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ABSTRACT 
 
  This paper proposes a 3-D recovery method of an 
environment containing buildings. The difficulties of 
buildings recovery include little texture regions and a large 
scale nature, resulting in the accumulation of recovery errors. 
The proposed method introduces the Manhattan-world 
constraint in the algorithm of structure from motion (SfM) 
which is employed for the shape recovery from a set of 
sparse feature points. Experimental results show that the 
proposed method achieves higher accuracy in the recovery 
compared to the existent methods based only on the SfM 
algorithm. 
 
 

1.  INTRODUCTION 
 

In recent years, 3D TVs, augmented reality, video games 
and various other technological fields that employ 3D-shape 
recovery have become much more popular than ever. 
Among them, buildings and other static objects recovery has 
been studied enthusiastically as one of the important 
research subjects in the computer vision community. One of 
the main difficulties in the recovery of such objects is that 
the accuracy of the reconstruction often drops under 
textureless regions or large scale objects.  

There are three main methods of buildings environment 
recovery. Sparse recovery [2] normally employs the 
Structure from Motion (SfM) techniques. But it is weak to 
positional noise, since the recovery depends on sparsely 
distributed feature points. Model-based recovery [3] tries to 
fit and modify box, e.g., models to buildings. Dense 
recovery [4] makes a depth image which gives depth 
information of all the pixels in an image employing the 
result of the sparse recovery. The Manhattan-world 
constraint [1], defined in the next section, is normally 
employed in the model-based recovery and the dense 
recovery to achieve precise shape recovery and not 
employed in the sparse recovery. However, since the latter 
two recovery techniques often use the result of the sparse 

recovery of the object concerned, it is important to realize 
precise recovery even by the sparse recovery. The idea of the 
present paper is therefore the employment of the Manhattan- 
world constraint into the sparse recovery. 

In the present paper, we propose a method of recovering a 
static environment containing buildings with high accuracy 
by the employment of the Manhattan-world constraint into a 
SfM algorithm.  

 
2.  MANHATTAN-WORLD CONSTRAINT 

 
The Manhattan-world constraint is defined as follows; 

A1: All the planes in the Manhattan-world are perpendicular 
to one of the three coordinate axes by which the 
Manhattan-world is described. 
A2: Every point in the Manhattan-world lies on one of the 
above planes. 
 

3.  PROPOSED METHOD 
 

The outline of the proposed method is shown in Fig. 1. 
The procedure is composed of two stages. In the first stage, 
an initial model of the environment containing buildings is 
created by a SfM algorithm constrained by the Manhattan- 
world. In the second stage, the initial model is extended by 
concatenation so that it may match newly fed image data of 
the environment.  

 
3.1 Recovery of the locations of 3-D points 
 

Given a pair of successive image frames It and It+1, feature 
points are extracted on image It using the GLOH (Gradient 
Location and Orientation Histogram) [5] which is invariant 
to scaling, rotation and illumination change. The feature 
points are then tracked on image It+1 by the L-K tracker [6] 
to find correspondence. 

Employing pairs of corresponding feature points between 
It and It+1, a camera rotation matrix R and a parallel 

translation vector T)( zyx TTT≡T  are computed using the 
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Fig. 1  Outline of the proposed method: (a) Acquisition 
of an initial model, (b) extention of the model. 
 
 
epipolar geometry. Namely, the fundamental matrix F is 
computed using the set of corresponding feature points and 
then the essential matrix E is obtained from the relation 
E=ATFA, where A is a camera inner parameter matrix 
computed in advance. By the decomposition of the matrix E, 
we have R and T [7]. Then, if we denote the projected point 

of a point Xi in the 3-D space on image It by 
it ,m  and on 

image It+1 by it ,1+m , their relations are formulated as 
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By solving Eq.(1), the point Xi recovers its 3-D location. 

Here λ is a real constant. 
Refinement of the rotation matrix R and the parallel 

translation vector T is performed employing the recovered 
3-D points {Xi} and their projection {mt+1,i} on image It+1. 
The DLT method is employed in the first place and then 
nonlinear optimization aiming at minimization of 
re-projection errors is performed by Levenberg-Marquard 
method for further refinement. 
 
3.2 Deriving the Manhattan-world coordinate system 
 
  To obtain a 3-D structure, the Manhattan-world, from an 
image, line segments are extracted in the first place. A useful 
edge detector [8] is employed to get an edge image and line 
segments are obtained by connecting those edge segments 
whose gradients are mutually close on a line. Figure 2a 
shows an example of the line segments detected from an 
edge image. 
  Since the Manhattan-world contains horizontal planes and 
the planes perpendicular to them, vanishing points of the 
detected line segments define the axes of an orthogonal 
coordinate system. The intersections, denoted by vj 
(j=1,2,…,J), of all the pairs of the detected line segments are 
calculated and they are merged into several groups by 
evaluating the likelihood defined by 
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This is the likelihood that a line segment iε  passes 

through the vanishing point vj. It is defined by the distance 
between the end point ei

1 which is far from vj on the line 

segment iε  and the line connecting vj and the middle point 

ie  of iε . Vanishing point vk is included in a set of 

vanishing points {vj}, if they have common line segments 
whose values of D are smaller than a specified threshold. By 
repeating this merging process, the vanishing points are 
finally classified into a small number of groups. The line 
segments shown in Fig. 2a are collected into several groups 
as depicted in Fig. 2b, where identical color line segments 
make a group. 
  Now we have to choose three orthogonal axes defining 
the Manhattan-world. A vanishing point vj on an image is 
inversely projected to a 3-D point A-1vj in the camera 

coordinate system. For i, j (i, j =X,Y,Z; ji ≠ ), the condition 

of the orthogonality is written as  
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Fig. 2 Deriving the Manhattan-world: (a) Extracting line 
segments, (b) the line segments classified w.r.t. several 
vanishing points, (c) three classes of the line segments 
passing through the chosen three vanishing points which 
provide the coordinates of the Manhattan-world, (d) the 
regions corresponding to the three vanishing points, and 
(e) recovered planes in the Manhattan-world. 
 
