steady states corresponding to a low and a high  

protein concentration, respectively, separated by the unstable steady state defining the potential 

barrier un
by  (i.e., the unstable equilibrium point). The basin of attraction of the state st

uy extends 

from un
by  to ∞+ , as it is to the right of st

ly . Let )(yT  be the MFPT to state un
by  starting at 

un
byy > . )(yT satisfies the following ordinary differential equation (Gardiner, 2009, Drury, 

2007, Sharma et al., 2016):                                               

        1)()(
2
1)()( 2

2
−=

∂
∂

+
∂

∂
y

yTyB
y
yTyA                        (5.21) 

with boundary conditions:     

0)( =un
byT and 0)(

=
∂
+∞∂
y

T        (5.22) 

 

By solving Eqs. (5.21-5.22), the MFPTs of st
uy  and st

ly : )( st
uU yT  and )( st

lL yT  are calculated to 

state un
by  for the basin of attraction of the state st

uy extending from un
by  to ∞+  and for the basin 

of attraction of the state st
ly which extends from 0 to un

by , respectively, as follows:  

              dz
zB
zdx

x
yT

x
un
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st
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lL ∫

Ψ
∫
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=
0 )(

)(.
)(

12)(               (5.23) 
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              dz
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where                                                 

             )
)(
)(2exp()(

0
dw

wB
wAy

y

y
∫=Ψ                        (5.25) 

with 00 =y for the st
l

st
u yy → transition and un

byy =0 for the st
u

st
l yy → transition.  

 

5.2.6. Theoretical comparison between the MAN and MRN models 

   For theoretical analysis, we converted the reaction rate equations of the MAN and MRN 

models into the one-variable rate equations (Appendix C and D). The one-variable rate 

equations were used to analyze the stochastic potential profile and estimate the MFPTs of the 

low and high steady-state levels. ))2(( st
lL yT , ))2(( st

uU yT , ))3(( st
lL yT  and ))3(( st

uU yT  of the 

MAN were calculated by Eqs. (23-25). ))2(( st
lL yT , ))2(( st

uU yT , ))3(( st
lL yT  and ))3(( st

uU yT  of 

the MRN were calculated in the same manner. A high value of the MFPT of a steady-state 

protein level means that the level is sustained for a longer time, whereas a low value indicates 

that the protein level quickly transitions to another level. 

 

5.2.7. Calculation 

MATLAB (Mathworks) was used for all the calculations. 
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5.3. Results 

5.3.1. MAN-enhanced memory function 

    We investigated the MAN at a Hill coefficient of 2=n  and at the different dissociation 

constants of 46)4()2( == KK  and 43)4()2( == KK  the other corresponding kinetic 

parameters were set as shown in Table 5.3. The steady-state levels of )2(y  and )3(y  were set 

to be the same (Appendix A). The dynamics of the MAN was simulated according to the 

Gillespie stochastic method.  As shown in Fig. 5.2A, when signal S was input from time 250 

to 500, S-induced )1(y  activated )2(y  and )3(y . The dynamic behaviors of )2(y  and )3(y  were 

identical because the structurally-corresponding parameters between )2(y  and )3(y  within the 

model were set to be the same. Proteins )2(y  and )3(y  showed memory effects after 500 by 

mutual activation, and a high level of )2(y  and )3(y  was sustained after S disappeared. The 

memory mechanism can be explained by the hysteresis curves or by bistability (Fig. 5.2B). The 

change in )2(y  and )3(y  depended on the history of input signal S. )2(y  and )3(y  increased 

according to the dotted line in Fig. 5.2B with an increase in S, achieving a high level of gene 

expression, while )2(y  and )3(y  decreased along the solid curve with a decrease in S. Even 

after S decreased to zero, the protein levels were sustained at a high level, showing memory. 

Despite the difference in the dissociation constants, the deterministic memory was sustained 

(Fig. 5.2A). In contrast, the stochastic model represented the memory persistence at 

dissociation constants of 43)4()2( == KK , but it presented unsuccessful memory at 

dissociation constants of 46)4()2( == KK  (Fig. 5.2C and D), where the levels of )2(y  and 

)3(y  returned to that before the signal input. Strong binding between activators and DNA 

strengthening a positive feedback loop was effective for memory persistence in a certain range. 

