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Abstract

For many reasons, photos and videos stored on a digital or an analog media may be

destroyed as several regions losing their pixels. Such destruction damages the integrity of

the image, thus the digital image inpainting technology has been proposed to solve this

problem. This paper proposes improved approaches on the image inpainting algorithm

in three fields which contains diffusion-based field, exemplar-based field and dictionary

learning based field. By using the remaining pixels information and the redundancy char-

acteristic of the nature photos or artificial pictures, the lost pixels can be complemented

by proposed method, and the repaired image gives a good visual effect.

In diffusion-based field, the traditional fast marching method(FMM) has a less calcula-

tion time but it is short for contributing an optimal edge result. In this method, FMM

uses dir index dst index and lev index to calculate the gray value of the destroyed pixels.

An improvement is adapted to the traditional FMM in this paper. The improvement

contains two items. One is to change the dir index to improve the inpainting result. The

improvement calculates the gradient information in the known region, and uses a pixel

selecting method to select more significant pixels to join into the FMM calculation. The

other one is to change the inpainting sequence to improve the edge effect. Firstly the

proposed improvement detects the edges in the known region. Then use the gradient

matrix of the detected edges to predict the edges in the inpainting region and cut the

destroyed region into many sub regions. Finally inpaint the sub regions one after another.

Through the experiment, the result is shown more reasonable and more similar to the

natural scenes. Compared with the traditional FMM, the proposed approach not only

remains the advantage of fast processing speed, but also contributes a better estimation

result of edges.

Diffusion-based image inpainting method has a quite fast calculation speed in processing

and gives a not bad global effect. These advantages make diffusion-based method quite

suitable to inpaint the destroyed region which has a small width. But if the neighbor area

of the destroyed region has complex textures, or the width of destroyed region becomes

large, the inpainting visual effect will reduce. To inpaint this destroyed region, exemplar-

based inpainting method is proposed. In exemplar-based field this paper proposed an

improvement by changing the inpainting priority, the size of the patch and the patch

matching method. First we optimize the priority function by calculating the priority not

only focuses on one pixel but also on a patch. By computing the sum of the pixelsʟ
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priority in the patch, the patch containing more high priority pixels is to inpaint in the

first place. Secondly, adaptive patch method is employed to change the patch size in

the inpainting process. This method makes patches adaptively changed in the inpainting

process to improve the patch matching accuracy. Whatʟs more, this paper optimizes

the patch matching method by adding the rotation invariance. By similarity calculation

in different rotation situation the proposed method finally obtains a rotation invariant

patch. This improvement makes the matching process contain more structure information

and not be confined to the existing information. From the experimental result, it is shown

obviously that the improvements make the inpainting match the more suitable patch. The

proposed method gives a better global visual effect, especially for the images with more

structure contents and the images in which the destroyed region has a large width.

In the traditional exemplar-based inpainting method, it uses the most similar patch

to inpaint the destroyed region. But sometimes the destroyed pixels are distributed over

images. Under this situation it is hard to match a suitable patch and the exemplar-

based method will lead a bad inpainting effect. The dictionary learning based image

inpainting method can inpaint the images while training the dictionary to learn from the

source region. And it can provide information that does not exist in the source region.

These two points are its most prominent advantages. In dictionary learning based field,

the proposed method improves the traditional K means-Singular Value Decomposition(K-

SVD) method by optimizing the sparse approximation process. To overcome the deficiency

of the traditional Orthogonal Matching Pursuit(OMP) method, the proposed method uses

an adaptive sparsity instead of the fixed one used in the traditional OMP method. First

the method calculates the complexity of the patch in the sparse approximation; According

to the value of the complexity, the method adaptively changed the sparsity to improve the

sparse approximation result. The experimental results show the proposed method keeps

more texture information in the image and obtains a higher PSNR.

