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Abstract: The problem of knowledge discovering in the form of rules from databases with
incomplete information is studied. At first, the rule extraction from databases without
incompleteness is surveyed according to the rough sets theory. Then, databases with
incomplete information and the rule extraction from these databases are outlined. We briefly
survey our previous research, and apply it for realizing some programs of the rule extraction.
The implemented programs and the real execution of these programs are shown, too. In this
way, a tool for extracting rules from databases with incomplete information is proposed.
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1. Introduction

Databases with incomplete information were pro-
posed by Lipski in 1981 [1,2]. This is well known as a
framework to handle the uncertain information in rela-
tional databases. In usual relational databases, there is an
attribute value for every object (or a primary key) and
every attribute [3]. However in Lipski's database, there
may be a set of attribute values for some objects and
some attributes. This set of attributes is interpreted as
that the actual value exists in this set, but it is not known
for the lack of information [1]. Codd's database with null
value [4] is a special case of Lipski's database, since the
null value shows the whole attribute value domain.
Lipski mainly discussed the modal question-answering
and the axiomatic system for this question-answering.

In this paper, the rule extraction from databases
with incomplete information is studied. The motivation
of this research is due to the recent works on the KDD
(Knowledge Discovery and Data Mining) [5]. There are
several works on the KDD from very large databases [6],
but the knowledge discovery from the uncertain informa-
tion will also be an important work. The rule extraction
from databases with incomplete information is a frame-
work for the new variation of KDD.

Here, we remark that we deal with non-numerical
data, and we do not apply the fuzzy analysis, the
statistical analysis nor the multivariate analysis. We
mainly depend upon the data dependency. This is a way
of rough sets analysis [7,8].
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2. Basic Concepts in Rough Sets Theory

Every DIS (Deterministic Information System) [7] is
a quadruplet

DIS=(OB, AT, {VALa | a€ AT}, ),
where OB is a finite set whose clements are called
objects, AT is a finite set whose clements are called
attributes, VALa (a< AT) is a finite set whose elements
are called attribute values, and f is such a mapping as
[TOBXAT—>UaVALa. The mapping f is called a clas-
sification function.

For x, y(x#y)€ OB, if fix,a)=f(y,a) for every aS AT,
we see there is a relation for x and y, which becomes an
equivalence relation over OB. Every element of an
equivalence relation is called an equivalence class, and
[x] denotes an equivalence class with object x. For every
equivalence class, either [x]=[y] or [x] N [y]={} holds.
Furthermore, U ,cgp[x] =OB holds. If a set X COB is
the union of some equivalence classes, we say X is
definable in DIS. Otherwise, we say X is rough.

Let’s consider two sets CONC AT which is called
condition attributes and DEC C AT which is called deci-
sion attributes. We say objects x and y are consistent, if
Sx,a)=fy,a) for every a€ CON then f(x,a)=f(y,a) for
every a€ DEC. If every two objects are consistent each
other in a DIS, we say DIS is consistent for CON and
DEC. We may say there is a strict dependency between
CON and DEC.

3. Rule Extraction based on Dependency
If a DIS is consistent for CON and DEC, every tuple
restricted to CON and DEC is a rule [7,8]. Namely for a
fixed DEC in a DIS, such CON as DIS is consistent for
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CON and DEC is obtained at first. Then, tuples restricted
to CON and DEC are extracted. They are rules from this
DIS. This is the simplest case of the rule extraction based
on a dependency.

Les’s consider two equivalence relations eq, and eg,
over OB. eq; Ceq, denotes that there exists such MEeg,
as LCM for every L& eq,. Here, an important proposi-
tion connecting the dependencies in DISs with equiv-
alence relations over OB is shown.

Propesition 1 [7]. For any DIS, suppose eq(CON) be
an equivalence relation for the condition attributes and
eq(DEC) be an equivalence relation for the decision
attributes. In this case, the following (1) and (2) are
equivalent.

(1) There is a strict dependency between CON and DEC.

(2) eq(CON) C eq(DEC).

If there is not any strict dependency between CON
and DEC, a set POScoMDEC)=U {L Eeq(CON) | there is
such MEeq(DEC) as LC M} is applied to characterize
the dependency. This is a set of all consistent objects for
CON and DEC, and it is called (CON-)positive region of
DEC. The ratio |POScoM(DEC)|/|OB is called the degree
of dependency between CON and DEC. Intuitively, the
high degree of dependency implies there exist many
rules between CON and DEC.