Noise or a stochastic perturbation flipped gene expression from one state to the other state 
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(Eldar and Elowitz, 2010), thus demonstrating that stochastic behavior deteriorates memory 

function.  

 

 

Fig. 5.2 Deterministic and stochastic simulations of the MAN 

(A) Deterministic simulation of proteins )1(y , )2(y  and )3(y . Signal S  is input from time 

250 to 500. The red and black lines indicate )2(y = )3(y  at dissociation constants 

43)4()2( == KK and at 46)4()2( == KK , respectively. The Hill coefficient is set 

to 2=n . (B) Hysteresis curves of )2(y = )3(y   at different dissociation constants. The red 

solid and dotted lines indicate )2(y = )3(y  with respect to a decrease and an increase in S at

43)4()2( == KK , respectively. The black solid and dotted lines indicate )2(y = )3(y  



57 
 

with respect to a decrease and an increase in S at 46)4()2( == KK , respectively. (C) 

Stochastic simulation of )1(y , )2(y  and )3(y  at 43)4()2( == KK . (D) Stochastic 

simulation of )1(y , )2(y  and )3(y  at 46)4()2( == KK . 

 

5.3.2. MRN-generated memory function 

       We investigated the MRN at dissociation constant 43)4()2( == KK  and the different Hill 

coefficients of 7=n  and 8=n  . The values of the corresponding kinetic parameters were set 

as shown in Table 5.3. The steady state levels of )2(y  and )3(y   were conserved as much as 

possible between the MRN and MAN (Appendix A and B). The high level of )2(y  was set to 

be the same as that of )2(y  = )3(y  in the MAN. The dynamics of the MRN was simulated 

according to the Gillespie stochastic method. As shown in Fig. 5.3A, when a transient signal 

was input from time 250 to 500, S-induced )1(y  activated )2(y  and suppressed )3(y . The 

dynamic behavior of )2(y  was opposed to that of )3(y , where it is impossible to set all the 

corresponding parameters between )2(y  and )3(y  within the model to the same values 

(Appendix B). Deterministic memory of the high and low levels of )2(y  and )3(y was 

observed after 500, where a high level of )2(y  and a low level of )3(y  were maintained. The 

hysteresis behaviors of )2(y  and )3(y  were shown in the same manner as the MAN, as shown 

in Fig. 5.3BC. )2(y  increased with an increase in S, but decreased in a different manner with 

a decrease in S; in contrast, )3(y  decreased with an increase in S, and increased in a different 

manner with a decrease in S. This hysteresis results from the bistability generated by mutual 

repression. Despite the difference in the Hill coefficient, the deterministic memory of )2(y  and 

)3(y  were sustained. On the other hand, the stochastic model represented the memory at 8=n , 

but provided unsuccessful memory at 7=n  (Fig. 5.3D E): )2(y  and )3(y  returned to their 
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levels before the signal input. This finding demonstrated that stochastic behavior decreases 

memory function. 

 

Fig. 5.3 Deterministic and stochastic simulations of the MRN 

(A) Deterministic simulation of proteins )1(y , )2(y  and )3(y . Signal S  is input from time 

250 to 500. Dissociation constants are set to 43)4()2( == KK  and other corresponding 
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parameter values are set the same as for the MAN. The red and magenta lines indicate )2(y  

and )3(y  at 7=n , respectively. The black and cyan lines indicate )2(y  and )3(y  at n = 8, 

respectively. (B) Hysteresis curves of )2(y  at different Hill coefficients. The red solid and 

dotted lines indicate )2(y  with respect to a decrease and an increase in S at 7=n , 

respectively. The black solid and dotted lines indicate )2(y  with respect to a decrease and an 

increase in S at 8=n , respectively. (C) Hysteresis curves of )3(y  at different Hill 

coefficients. The magenta solid and dotted lines indicate )3(y  with respect to a decrease and 

an increase in S at 7=n , respectively. The cyan solid and dotted lines indicate )3(y  with 

respect to a decrease and an increase in S at n = 8, respectively. (D) Stochastic simulation of 

)1(y ,  and )3(y  at Hill coefficient 7=n . (E) Stochastic simulation of )1(y , )2(y  and 

)3(y  at Hill coefficient 8=n . 