In this study, the image inpainting has been strengthened in these three fields: For

diffusion-based method, the inpainting effects when the image contains a large destroyed

region. For exemplar-based method, the matching accuracy has been improved. For

dictionary learning based method, the sparse approximation process has been optimized

through the adaptive sparsity.
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Chapter 1

Introduction

1.1 Background

For many reasons, photos and videos stored on a digital or an analog media may be

destroyed as several regions losing their pixels. Such destruction damages the integrity of

the image, thus the digital image inpainting technology has been proposed to solve this

problem. By using the remaining pixels information and the redundancy characteristic of

the nature photos or artificial pictures, the lost pixels can be complemented by inpainting

algorithm, and the repaired image gives a good visual effect. At the beginning, image

inpainting technology is used for repair the images destroyed in some reasons. Like Fig. 1.1

shows:

(a) Destoryed image. (b) Restored image.

Fig. 1.1. Image inpainting for destroyed wall painting.

Fig. 1.1 shows the application on mural restoration. This type of inpainting(Fig. 1.1(a))

often contains a destroyed region that the width of the destroyed region is small. By

diffusion-based method it can obtain a quite good result (Fig. 1.1(b)).
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Now image inpainting technology is extended widely to apply on other applications.

Object removal is also a useful application (Fig. 1.2).

(a) Original picture. (b) Modified picture.

Fig. 1.2. Object removal.

In order to remove all or part of the text content, image inpainting technology sometimes

gives a good visual effect. (Fig. 1.3)

(a) Original picture. (b) Modified picture.

Fig. 1.3. Words removal.

Fig. 1.4 shows the application that image inpainting technology applies on super-

resolution analysis.

In a word, in the past years image inpainting technology has quite develop and according

to the applications image inpainting technology rise into many branches. Each branch has

its own advantages and areas of expertise.
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(a) Original picture. (b) Processed picture.

Fig. 1.4. Super-resolution analysis.

1.2 Introduction of inpainting method

Image inpainting technology aims to fill the missing region in an image. According to

the inpainting theory, it can be divided into two categories, diffusion-based and exemplar-

based inpainting methods. Diffusion-based methods inpaint images on pixel-level, while

exemplar-based methods inpaint images on patch-level. Image inpainting technology is

used for repairing the images destroyed, but now it is extended widely to apply on object

removal, image restoration, image compressing and other applications.

The most fundamental inpainting approaches are the diffusion-based inpainting algo-

rithm. Bertalmio [1] firstly introduces the theory of image inpainting and gives this idea

in 2000. Bertalmio proposes a model based on isophote to continuously propagate the

undamaged information into the destroyed region. They further introduced the Navier-

Strokes equation in fluid dynamics into the task of in-painting [2]. Chan and Shen [3]

proposed a variational model based on total variation (TV) to repair the destroyed infor-

mation. And they overcome the deficiency in the TV model that it can not realize the

connectivity information by proposing a curvature-driven diffusion equation [4]. A joint

interpolation of isophote directions and gray-levels was also designed to incorporate the

principle of continuity in a variational framework [5]. Recently, image statistics learned

from the natural images are applied to the task of image in-painting [6][7][8]. Image in-

painting based on fast marching method (FMM) becomes a research hotspot after Teleaʟ

method was proposed [9]. FMM expands the traditional isophote model into three items

(the direction, the distance, and the isophote influences) to compute the pixelʟs gray

value. The advantage of FMM in calculation speed and in inpainting large destroyed

region influences other researchers. Yang [10] introduces the anisotropic diffusion theory

into the FMM and uses it to improve the visual effect for inpainting the image which has
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a large region .These methods mainly focuses on inpainting the missing areas on pixel-

level and they performs a good global effect for the image with small width destroyed

region. Another advantage of diffusion-based approach is that it has a fast calculation

speed. Elad [11] proposes a method based on the image decomposition method called

morphological component analysis (MCA). It is designed for the separation of linearly

combined texture and cartoon layers in a given image. Ullo [12] employs the Complex

Ginzburg-Landau equation to improve the contrast and applies it on restoring the SAR

interferograms. Hu [13] proposes a method based on TV model to restore the image

generated from the lateral multi-lens video logging device. Andris [14] applies inpainting

method on image compressing field. The method develops a proof-of-concept codec which

combines inpainting technology based on partial differential equations with the variational

optic flow model. The diffusion-based in-painting algorithms have achieved convincingly

excellent results for filling the non-textured or relatively smaller missing region. However,

they tend to introduce the smooth effect in the textured region and larger missing region.