Example 1. Let’s consider DIS| in Table 1.

Table 1. A Table for DIS,
OB | color | shape size
1 red | squarve | small
2 | blue | square | large
3 red | square | small
4 | blue | round | medium

There are four objects and three attributes. In Table 1,
eg({color})={{1,3},{2,4}}. A set {1,2,3,4}={1,3} U {2,
4} is definable for the attribute color, but a set {1,2,3} is
rough. For an attribute set {shape, size}, eq({shape,
size})={{1,3},{2},{4}}. Therefore in this case, both {1,2,
3,4} and {1,2,3} are definable. Let’s discuss the depen-
dency. For CON={shape, size} and DEC={color}, {1,3}
C{1,3}, {2} <{2,4} and {4} C {2,4} hold. Namely, the
set POScoMDEC) ={1,2,3,4}=0B, and it is known there
exists a strict dependency between {shape, size} and
{color}. As for CON={shape} and DEC={color}, the
positive region is {4}. Namely, the attribute size can’t be
reduced from {shape, size}. As for CON={size} and
DEC={color}, the positive region is equal to OB. The
degree of dependency between {size} and {color} is 1,
therefore the attribute shape can be reduced from {shape,
size}. Finally, rules are extracted. Here, rule(x) denotes
the rule from object x.

rule(1)(=rule(3)): [size=small|—>{color=red],

rule(2):[size=large]—[color=blue],

rule(4):[size=medium)—[color=blue].
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Like this, rules are extracted by using the depen-
dency in a DIS. For numerical data, there are some other
ways of data analysis. However in DIS), there do not
exist any numerical data. In such data, some ways of
numerical data analysis are not applicable. We depend
upon the way by a data dependency, namely the way of
rough sets theory.

4. Databases with Incomplete Information
There may be some frameworks for databases with
incomplete information, so we clarify our framework in
this section. We identify the following Non-deterministic
Information System (NIS) with a database with incom-
plete information. Every NIS is also a quadruplet
NIS=(OB, AT, {VALa | a€ AT}, g),
where g is such a mapping as g:OBXAT—>P(UaVALa)
(Power set) [1,2]. For every set MEP(UaVALa), M is
interpreted as that there exists an actual value in this set
but it is not known for the lack of information. If the
actual value is not known at all, g(x,@) is equal to VALa.
A NIS is seen as a DIS with incomplete information.
Orlowska and Pawlak discussed the logical formal-
ism for representing incomplete knowledge in NISs [7,8].
They proposed logic NIL by using modal operators like
[*] and <*>.

5. An Example and Some Remarks
An example of NIS is shown, and the problem in
this paper is clarified.

Example 2. Let’s consider next NIS; where VAL ,={0,1,
2}, VALp={0,1,2,3}, VAL~=VALK,={0,1,2,3,4,5}. Random
number programs are applied for producing this table. In
such a table, how do we deal with the rule extraction?

Table 2. A Table for NIS,

oB| 4 B C D
1 0 (2,3} 5 3
2 0 ({013} 4 5
3 2 3 5 {045}
4 [{012%] 3 1 1
5 1 (0,1} 5 0
6 2 1 (3.5} 4
7 1 0 2 2
8 1 3 (24| 4
9 0 1 5 4
0] 2 1 0 ]

In this table, there are three selections for g(4,4)=
{0,1,2}, namely 0, 1 and 2. For other sets of attribute
values, there are two or three selections of an attribute
value. Therefore in NIS;, 648(=2° X 3% DISs can be
derived. We generally call such DISs derived DISs from
NIS. Table 3 shows a derived DIS for attributes {4,B,C}.
For attributes {4,B,C}, there are 216(=2°X3") derived
DISs in NIS,. According to the interpretation of g(x,a), it
is known there is a derived DIS with actual information,
but 1t is not known.
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Table 3. A Table for a derived DIS from NIS, for

attributes {A,B,C}
OB|A|B|C
1 [0]2]5
2 {0j014
3 12131[5
4 {0]3]1
5 11(0][5
6 | 21113
7 111012
8 |1]13¢}1
9 |0]1]5
10210

Now we discuss three cases of the rule extraction in

Table 2.

(CASE 1) Suppose CON={B} and DEC={D}.

In this case, there are 36(=2”X 3?) derived DISs. As for
the object 1, there are two rules,

rule(1),:[B=2]—[D=3],

rule(1),:[B=31—[D=3].