 

5.3.3. Simulation comparison between the MAN and MRN models 

To analyze the mechanism by which different architectures of the MAN and MRN models alter 

the persistence of memory, we compared the memory functions while setting the values of the 

corresponding kinetic parameters within each model and between the competitive models to 

the same values and conserving the steady states levels of )2(y  and )3(y  as much as possible, 

as shown in Table 5.2. Details are described in Appendix A-B. We estimated the two-

dimensional memory regions of the two models by conducting deterministic and stochastic 

simulations at each grid point as depicted in Fig. 5.4, where the x-axis and y-axis represent the 

Hill coefficient and dissociation constant, respectively. The kinetic parameter )7(k was 

adjusted so as to conserve the high steady-state level between the two models. The memory 

regions consist of two areas: (i) deterministic memory (green plus red areas in Fig. 5.4) and (ii) 
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stochastic persistent memory (red areas). The other areas indicate a monostable region or no 

memory region. The deterministic region was obtained by numerical simulations of Eqs. (5.1-

5.6), and the stochastic persistent memory region was identified by our empirical rule defined 

in the Methods. The MAN generated both deterministic and stochastic memories at a Hill 

coefficient of 2=n  (Fig. 5.4A). In contrast, the MRN required a Hill coefficient of 4=n  to 

obtain deterministic memory and a coefficient of 8=n  to achieve stochastic persistent 

memory. The stochastic persistent memory regions were included in the deterministic regions. 

The stochastic persistent memory region of the MAN was much larger than that of the MRN, 

indicating that the MAN readily presents a robust property of deterministic and stochastic 

persistent memory with respect to changes in the kinetic parameters. In the MRN, very high 

cooperativity was required to generate the stochastic persistent memory, and the stochastic 

persistent memory region was very limited and located close to the lower boundary of the 

dissociation constant.  
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Fig. 5.4 Comparisons of the memory regions among the two competitive models 

(A) Memory region of the MAN. (B) Memory region of the MRN. The memory regions are 

simulated with respect to the Hill coefficient and dissociation constants. The deterministic 

memory region is shown in green and red, whereas the stochastic memory regions are shown 

in red.  
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5.3.4. Comparison of the stochastic potential profile between the MAN and 

MRN models  

Theoretical analysis with chemical master equations was performed to support the simulation 

results. The Fokker-Planck equations (Eq. (5.11)), which were derived by combining the three 

rate equations (Eqs. (5.1-5.3) and (5.4-5.6)), provided almost the same probability density as 

the Gillespie stochastic simulation (Appendix E). The theoretical analysis was confirmed to 

be consistent with the Gillespie stochastic simulation analysis. By using the Fokker-Planck 

equations, we estimated the two-dimensional stochastic bistable regions for the MAN and 

MRN models, where the x-axis and y-axis represent the Hill coefficient and dissociation 

constant, respectively, as depicted in Fig. 5.5. The stochastic bistable region was identified, as 

shown in Appendix F. The stochastic bistable regions of the MAN and MRN models are 

illustrated in red and blue, respectively, while changing the Hill coefficient and dissociation 

constant. The other corresponding kinetic parameters between the models were set to be the 

same (Appendix A and B). The MAN generated the bistable region at a Hill coefficient of 

2=n  (Fig. 5.5A), whereas the MRN required a Hill coefficient of 3=n  to show bistability 

(Fig. 5.5B and C). The MRN required higher cooperativity than the MAN to generate 

stochastic bistability, indicating that the MAN more readily presents stochastic bistability than 

the MRN. 
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Fig. 5.5 Comparisons of the stochastic bistable regions between the two competitive 

models 
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(A) In the MAN, the stochastic bistable regions of )2(y = )3(y  are shown with respect to the 

Hill coefficient and dissociation constant under noises.  

(B-C) In the MRN, the stochastic bistable regions of )2(y  (B) and )3(y  (C) are shown with 

respect to the Hill coefficient and dissociation constant under noises.  