The second category approaches are the exemplar-based inpainting algorithm. These

approaches propagate the image information from the known region into the missing region

at the patch level. This idea stems from the texture synthesis technique proposed in [15],

in which the texture is synthesized by sampling the most suitable patch from the known

region. However, natural images are composed of structures and textures, the structures

always constitute one imageʟs primal sketches (e.g., the edges, corners, etc.) and the

textures are always represented the image regions with homogenous patterns or feature

statistics (including the flat patterns). Due to Pure texture synthesis technique cannot

clearly handle the missing region with composite textures and structures, Bertalmio et

al. [16] proposed to firstly divided the image into structure and texture layers and then

in-paint them by different method, using diffusion-based method to in-paint the structure

layer and using texture synthesis technique to in-paint texture layer. It overcomes the

smooth effect disadvantage brought from the diffusion-based in-painting algorithm; how-

ever, recovering the larger missing structures also is very hard to achieve. Criminisi et al.

[17] designed an exemplar-based in-painting algorithm by propagating the known patches

(i.e., exemplars) into the missing patches gradually. To handle the missing region with

composite textures and structures, patch priority is defined to encourage the filling-in of

patches on the structure. In [18],[19], multiple scales and orientations are introduced to

find better matching patches. Barnes[20] proposed PatchMatch as a fast approximate

nearest neighbor patch search algorithm. The proposed approach in [21] considered a

simple exemplar-based model via global optimization. Wu [22] introduced the concept

of cross-isophotes to the exemplar-based in-painting algorithm, in which he designed a

cross-isophotes patch priority term based on the analysis of anisotropic diffusion. Wong

[23] improved the exemplar-based in-painting algorithm by proposing a nonlocal means

approach. The image patch is in-painted by not the most suitable patch but a set of
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candidate patches in the known region. Ram [24] focused on the order of the inpainting,

by reordering the patches it can obtain a good recovery of the image. In [25], a novel

scheme was proposed to use both low-solution and high-solution information to get sim-

ilar patches. Also a lot of researchers try to use structure information to matching the

similar patches. Huang [26] proposed a method to use structure consistency to obtain

the most similar patch. Discrete cosine transform [27] was also employed to calculate

the similarities between patches, Ou [27] use it to select more significant patch. A lot

of researchers also try to inpaint the image in multi-scale patches. Paredes [28] selects

patches in multi-scale and calculate the local statistics of them. In this method they cal-

culate the SURF-gradient descriptors in multi-scale patches and use the SURF-gradient

descriptors to match the most similar patch. Reel [29] adds the multi-scale theory into the

patch matching process, in this method they define the self-similarity in different scales,

and segment an image into multiple depth layers, finally they filling the destroyed re-

gion by exploiting the self-similarity via nonlocal template-matching. Voronin [30] uses

the using local binary patterns (LBP) method to match the patch in the image, LBP

method strengthens the influence made by the structure. Martinez-Noriega [31] improves

the method in [17] in calculation time. By optimize the priority and limited the matching

process in a coherent nearest neighbor it save the calculation time and keep the global

visual effect. Compared with diffusion-based in-painting algorithms, the exemplar-based

in-painting methods expands the smallest inpainting unit from one pixel to one patch con-

tains several pixels, they keep the texture in the local region and they are more suitable

for in-painting the large missing region.