The rule(1), appears in 18 derived DISs and it is always
consistent in 18 derived DISs. On the contrary, rule(1),
also appears in other 18 derived DISs. But the rule(1), is
always inconsistent with the rule(4). Furthermore, the
rule(9) and the rule(10) appear in all derived DISs, and
they are always inconsistent. Namely, every derived DIS
is inconsistent for CON={B} and DEC={D}, and there
exists no strict dependency in any derived DISs.
(CASE 2) Suppose CON={A4, B, C} and DEC={D}.
In this case, there are 648(=2° X3 derived DISs. The
rule(1); and the rule(l), are always consistent with any
other rules in all derived DISs, respectively. Rules only
rule(4),:[A=11\[B=3]\[C=1]—~[D=1],
rule(8):[A=11\[B=3]A\[C=1]—[D=4]
are inconsistent. These two rules appear in 72 derived
DISs at the same time. Therefore, 576(648-72) derived
DISs are consistent. In this case, there exist less incon-
sistent DISs, and we see every tuple is a rule. Especially,
the rule(7), the rule(9) and the rule(10) appear in all
derived DISs, and they are always consistent with any
other rules, therefore we see such rules are certain rules.
As for other rules, we see they are possible rules.
(CASE 3) Suppose CON={4, B, D} and DEC={C}.
In this case, there are 648(=2°X3*) derived DISs and
every derived DIS is consistent. Namely, any two rules
are consistent. This is the most preferable case. Like
CASE 2, we see the rule(7), the rule(9) and the rule(10)
are certain rules. For the object 1, we see the rule(1), and
the rule(1), are possible rules, respectively. Furthermore,
we see the rule(1), or the rule(1), certainly holds.

In CASE 2, the almost rules are consistent, but in
CASE 1 the almost rules are inconsistent. In CASE 3,
every rule is consistent with other rules. According to the
discussion, every rule is divided to the following sorts.

1. Global-Coensistent rule: This is such a rule as that it
appears in all derived DISs and it is always consist-

ent with other rules, like the rule(7), in CASE 2.

2. Local-Consistent rule: This is such a rule as that it
appears in some derived DISs and it is consistent
with other rules in these DISs, like the rule(1); in
CASE 1.

3. Global-Incensistent rule: This is such a rule as that
it appears in all derived DISs and it is inconsistent
with other rules in all derived DISs, like the rule(9)
in CASE 1.

4. Local-Inconsistent rule: This is such a rule as that
it appears in some derived DISs and it is inconsistent
with other rules in these DISs, like the rule(1), in
CASE 1.

5. Global rule, Local rule: They are rules except the
above rules.

In these sorts, the global-consistent rule is the most pref-

erable, and the global-inconsistent rule is the worst. In

any DIS, there are only two sorts of rules, i.e., the con-

sistent rule and the inconsistent rule, but there are five

sorts of rules in every NIS.

In the subsequent section, the next issues related to

five sorts of rules are discussed.

(Issue 1) How do we deal with the dependency among
attributes in every NIS?

(Issue 2) How do we get CON, which cause a high
degree of the dependency for fixed DEC?

(Issue 3) How do we extract rules from every NIS?

As for Issue 1, a new data dependency in every NIS is

proposed. As for Issue 2 and Issue 3, some useful algo-

rithms are proposed for the implementation.

6. Surveys of our Research

This section surveys our research [9,10]. In every
DIS, there exists an equivalence relation for any set of
attributes. We call every equivalence relation in a derived
DIS a possible equivalence relation (pe-relation), and we
call every element in a possible equivalence relation a
possible equivalence class (pe-class).

As for the definability of a set in NIS, we rely on the
definition by Orlowska. Namely a set X is definable in
NIS if X is definable in some derived DISs. It implies that
if we pick up some appropriate derived DISs then the set
is definable in those DISs.

The simple way to check the definability of a set is
to examine the definability of a set for all derived DISs.
However, this way will not be suitable for the NIS with
large number of derived DISs. The order to check the
definability of a set in a DIS depends on |OB[’, and it is
necessary to repeat this check for all derived DISs. The
problem to check the definability of a set is in NP class.
More effective way for the simple way is needed, and
another way is proposed by the next proposition.