 

5.3.5. Comparison of the MFPT between the MAN and MRN models  

The stochastic bistable region indicates the bimodality of gene expression, but not the persistent 

memory. Thus, the MFPT was employed to characterize the stochastic persistent memory or to 

support the simulation result that the stochastic persistent memory region is very small in the 

MRN model. As shown in Fig. 5.6, the logarithmic MFPTs of )2(y  and )3(y  were calculated 

for the MAN and MRN models. The low and high steady-states of )2(y  and )3(y  are denoted 

as st
ly )2( , st

uy )2( , st
ly )3(  and st

uy )3( , respectively. In the MAN, ))2(( st
lL yT  and ))2(( st

uU yT

were identical to ))3(( st
lL yT and ))3(( st

uU yT  because their corresponding kinetic parameters 

between )2(y  and )3(y  were set to be the same. The effect of the Hill coefficient or 

cooperativity on the MFPTs of )2(y  and )3(y  was investigated. For both the models, an 

increase in the Hill coefficient lengthened the MFPTs, sustaining stochastic memory. In the 

MAN ))2(( st
uU yT  was much longer than ))2(( st

lL yT , indicating that the high expression level 

of )2(y = )3(y  is more persistent. ))2(( st
lL yT  and ))2(( st

uU yT  of the MAN were longer than 

))2(( st
lL yT  , ))2(( st

uU yT  , ))3(( st
lL yT  and ))3(( st

uU yT  of the MRN with respect to a Hill 

coefficient, indicating that the MAN shows more persistent memory than the MRN. To 

lengthen the MFPT of the MRN, it is required to increase the Hill coefficient. 
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The effect of the dissociation constants on the MFPTs of )2(y  and )3(y  was investigated. 

))2(( st
lL yT  and ))2(( st

uU yT  of the MAN were longer than ))2(( st
lL yT  , ))3(( st

lL yT  , 

))2(( st
uU yT  and ))3(( st

uU yT  of the MRN for all the dissociation constants. It indicates that the 

MAN generated more persistent memory than the MRN. In other words, the MRN memory is 

fragile. In the MAN, an increase in the dissociation constant increased ))2(( st
lL yT , but 

decreased ))2(( st
uU yT , indicating that strong binding of the activator results in a persistent high 

expression level. The results also suggest that gene expression transitions from a high-steady 

state to a low-steady state with an increase in the dissociation constant. In the MRN, ))2(( st
lL yT , 

))2(( st
uU yT , ))3(( st

lL yT and ))3(( st
uU yT  gradually decreased with an increase in the 

dissociation constant, indicating that strong binding repressors are necessary for persistent 

memory. 

 

To illustrate changes in the stochastic gene expression profile, we calculated the probability 

density (Eq. (5.18)) for the MAN and MRN models with respect to the Hill coefficient and 

dissociation constants, as shown in Fig. 5.7. In the MAN, as shown in Fig. 5.7A, a change in 

the Hill coefficient ( 2n ≥ ) hardly affected the probability density of a high-steady-state level 

of y(2)=y(3) in the MAN.  Low cooperativity was sufficient to make a high-steady-state level 

dominant. In the MRN, as shown in Fig. 5.7B, an increase in the Hill coefficient increased the 

probability density of a high-steady-state level, decreasing that of a low-steady-state level, 

which made a high-steady-state level of y(2) dominant. In Fig. 5.7C, an increase in the Hill 

coefficient decreased the probability density of a low-steady state level, but it also decreased 

that between the high- and low-steady-state levels, which clearly separated the low-steady state 

level from the high-steady-state level. This would contribute to enhanced sustainability of a 

low-steady-state level of y(3). In the MAN, as shown in Fig. 5.7D, a decrease in the dissociation 
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constant (strong binding) slightly increased the probability density of a high-steady-state level 

of y(2)=y(3) and decreased that of a low-steady state level, which made a high-steady-state 

dominant. In the MRN, as shown in Fig. 5.7E, a decrease in the dissociation constant enhanced 

the probability density of a high-steady-state level, decreasing that of a low-steady-state level, 

which made a high-steady-state of y(2) dominant. In Fig. 5.7F, a decrease in the dissociation 

constant decreased the probability density of a low-steady state level, but also decreased that 

between the high- and low-steady-state levels, which clearly separated the low-steady state 

level from the high-steady-state level. This would contribute to enhanced sustainability of a 

low-steady-state level of y(3). 