 

(A-1vi, A-1vj)=0.                (3) 
Since this equation does not hold exactly on account of the 
positional noise included in vj, three vanishing points which 
make the left-hand side of Eq.(3) the minimum are chosen 
as vX, vY and vZ. Then vectors  

ZZYYXX AAA vVvVvV 111 ,, −−− ≡≡≡      (4) 

are the coordinate axes of the Manhattan-world defined 
from the image concerned. According to the chosen three 
vanishing points, the line segments shown in Fig. 2b are 
classified into three as illustrated in Fig. 2c.  
  By the employment of the axes VX, VY and VZ, the 
coordinate system of the Manhattan-world is defined by the 
matrix MM as follows; 
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The recovered 3-D points and the rotation matrix R and the 
parallel translation vector T of the observing camera are all 
transformed into those in the Manhattan-world coordinate 
system by 

WMM MPM =                  (6) 

where PM is a transformation matrix from the world 
coordinates MW to the Manhattan-world coordinates MM. 
 
3.3 Recovery of planes 
 
  Regions representing the planes perpendicular to 
respective coordinate axes of the Manhattan-world are 
extracted on image It. The idea is shown in Fig. 2d where the 
region which does not include the line segments toward the 
vanishing point vX, indicated by red line segments in Fig. 2c 
is extracted (indicated by red). In the same way, the region 
which does not include the line segments toward the 
vanishing point vY, indicated by green line segments in Fig. 
2c is extracted (indicated by green) and the region which 
does not include the line segments toward the vanishing 
point vZ, indicated by blue line segments in Fig. 2c is 
extracted (indicated by blue). This image is called an 
orientation map. 
  The feature points chosen initially on image It are 
categorized on the orientation map to one of those regions. 
With each region, the 3-D points corresponding to the 
feature points categorized in the region are examined their 
locations toward the axis perpendicular to the plane which 
the region represents. If the number of the 3-D points 
exceeds a given threshold at a certain position on the axis, a 
plane is computed from the points. Examples of the 
recovered planes are shown in Fig. 2e. 
 
3.4 Extension of the model 
 
  The Manhattan-world model created by the above 
procedure is an initial model. This model is extended each 
time the camera provides a new key frame. 

Once a new key frame is fed, the location and the 
orientation of the camera are computed by solving the 
perspective n-point problem. Then newly observed feature 
points recover their 3-D locations from which planes are 
computed using the branch-and-bound algorithm [8]. Finally 
the planes, and camera location and orientation are adjusted 
again based on the minimization of the re-projected errors 
by the employment of a non-linear optimization method. 
 



4.  EXPERIMENTAL RESULTS 
 

Employing the proposed method, experiments were 
conducted in a real-world environment. Part of a building 
was taken a video by a handheld camera. The key image 
frames employed for the recovery is 13 out of 317 frames: 
Recovered feature points are 560: Recovered planes are 5: 
The computation time is 37.8 second by a PC with a 3.20 
GHz CPU. Figure 3 shows part of the results: (a) The input 
images from four viewpoints, (b) results of the projection of 
the recovered points and planes into the 3-D world, and (c) 
the obtained depth maps which show the distance of every 
pixel in the image from the observing camera. As shown in 
Table 1, comparison of the proposed method (SfM 
employing the Manhattan-world constraint) with the 
conventional method (only SfM) was done with respect to 
the rate of outliers existent in the recovered points. It was 
shown that the proposed method outperformed the existent 
method in the two outdoor cases.  
 

5.  DISCUSSION AND CONCLUSIONS 
 

A method was proposed for recovering 3-D shape of a 
buildings environment by a SfM technique with the 
Manhattan-world constraint which was not done before. 
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(a)            (b)             (c) 
Fig. 3 Experimental Results: (a) Input images，(b) result of the 
projection of the recovered points and planes，(c) depth maps 
estimated from the plane: (i) Viewpoint 1, (ii) viewpoint 2, (iii) 
viewpoint 3, (iv) viewpoint 4. 

Table 1 Performance of the proposed method. 

Experiment Outdoors_1 Outdoors_2 

- Method SfM SfM+MW SfM SfM+MW 

Rate of 
outliers [%] 2.60 0.89 0.89 0.39 

SfM: Structure from motion, MW : Manhattan-world. 
 
 

Table 1 shows that the proposed method reduces the rate 
of outliers better than the conventional method. This may be 
because the proposed method discards the recovered 
erroneous points by the adjustment of the 3-D points based 
on the estimation of the planes. Therefore less number of 
outliers can improve the solution of the PnP problem by 
realizing more reliable estimation of the camera position and 
rotation, resulting in more rigorous 3-D recovery of a 
buildings environment. 

The proposed method is for sparse recovery. The recovery 
with higher precision on this stage may be advantageous for 
dense recovery employing the result of the sparse recovery. 
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