In the past years dictionary learning technology has become more and more mature, so

that image inpainting researchers also employed it to optimize the inpainting method and

improve the inpainting effect. It can be regard as an approach of exemplar-based inpaint-

ing algorithm, exemplar-based inpainting algorithm aims at finding the most similar patch

to inpaint the destroyed patch and dictionary learning algorithm tries its best to generate

a new patch to inpaint the destroyed one. Elad [32] proposes a sparse representation-

based inpainting method. In this paper a dictionary learning method is used for creating

a dictionary for sparse representations, via the singular value decomposition (SVD) ap-

proach. This method inpaints the images by iteratively alternating between sparse coding

the image patches based on the current dictionary, and updating the atoms in the dictio-

nary to better fit the coefficients. In this method Elad also employs orthogonal matching

pursuit (OMP) algorithm to calculate the coefficients. This structure also affects a lot of

researchers. Rubinstein [53] introduces a concept of double sparsity and use it improve

the dictionary learning result. Xu [34] combines exemplar-based inpainting methods with

dictionary learning-based inpainting methods after analysis the advantages and disadvan-

tages of them. Xu uses ten most similar patches in the source image as the atoms of the

dictionary. And employing the locally linear embedding (LLE) theory to obtain a linear
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combination of the candidate patches, finally this method generates the new patch. Hesabi

[35] improves the method by add gradient information into the data matrix so that when

in the LLE calculation it obtains patches more similar in structure. Smith [36] optimizes

the dictionary updating method to find both dictionary atoms and representations; this

method employs the coefficient reuse orthogonal matching pursuit (CoefROMP) instead

of OMP to obtain a fast coding speed. Ruzic [37] builds the dictionary by dividing the

image into variable size blocks according to their context. So not only the patch infor-

mation, but also their context information was used to improve the inpainting result.

Papyan [38] improves the expected patch log likelihood (EPLL) algorithm by considering

a multi-scale prior. This method calculates the priority of the patches in different scales

and it can provide a smoother priority in inpainting. With the help of dictionary learning

technology, there also comes out a lot of applications. Fadili [39] introduces a concept of

expectation maximization (EM) method. The method is used in a Bayesian framework

and a sparsity promoting prior penalty to improve the inpainting result. Sun [40] proposes

a gradient-based discriminative learning method and designs a novel markov random field

(MRF) framework to improve the inpaint effect. Wang [41] proposes a novel inpainting

model carried on the dictionary learning by method of directions (MOD), and using it to

repair missing region of murals in Potala Palace. Munawar [42] employs the higher-order

Boltzmann machine and applies it on detecting anomalies on the road. This method tries

to inpaint the road patches by training the commonly occurring road features such as lane

markings and expansion dividers, depending on the context. Lu [43] applies inpainting

technology on depth map reconstruction and proposes a Kinect-based underwater depth

map estimation method. More recently, deep neural network is introduced for texture

synthesis and image stylization [44, 45, 46, 47, 48, 49]. In particular, Phatak [50] trained

an encoder-decoder CNN (Context Encoder) with combined L2 and adversarial loss [51]

to directly predict missing image regions.

This paper research on image inpainting algorithm in the three fields contains diffusion-

based method, exemplar-based inpainting method and dictionary learning based method.

Also this paper proposed improvement to overcome the deficiency in each field and broaden

the application in the field. In chapter 2 the paper describes the detail of the diffusion-

based inpainting method and the proposed improvement. In chapter 3 the paper shows

the overview of the exemplar-based inpainting method and the proposed improvement.

In chapter 4 the paper also proposes an improvement of adaptive sparsity to improve the

dictionary learning effect. In chapter 5 the paper does more experiment to research the

ability of the inpainting methods. Finally, this paper gives the conclusion in chapter 6

and the future work in chapter 7.
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Chapter 2

Diffusion-based image inpainting

method

2.1 The math model of FMM

In the theory of the FMM, the method regards the Ω as the region need to inpaint.

Near the edge of the inpaint region, the method divides the pixels into 3 sets:

Known (the known pixels).This set contains the pixels out of the inpainting region Ω.

For these pixels, the gray value and the four neighbor pixels’ gray value are known. So

the gradient value of the pixel can be computed.

Inside (the unknown pixels). This set contains the pixels inside the inpainting region

Ω, the gray value of them are unknown.

Band (the pixels on the ∂Ω). This set contains the pixels on the edge between known

region and the inpainting region Ω. The gray value of them are known, but the four

neighbour pixels’ gray values are unknown. So the gradient value of them can not be

computed.