 

Fig. 5.6 Comparisons of the MFPTs between the two competitive models  
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(A) The logarithmic MFPTs of )2(y  and )3(y  were compared between the MAN and MRN 

models with respect to the Hill coefficient under noises. The dissociation constants are set to 

15)4()2( == KK in the MAN. The dissociation constants are 15)4()2( == KK  and 

35)4()2( == KK  for )2(y  and )3(y , respectively, in the MRN. 

 (B) The logarithmic MFPTs of )2(y   and )3(y  were compared between the MAN and MRN 

with respect to the dissociation constant under noises. The Hill coefficient was set to 3=n  in 

both models.  

The red and green solid lines indicate ))2(( st
lL yT  = ))3(( st

uU yT  and ))2(( st
uU yT  = ))3(( st

lL yT  

for the MAN, respectively. The red and green dotted lines indicate ))2(( st
lL yMFPT  and 

))2(( st
uU yMFPT  for the MRN, respectively. The blue and black dotted lines indicate 

))3(( st
uU yT  and ))3(( st

lL yT  for the MRN, respectively. 
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Fig. 5.7 Comparison of the probability density of the steady-state level between the two 

competitive models 

(A) Probability density of )2(y = )3(y  of the MAN with respect to the Hill coefficient. (B) 

Probability density of )2(y  of the MRN with respect to the Hill coefficient. (C) Probability 

density of )3(y  of the MRN with respect to the Hill coefficient. (A-C) The blue, red and green 
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lines indicate 2=n , ( 3=n  for MRN ) 8=n  and 12=n , respectively. The dissociation 

constant was set to 15)4()2( == KK  in both models.  

(D) Probability density of )2(y = )3(y  of the MAN with respect to the dissociation constant. 

(E) Probability density of )2(y  of the MRN with respect to the dissociation constant. (F) 

Probability density of )3(y  of the MRN with respect to the dissociation constant. (D-F) The 

blue, red and green lines indicate 15)4()2( == KK , 20)4()2( == KK and

30)4()2( == KK , respectively. The Hill coefficient was set to 3=n  in both models. (A-

F)  Fokker-Planck equations are used. 

 

5.4. Discussion 

We focused on revealing the requirement of the persistence or sustainability of a gene 

expression level in response to transient signals. So far the MAN and MRN have been analyzed 

separately and their differences in memory were not identified in silico and in vivo. To our 

limited knowledge, this is the first report that reveals mechanisms by which the structural 

differences between the MAN and MRN alter memory persistence. We analyzed the 

mechanisms by which mutual activation and repression networks generate a robust, persistent 

memory in the presence of noise. Stochasticity decreased the memory persistence of both 

models. In particular, the stochastic memory of the MRN was very fragile in the presence of 

noise. In contrast, the MAN achieved robust, persistent memory in both the deterministic and 

stochastic approaches at a lower cooperativity than the MRN. The stochastic memory pattern 

of the MAN can be adjusted by changing the binding strength of the activators (Fig. 5.6B). The 

MRN required highly cooperative and strong binding repressors for robust memory. 
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Mathematical comparison allowed characterization of the memory region between the 

competitive networks. We set the corresponding kinetic parameters within each model and 

between the MAN and MRN models to be as same as possible and also conserved the high 

steady-state levels between the models. Two-dimensional memory analysis with respect to the 

Hill coefficient and dissociation constant was effective in characterizing the memory function 

and bimodality, and these two kinetic parameters were responsible for the cooperativity and 

binding strength of the activators or repressors. The Gillespie algorithm accurately simulated 

the time-course of changes in protein concentration but had difficulty in rigorously identifying 

the stochastic persistent memory region due to the complexity of the calculation. Many time-

consuming simulations are required to determine if the model shows stochastic persistent 

memory, whereas theoretical analysis overcomes this calculation complexity. The stochastic 

potential profile accurately illustrated if the model shows bistability, but did not indicate the 

persistence of memory. Thus, the MFPT was used to characterize memory sustainability. A 

high value of the MFPT means that the level is memorized or sustained for a long period of 

time, whereas a low value indicates that the level quickly transitions to another level. 