Proposition 2. For NIS = (OB,AT, {VALa |aEAT},g) and
a set XC OB, if there exist subsets of OB, CL,,---, CL,,

satisfying (1) and (2), then X is definable in NIS. Vice
versa.

(1) UCL=X.
(2) {CL,, -, CL,} is a subset of a pe-relation.
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By finding subsets of OB, CL,,"-",CL,,, we check
the definability of a set in every NIS. The following is
the overview of an algorithm for solving it.

Algorithm 1 [9,10].

Input: A NIS and a set XC OB.

Output: X is definable in NIS or not.

(1) X*=X and eq={}.

(2) For any element x& X*, find such a CL as
(CL-1)xECL, CLCX*,

(CL-2) eqU {CL} is a subset of a pe-relation.

(2-1) If there exists a CL, [x]=CL, eq=eq U {[x]} and
X*=X*—CL. If X*# {}, go to (2). Otherwise, X is de-
finable in NIS.

(2-2) If there exists no CL, backtrack. If there is no
branch to backtrack, the set X is not definable.

This algorithm is similar to Grzymala-Busse's
LEMI and LEM2 algorithms [11]. The proposing algo-
rithm is an extension of Grzymala-Busse's algorithm to
the non-deterministic information systems. In the pro-
posing algorithm, it is very difficult to realize (CL-1) and
(CL-2). Some properties for solving those problems are
in [9,10].

Example 3. Let’s show an example of NIS, and simulate
the transaction of Algorithm 1.

Table 3. A Table for a NIS
OB A
1 5
2 7
3 1457}

In Table 3, there are clearly two pe-relations {{1,3},{2}}
and {{1},{2,3}}. In this table, the following internal ex-
pressions are picked up at first.
inf(1,(5),{A4})={1}, sup(1,(5).{4})={1,3},
infi2,(7),{A)={2}, sup(2,(7),{4})={2,3},
inf(3,(5),{A})=sup(3,(5),{4})={1,3},
inf(3,(7),{A4})=sup(3,(7),{A})={2,3}.
The inf{) implies certain pe-class and the sup() implies
the possible pe-class. Only such a set X as inf) CXC
sup() can be a pe-class [10]. The CL in Algorithm 1 must
satisfy this condition. Furthermore in order to manage
the sequence of sets CLy,":-, CL,,, two lists PLIST and
NLIST are employed [10]. PLIST keeps selected tuples
and NLIST keeps rejected tuples. For the first element 1
e X*={1,2,3}, there are two pe-classes {1} and {1,3}.
For the selection of {1}, X*={23}, PLIST={[1,(5)]},
NLIST={[3,(5)]} and eq={{1}} are derived. The tuple (5)
for the object 3 is rejected for being the pe-class {1}. For
the first element 2 EX*={2,3}, there are two pe-classes
{2} and {2,3}. However, the pe-class {2} can’t be appli-
cable. Because in this case, NLIST = {[3,(5)], [3.(D]}
holds, and it implies all tuples for the object 3 are
rejected. For X*={2,3}, only pe-class {2,3} is applicable,
and X ={}, PLIST = {[1,(5)LI2(7)LI3,(N)]}, NLIST = {[3,
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(5)]1} and eq={{1},{2,3}} are derived. Let’s consider
another pe-relation. For the first element 1 EX*={1,2,3},
suppose a pe-class {1,3} is selected. Then, X*={2},
PLIST={[1,(5)),I3,(5)]}, NLIST={} and eq={{1,3}} are
derived. For the 2€ X*={2}, there are two pe-classes {2}
and {2,3}, and {2} is only applicable to X*={2}. Finally,
X*={}, PLIST={[1,(5)L,[2,(DLI3.(5)1}, NLIST={[3(D)]}
and eq={{1,3},{2}} are derived.

For realizing Algorithm 1, at first a prolog program
candidate is implemented, which picks up CL satisfying
conditions (CL-1) and (CL-2). The following program
class0 is the main program for checking the definability
of a set.

classO(ATR,X,Y,EQ,Ppre,Pres,Npre,Nres)
:-X==[],EQ=Y,Pres=Ppre,Nres=Npre.

classO(ATR,[X|X1],Y,EQ,Ppre,Pres,Npre,Nres)
:-candidate(ATR,[X|X1],CAN,Ppre,Pres1,Npre,Nresl),
minus([X|X1],CAN,REST),
classO(ATR,REST,[CAN|Y],EQ,Pres1,Pres,Nres1,Nres).