The basic idea is to figure out the distance T of every pixel in the inpainting region Ω,

from position of the pixel to the edge ∂Ω. According to the sequence of T from small to

large, to inpaint the image, until the whole destroyed region is inpainted.

For every pixel p need to inpaint, selecting its neighborhood Bε(p) and using every

known pixel q inside to calculate the gray value of p, every q would make an influence for

the inpainting(Fig. 2.1). This process is shown as the equation (2.1):

Iq(p) = I(q) +∇I(q) (p− q) (2.1)

Here, ∇I(q) means the gradient of q.

Because of the different influence made by different pixel q, the method employs a weight

function ω(p, q) to weight the relationship between p and q, and finally weighted average
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Fig. 2.1. Image inpainting theory

the influence. So the equation improved to be :

Iq(p) =
Σq∈Bε(p)

ω(p, q)(I(q) +∇I(q) (p− q))

Σq∈Bε(p)
ω(p, q)

(2.2)

In the equation, the weight function ω(p, q) depends on the isolux line direction of q,

the geometric distance between q and p. Designing the weight function so that it can

inpainting the gray value of p and spreading the texture information of region Bε(p) at

the same time .

In the research of Telea, it sets the weight function ω(p, q) containing three indexes

ω(p, q) = dir(p, q) ∗ dst(p, q) ∗ lev(p, q) (2.3)

These three indexes represent the 3 aspects of influence made by the known pixels to the

in-painting process. They calculate the direction, distance and time influence respectively.

And they mean if the pixel q is closer to the pixel p, the influence will be more obvious.

The three indexes are shown in detail:

dir(p, q) =
p− q

∥p− q∥ ·N(p) (2.4)

dst(p, q) =
d0

∥p− q∥2
(2.5)

lev(p, q) =
T0

1 + ∥T (p)− T (q)∥ (2.6)

The dir index shows the direction influence for the in-paint, it means if the pixel q’s

direction is close to the pixel p’s direction, the more influence it will have. The dst index

shows the distance influence for the in-paint, it means if the pixel q is near the pixel p,

the more influence it will have. The lev index shows the time influence for the in-paint, if

the pixel q is close to the known information, the more influence it will have.

Fig. 2.2 shows the inpainting results of the traditional diffusion-based method.
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(a) Destoryed image.

(b) Inpainting result by PDE method.

(c) Inpainting result by traditional FMM.

Fig. 2.2. The inpainting result of diffusion-based method.
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Table 2.1. The inpainting result of main method

Measure parameters and method Calculating time/s MSE PSNR/dB

Based on PDE methodʢTV modelʣ 3965.6 0.3102 53.2143

Based on FMM 49.0 0.2811 53.6421

Fig. 2.2shows the visual effect of the inpainting result. Fig. 2.2(b)shows that the inpaint-

ing result made by PDE method. The PDE method gives a little clearer result, the texture

information is better preserved. At the same time the PDE result also can give a better

edge effect. The Fig. 2.2(c)shows the result made by current FMM. FMM contributes a

little fuzzier result and doesn’t give a good edge effect, but for the whole image the FMM

preserves the integrity of the image.

From the result shown in Table 2.1, the inpainting quality between these two method

makes little difference. Though the PDE result gives a better visual effect, instead the

result made by PDE speeds much more time than the result made by FMM. Compared

with the origin image, FMM result also has a higher PSNR than the PDE result. These

points mean that the method based on FMM algorithm has the potential to be practical.

Although the FMM has a great advantage in computing time, and it can get a similar

inpainting effect as the PSNR shown, this method is short in the visual effect, especially

for maintaining a good edge effect.

2.2 Improved FMM using gradient matrix

The most important advantage of FMM is this method can spend very little time and

give a good global result. But when inpaint one pixel, this method use all the neighbor

information so that the method may add any error information into the inpaint pixel. And

finally the result shows that if the width of the inpaint area is larger than 20 pixels, the

result will be unclear, especially in the isolux line and edge tangent place.