 

The MFPT analysis indicated that the stochastic persistent memory achieved by the MAN was 

more robust and persistent than that achieved by the MRN, because the MFPTs of the low and 

high steady-states of )2(y  and )3(y  in the MAN were much longer than those of the MRN. This 

supported the simulation result that the stochastic persistent memory region of the MRN is very 

limited. In addition, the present findings revealed the mechanism by which the cooperativity 

and binding strength of the activators or repressors affect the stochastic persistent memory of 

the MAN and MRN. For both models, high cooperativity prolonged the MFPT, sustaining the 

memory function. On the other hand, a decrease in the dissociation constant (or an increase in 



71 
 

the binding strength) decreased ))2(( st
lL yT , but increased ))2(( st

uU yT  in the MAN. A high 

steady-state level was memorized or sustained at a low dissociation constant, whereas a low 

steady-state level was sustained at a high dissociation constant. It indicates that the memory 

pattern of the MAN can be controlled by changes in the dissociation constant. In the MRN, a 

decrease in the dissociation constant gradually increased the MFPTs.  The MRN required 

strong binding repressors for sustained memory, which is consistent with the stochastic 

persistent memory of the MRN being located close to the lower boundary of the dissociation 

constant. Since the MFPT gradually changes with respect to a change in the dissociation 

constant, the memory pattern of the MRN would be hard to be controlled by changes in the 

binding strength of the repressor. To our limited kinetic conditions, since the MFPTs of the 

MRN were much shorter than those of the MAN, the MRN would be hard to become as robust 

as the MAN. 

 

In this analysis, we used a specific set of the kinetic parameters and did not intensively 

investigate the dependency of stochastic memory on kinetic parameter values. Instead of it, we 

searched two-dimensional parameter region to make mathematical comparison reliable. In 

general, stochastic behaviors depend on the number of molecules within a cell. A large number 

of molecules can decrease stochastic effects, while a small number of molecules are very 

susceptible to stochasticity, which may cause unexpected dynamics. In this study, we used a 

middle number of repressors and activators and identified the structural difference greatly alters 

memory persistence. In next, we will investigate how a small number of molecules within a 

cell affect the stochastic persistent memory while changing the values of kinetic parameters. In 

addition, although the employed theoretical and simulation analyses were suited for the plain 

networks, it will be required to analyze complex models. For example, it would be interesting 
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to design a complex mutual repression module that achieves persistent memory. In this case, 

high-speed algorithms such as the tau-leap method (Cao et al., 2006) would be necessary. 

For theoretical analysis, we reduced the three-variable equations to the one-variable equation. 

On the other hand, it is suggested the model reduced by the quasi-steady-state approximation 

is not always consistent with the full, origin model (Thomas et al., 2011), although the quasi-

steady-state approximation is widely used. In next we investigate how relative errors between 

the reduced and full models are produced to confirm the results. 

 

The MAN provided a robust memory region or sustained gene expression where the dynamic 

behaviors of two proteins were the same, whereas the MRN provided the opposite gene 

expression and fragile memory. This mathematical comparison provides guidance on whether 

we should select the MAN or MRN for an optimal, rational design. If a robust memory is 

required, a mutual activation network should be selected. If the opposite state of protein 

synthesis is necessary, a mutual repression network must be selected, although the memory 

effect is fragile (Gardner et al., 2000). This fragility may be related to the fact that suppression 

cascades amplify noise compared with activation cascades (Acar et al., 2005). A mutual 

activation network comprising two protein kinases, p42 MAPK and Cdc2, is suggested to 

require robust memory (Xiong and Ferrell, 2003; Huang and Ferrell, 1996). The MAN seems 

to evolve in the context of signaling networks to make memory within a cell or to irreversibly 

change its gene expression level. On the other hand, a mutual repression network comprising 

the cI and Cro proteins would require a gene expression system opposite to that of robust 

memory (Casadesus and D'Ari, 2002). A Notch-Delta mutual repression network is an 

intelligible example to communicate between neighboring cells (Matsuda et al., 2015). An 