In this program, variables EQ, Pres and Nres manage the
subset of pe-relations, PLIST and NLIST, respectively.

The following three solutions show the definability
of a set {7,8,9} for condition attributes CON={4,B,C} in
Example 2. The positive selection shows the tuple of
every object. For example, the first solution shows that if
we select 1 from a set g(8,0)={1,2,4} and we do not
select 1 from a set g(4,4)={0,1,2}, the set {7,8,9} is
definable in NIS). The positive and negative selections
show the conditions for being definable in NISs.

?-class(con,[7,8,91).
[1] RELATION: [[7],[8],[9]]
POSITIVE SELECTION
CONDITION OF 7: [1,0,2]
CONDITION OF 8: [1,3,1] *
CONDITION OF 9: [0,1,5]
NEGATIVE SELECTION
CONDITION OF 4: [1,3,1] *
[2] RELATION: [[7],(8],[91]
POSITIVE SELECTION
CONDITION OF 7: [1,0,2]
CONDITION OF 8: [1,3,2] *
CONDITION OF 9: [0,1,5]
NEGATIVE SELECTION
[3] RELATION: [[7],[8],[9]]
POSITIVE SELECTION
CONDITION OF 7: [1,0,2]
CONDITION OF 8: [1,3,4] *
CONDITION OF 9: [0,1,5]
NEGATIVE SELECTION
EXEC_TIME = 0.016(sec)

7. Algorithm 1 and Pe-relations
In Algorithm 1, the side effect of this algorithm is
very useful. If a set X is definable, Algorithm | assigns a
set of pe-classes {CL,,"*-, CL,} to the variable eq. Here,
U,CL=X and {CL,," ", CL,} is a subset of a pe-relation.
If X=0B, every pe-relation satisfies these conditions.
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Namely, if X=0B is solved by Algorithm 1, every pe-
relation can be obtained as a side effect. By using this
property, we are obtaining all pe-relations over OB.

8. Proposal of a Dependency in Databases

with Incomplete Information
In this section, our previous research is applied to
the rule extraction from databases with incomplete
information. At first, a new dependency between CON
and DEC is proposed [10].

A propesal of a dependency in every NIS

Let’s consider a NIS, all derived DIS,,---,DIS,, from NIS,
the condition attributes CON, the decision attributes
DEC, two threshold values val, and val, (0=val,,val,=
1). If the following conditions D1 and D2 hold, we see
there exists a dependency between CON and DEC.

(D1) [(number of derived consistent DISs) / m] = val,.
(D2) The minimal degree of dependency = val,.

In this proposal, the condition (D1) requires the
almost derived DISs are consistent. The condition (D2)
requires that the degree of dependency is more than a
threshold value. Suppose CON={4,B}, DEC={C}, val,
=0.8 and val,=0.8 in Example 2. In this case, there are
216(=2° X 3%) DISs. The condition (D1) requires 173
DISs must be consistent in 216 DISs, and the condition
(D2) requires the minimal degree of dependency in 216
DISs must be more than 0.8.

This proposal is an extension of a dependency in
DISs to NISs. According to these criteria, we handle the
dependency in every NIS. Namely for the condition
attributes CON and decision attributes DEC with high
degree of dependency, we see the tuples restricted to
CON and DEC are rules. We call this rule extraction the
rule extraction based on the dependency in every NIS.

However, to calculate these criterion values requires
the degree of dependency in every derived DIS. Of
course, it is able to get every degree of dependency by
examining 648 DISs sequentially, but this way is in-
effective. We really implemented programs by another
way, 1.€., by using the pe-relations and Proposition 1.

In NIS), let’s consider a case that CON={4,B,C}
and DEC={D}. There are two kinds of pe-relations for
CON and three kinds of pe-relations for DEC. For pe-
relations {{1},{2},{3},{4.8}.{5},{6}.{7}.{9},{10}} in
CON and {{1},{2,3},{4,10},{5},{6,8,9},{7}} in DEC,
POScom{DEC)={1} U {2} U {3} U {5} U {6} U {71 U {9}
U {10}={1,2,3,5,6,7,9,10}. Except objects 4 and 8, other
objects are consistent with each other. The degree of
dependency is 0.8=(8/10). In this way, all degrees of
dependency are calculated by repeating 6(=2 X 3) com-
binations of CON and DEC.

9. Total Procedure to Extract Rules
In this section, the total procedure to extract rules is
presented. The sequence consists of the following steps.