increase in Notch activity within a cell decreases Notch activity in neighboring cells, and thus 
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Notch-Delta mutual repression provides inhomogeneous or opposite protein synthesis in 

homogeneous cell populations. Generally, differentiation requires spatial changes in gene 

expression. The MRN takes advantage of opposite gene expression between neighboring cells 

at different steps during cell lineage progression, thus contributing to differentiation decisions 

or signaling diversity not only across a wide spectrum of species but also across a broad range 

of cell types in a single organism. To differentiate cells with different functions, the MRN may 

evolve despite its fragile memory. To overcome the fragility of the MRN, complex networks 

would be necessary. For example, the addition of negative feedback loops to the MRN can 

stabilize the gene expression level or enhance memory function, although few studies pointed 

out it. 
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CHAPTER 6 

 Conclusion and Future Works 

 

6.1 Conclusion 

         We focused on the quantitative understanding of the dynamical behavior in the gene 

expression due to mathematical modeling. During our research, we have built up various kind 

of genetic networks to reveal the mechanism of noise in gene expression at the steady-state 

level such as open-loop system ACN and RCN models, closed-loop system ACN and RCN 

models through the strong-weak dissociation constants. As for example, in RCN model 

apparently increased the noise at strong dissociation constant which is opposite to ACN model.  

Because the mechanisms of genetic noise are one of the ubiquitous problems in the system as 

well as quantitative biology. Also, we reported two-gene tMAN and tMRN models, to use non-

symmetric kinetics parameters set for a range of biologically relevant conditions thus shown 

stochastic bimodality, even multimodality exist in deterministically monostable regime while 

non-cooperative binding. Therefore, bimodality, multimodality are observed not only for 

parameter values corresponding to deterministic but also beyond it occurred as the discreteness 

amplification of the molecular concentration of proteins. 

We employed the mathematical comparison which was used to analyze the deterministic or 

stochastic memory functions between the proposed competitive models at the same steady state 

level. The MAN model improved the memory function in both deterministic and stochastic 

models, compared with the MRN model. The MAN provided a robust memory window and 

consistent gene expression, where the synthesis levels of two proteins were always the same. 

On the other hand, the MRN provided opposite gene expressions with a fragile memory. The 

MAN model that comprises two protein kinases p42 MAPK and Cdc2 are suggested to need 
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robust memory. On the other hand, the MRN model that consists of cI and Cro proteins would 

require opposite gene expression rather than robust memory. Also, a Notch-Delta mutual 

repression network is an intelligible example to communicate between neighboring cells. The 

mathematical comparison to the achievement of the biological memory of the theoretical 

networks improved an understanding of the potential applications of engineered memory 

networks in medicine and industrial biotechnology. 

 

6.2 Extended to future works 

In the MRN, we added negative autoregulations to )2(y  and )3(y  syntheses to investigate how 

negative feedback loops affect their memory functions, as shown in Fig. 6.1. This model is 

named the regulated mutual repression network model with negative autoregulations (MRN-

NA) . 

 

Fig. 6.1 MRN-NA. Negative autoregulations are added to the MRN model. 

 

Also, we will be constructed, regulated the combined activation coupled oscillators (ACO), 

regulated the combined of repression coupled oscillators (RCO) models as shown in Fig. 6.2. 

We will able to show the novel design mechanism of robust oscillatory function in noise-

induced gene expression. 
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Fig 6.2. Two competitive oscillator network maps 

(A) ACO. Protein )3(y  and )6(y acts as mutual activation network consisting of the two 

repressilator networks of proteins of )1(y , )2(y , )4(y  and )5(y . (B) RCO. Protein )3(y  and

)6(y acts as mutual repression network consisting of the two repressilator networks of proteins 

of )1(y , )2(y , )4(y  and )5(y . 
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Appendix A. Parameter settings of the MAN 

 

The MAN is given by Eqs. (5.1-5.3). When the corresponding parameters between Eqs. (5.2, 

5.3) are set to be the same as follows:  

                    )6()3( kk = ,  )7()4( kk = , )8()5( kk = , )3()1( KK = , )4()2( KK = ,  

the steady-state solution is given by: 
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Subscript ss indicates the steady state. Values of )4(k  = )7(k  are determined so that the high 

and low steady-state levels of )3()2( ssss yy =  , respectively, can be set to specific levels.  
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Appendix B. Parameter settings of the MRN 

 

The MRN model is given by Eqs. (5.4-5.6). When the corresponding parameters between Eqs. 