(Step 1) Make a data file and an attribute file.

(Step 2) Execute a program and produce the internal ex-
pressions.

(Step 3) Execute a program to obtain all pe-relations for
CON and DEC, respectively.

(Step 4) Execute a program for checking the dependency
between CON and DEC. If there exists a depen-
dency, go to the Step 5 else go to the Step 1.

(Step 5) Execute a program to extract rules.

By using NIS,, the execution of every step is shown.
These programs are implemented on a workstation with
167MHz UltraSparc CPU. Prolog and C language are
employed for the implementation. Prolog was necessary
for a search with backtracking, especially for getting
pe-relations. In the following execution, the prompt of
prolog is ‘?-’ , and the prompt of C is *%’.

The syntax of the data file and attribute file is very
simple. This is the data file data.pl in Example 2.

object(10,4),
data(lr [01[21311513])1 dataczl[or[or 11311415])1 o
data(9,[0,1,5,4]), data(10,[2,1,0,1]).

This is the attribute file attrib.pl in Example 2. The 1, 2,
3 and 4 in the attribute file correspond to attributes 4, B,
C and D, respectively.

condition([1,2,3]).
decision([4]).

The following is the real execution in Step 2.

?- step2.

File Name :'data.pl'.
Attribute File Name:‘attrib.pl".
Output File Name:'data.rs’,
EXEC_TIME = 0.135 (sec)

After this translation, new file data.rs is created, which
stores the internal expressions for data.pl and attrib.pl.

?- relall(con).

(1] [[1],[2],03],[4,8],[5],06],(7],[9],[10]] 24
(2] [[1},[2],03],[4},5],[6],(7],[8],[9],[10]] 192
POSSIBLE CASES 216

EXEC_TIME = 0.535 (sec)

yes

?- relall(dec).

[1] [[1],[2,3],[4,10],[5],(6,8,9],[7]] 1

(2] [[1],[2],[4,10],(5,3],[6,8,9],[7]] 1

(31 [I1),02],(4,10],(5],(6,8,9,3],[7]] 1
POSSIBLE CASES 3

EXEC_TIME = 0.014 (sec)

The first solution of a query relall(con) shows there are
216 derived DISs and two kinds of pe-relations for
condition attributes {4, B, C}. The 24 derived DISs have
the same pe-relation {{1},{2},{3},{4,8},{5},{6},{7}.{9},
{10}} and the 192 derived DISs have the same pe-
relation {{1},{2},{3},{4},{5},{6},{7}.{8},{9},{10}}. In

this execution, two files are created, i.c., eqall.con with
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pe-relations for CON and eqall.dec with pe-relations for
DEC. In Step 4, a program for calculating the depen-
dency is executed.

% step4
CRITERION 1
Number of Derived DISs: 648
Number of Derived Consistent DISs: 576
Degree of Consistent DISs: 0.889
CRITERION 2
Minimal Degree of Dependency: 0.800
Maximal Degree of Dependency: 1.000
EXEC_TIME = 0.200 (sec)

It is known that there are 576 derived consistent DISs
and the minimal degree of dependency is 0.8. For
threshold values val;=0.8 and val,=0.8, there exists a
dependency between {4,B,C} and {D} in NIS,. Namely,
it is able to discuss the rule extraction by this dependency.
For such CON and DEC, the program step$5 is applied.

?- stepS.

Rules from [A,B,C] to [D]
[2,3,5] =>[0] (1, 3)from3
[1,0,5] =>[0] (2,1)from5
[1,1,5] =>[0] (2,1)from5 local-consistent
[0,3,11=>[1] (3, 1) from4 local-consistent
[1,3,1]1=>[1] (3,1)from4 local
[2,3,11=>[1] (3, 1) from4 local-consistent
[2,1,0] =>[1] (1, 1) from 10 global-consistent

local-consistent
local-consistent

[1,3,1]=>[4] (3, 1)from8 local
[0,3,4] => [5] (3, 1) from 3
[2,3,5]=>[5] (1, 3)from3
EXEC_TIME = 0.032 (sec)

local-consistent
local-consistent

In the execution of the program step5, local rules [1,3,1]
—[1] from the object 4 and [1,3,1]—[4] from the object
8 are inconsistent. They appear in 72 derived DIS at the
same time, namely there are 72 inconsistent derived DISs.
However, any other rule is either a global-consistent rule
or a local-consistent rule in all derived DISs. There is
less inconsistency of rules in this case. Like this, the new
dependency is an important measure for discussing the
rule extraction.