(5.5, 5.6) are set to be the same as follows:  

                    )6()3( kk = , )8()5( kk = , )3()1( KK = , )4()2( KK = ,  

the steady state solution is given by: 
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The value of )7(k  is fixed and the value of )4(k ( )7(k> ) is determined so that the high steady-

states of )2(ssy  and )3(ssy  can be set to a specific level. The levels of )2(ssy  and )3(ssy  are 
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always opposite due to mutual repression. When the high steady-state levels are the same, it is 

very difficult to conserve the low steady-states of )2(ssy  and )3(ssy  at the same level. 
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Appendix C. One-variable equation and noise function of the MAN 

 

To perform deterministic and stochastic potential analysis, we converted the reaction rate 

equations (Eqs. (5.1-5.3)) into a one-variable rate equation. By setting 0=S , the MAN model 

is simplified into:  
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By applying the quasi-steady-state approximation to )3(y , the rate equation of )2(y  is given 

by:      
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The noise function is given by (Cheng et al., 2008, Scott et al., 2007): 
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In the same manner, the rate equation of )3(y  is given by: 
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and the noise function is given by (Cheng et al., 2008, Scott et al., 2007): 
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Appendix D. One-variable equation and noise function of the MRN 

 

By setting 0=S , the MRN model (Eqs. (5.4-5.6)) is simplified into: 
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By applying the quasi-steady-state approximation to )3(y , the one-variable rate equation of 

)2(y  is given by: 
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and the noise function is expressed as (Cheng et al., 2008, Scott et al., 2007):  
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In the same manner, the rate equation of )3(y  is given by: 
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and the noise function is given by (Cheng et al., 2008, Scott et al., 2007): 
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Appendix E. Consistency between the Gillespie stochastic simulation and 

the Fokker-Planck equation 

The Fokker-Planck equations provided almost the same probability density as the Gillespie 

stochastic simulation (Fig. E1).  

 

Fig. E1 Probability density of the MAN and MRN models 
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(A) Probability density of )3()2( yy =  in the MAN model. The parameters are given as 0=S ,

9)3()1( == KK , 34)4()2( == KK , 1.18)6()3( == kk , 95.72)7()4( == kk , 8.0)8()5( == kk , 

01.0=b , 2=n .  

(B, C) Probability density of )2(y  (B) and of )3(y  (C) in the MRN model. The parameters are 

given as 0=S , 9)3()1( == KK , 43)4()2( == KK , 1.18)6()3( == kk , >= 23.61)4(k  

1.43)7( =k , 8.0)8()5( == kk , 8=n .  
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Appendix F. Stochastic potential analysis 

We estimated the stochastic potential profile of the one-variable rate equation deriving from 

the MAN and MRN models (Fig. F1). In the stochastic potential profile, the two local 

minimums, corresponding to the low and high steady-state levels of )2(y  and )3(y , indicated 

stable equilibrium points separated by the energy potential barrier at the local maximum or 

unstable equilibrium point. Stochastic bistability was identified by the existence of two local 

minimums. A system can transition from one state of minimal potential to the other if it is 

perturbed to overcome the potential barrier. 

 

Fig. F1 Stochastic potential profile of the MAN and MRN models 
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(A) Double-well potential of )2(y = )3(y  in the MAN model. The parameters are given as 0=S ,

9)3()1( == KK , 30)4()2( == KK , 1.18)6()3( == kk , 26.70)7()4( == kk , 8.0)8()5( == kk , 

01.0=b , 2=n .  

(B, C) Double-well potential of )2(y  (B) and of )3(y  (C) in the MRN model. The parameters 

are given as 0=S , 9)3()1( == KK , 30)4()2( == KK , 1.18)6()3( == kk , >= 30.85)4(k  

1.43)7( =k , 8.0)8()5( == kk , 4=n . 
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