Now, let’s consider other case that CON={B} and
DEC={D} in NIS;, which is CASE 1 in Section 5. The
following is the result of program step4.

% step4
CRITERION 1
Number of Derived DISs: 36
Number of Derived Consistent DISs: 0
Degree of Consistent DISs: 0.000
CRITERION 2
Minimal Degree of Dependency: 0.000
Maximal Degree of Dependency: 0.200
EXEC_TIME = 0.190 (sec)

In this case, all derived DISs are inconsistent. The maxi-
mal degree of dependency is 0.2. This result shows there
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is less dependency between {B} and {D} in NIS,. The
extracted rules for CON={B} and DEC={D} are almost
inconsistent rules.

?- step5.

Rules from [B] to [D]
[31=>1[0] (1, 3)from3
[0] =>[0] (2,1)from>5
[1]=>[0] (2,1)from5
[31=>[1] (1, 1) from4

local-inconsistent
local-inconsistent
local-inconsistent
global-inconsistent

[31=>[5] (1,3)from 3
EXEC_TIME = 0.016(sec)

local-inconsistent

There is a local-consistent rule(1),: [2]—[3] from the
object 1. Other rule is either local-inconsistent or global-
inconsistent.

We have shown the real sequence of execution. For
CON={4,B,C} and DEC={D}, good criterion values
existed, and the almost rules are better than the local-
consistent. However for CON={B} and DEC={D}, two
criterion values are bad, and the almost rules are worse
than local-inconsistent.

10. Remarks on the Execution Time

Now in this section, we refer to the execution time
from Step 2 to Step 4. Four NISs in Table 4 are auto-
matically produced based on the random number
program. Let’s consider these four NISs, CON={4,B,C}
and DEC={D}.

Table 5 shows the execution time, and the 6-th
column shows the time by the simple method, namely
(number of derived DISs) X (execution time to obtain an
equivalence relation in a derived DIS by the simple
method). Here, the simple method compares each two
tuples, and extracts an equivalence relation in a DIS.

Table 4. Conditions in Four NISs

|0OB| | 147] | Derived DISs
NIS; | 10 4 864
NIS; | 100 4 1944
NIS; | 300 4 3888
NIS, | 1000 [ 4 7776

Table 5. Execution Time (sec) in Every Step

Step 2 Step 3 Step 4 Total Simple

method
NIS; 0.127 0.259 | 0.000 0.386 -
NIS) 1.430 2.397 [ 0.100 3.927 -
NIS; | 15.329 | 23.780 | 0.200 | 39.309 | 388.800
NIS, | 56.876 | 137.147 | 0.700 | 194.723 | 8553.600

In Table 5, Step 2 and Step 3 take the almost total
execution time. On the other hand, Step 4 takes less time.
In Step 3; the program step3 depending upon Algorithm
1 is executed, and the search with backtracking is
necessary in this program. Therefore, prolog language is
employed. Prolog is useful for problems solved by search
procedures, but it usually takes much execution time. In
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Step 4, the program step4 1s implemented by C language,
because the search with backtracking is not necessary in
Step 4. According to such reasons, it is known that to
obtain all pe-relations in a NIS is the most time-
consuming step in the total procedure.

The simple method may be useful for small size
NISs, but the simple method is not suitable for NIS with
large number of derived DISs like NIS,. In NIS, and NIS,
in Table 5, the execution time was 0.000(sec) for a
derived DIS, respectively. Therefore, the symbol — is
placed in Table 5.

11. Concluding Remarks

An overview of a tool for extracting rules from
databases with incomplete information is presented. In
such databases with non-numerical data, it is not able to
use the fuzzy analysis, the statistical analysis nor the
multivariate analysis. We relied on the data dependency,
and discussed a way to extract rules. This is also a way
based on the rough sets theory. Even if the information is
not strict, it is able to get some useful rules, like global-
consistent rules and local-consistent rules.

We will not apply these programs to NISs with very
large size of objects, but apply them to NISs with small
size of objects and large number of derived DISs. These
programs will fill the role of a hypotheses generator from
NISs, too.

We have examined the correctness of the programs
by several NISs, which we got by using random number
programs. However, we need to deal with actual data
toward the real application, and need to discuss the
combination of our way and typical fuzzy way, too.
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