From the sets of equation, the three indexes have the same importance in the inpainting

process, but actually in the inpainting the pixels that have the same texture direction

with the destroyed pixel will do more contribute to the inpainting. So, if compute under

this method, the pixels near the destroyed pixel but with different texture direction will

regard had much useful information. In fact, this kind pixels always are the noise pixels.

And the inpainting influence made by these pixels will make the edge unclear.

As the disadvantage of the traditional FMM, the FMM algorithm is weak in keeping

the edge of the in-painting image. So this paper proposed a new method to remain the

fast advantage and give a good edge remaining result at the same time. The gradient

information of the remaining pixels is used to make the inpainting process on the texture

direction and contribute a better result.
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2.2.1 Obtaining the gradient matrix

Regard the Ω ⊂ Rn as one-dimensionalɼthe Ω means the image, n ∈ N+. For the

two-dimensional imagesɼn = 2. So the gray value of the two-dimensional image can be

defined as:

u :

⎧
⎨

⎩
Ω ⊂ Rn → R

x(x, y) → u(x)
(2.7)

the derivatives of the image u to the variable x can be defined as:

ux =
∂u

∂x
(2.8)

The gradient is just the derivatives of the image u to the variable x and the variable y,

here use ∇u to represent it

∇u = (
∂u

∂x
,
∂u

∂y
) = (ux, uy) (2.9)

The modulus of the gradient can be defined as

|∇u| =
√

ux
2 + uy

2 (2.10)

In the specified direction v ∈ Rn, the one-dimensional direction derivatives of the u can

be defined as:

uv =
∂u

∂v
= ∇u · v (2.11)

When the image u is a two-dimensional gray image, the one-dimensional direction deriva-

tives of it can be defined as:
⎧
⎨

⎩
v = (v1, v2)T

uv = v1ux + v2uy

(2.12)

The partial derivative of the two-dimensional gray image u can be defined as:

uxy =
∂u2

∂x∂y
(2.13)

In the specified direction v ∈ Rn, the partial derivative of the two-dimensional gray image

u can be defined as:

uvv =
∂u2

∂v2
= ∇(∇ · v) · v (2.14)

In fact, when calculating the remaining gradient information in the destroyed image, in

order to reduce the calculation time, the extraction of the gradient matrix is just focused

on the inpainting area and a neighborhood.
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Fig. 2.3. Computing the gradient of the Band pixel

For Known pixels, the gray value of the four neighbor pixels are known, so just using

them to compute the gradient by:

Ga(x, y) =
√

(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2 (2.15)

Gd(x, y) = tan−1((I(x+ 1, y))− I(x− 1, y))/(I(x, y + 1)− I(x, y − 1))) (2.16)

For Band pixels, they are indispensable(because they are quite near the destroyed re-

gion) in the computing. But one hand of Band pixels may be the inside pixels, the gray

value of the inside pixel is unknown and we cannot get the Band pixels’ gradient. So we

need to change the equation by using the band pixel itself replace the inside pixel. For the

example shown in Fig. 2.3, gray cells represent the known pixels while white cells represent

the destroyed pixels. When calculating the gradient of pixel p ( in the image the position

of p is I(x, y)), due to the neighbor pixel I(x + 1, y) below is destroyed, the pixel I(x, y)

itself is used to replace the pixel I(x+ 1, y) to compute the gradient.

So changing the gradient function to:

Ga(x, y) =
√

(I(x, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2 (2.17)

Gd(x, y) = tan−1((I(x, y))− I(x− 1, y))(I(x, y + 1)− I(x, y − 1))) (2.18)

Finally we get two matrices, one matrix Ga(x, y) represents the gradient amplitude of

every pixel, and the other matrix Gd(x, y) represents the gradient direction of every pixel.

For the two matrices, they are both continuous, but the position relationship between two

pixels is a discrete value. So it’s hard for the matrix Gd(x, y) to do the further processing,

and it’s necessary to discrete the continuous directions into several discrete directions.

The mainly processing is dividing the direction area from 0 to π evenly into L sub

direction areasɼif the computed gradient direction Gd(x, y) satisfied :

Gd(x, y) ∈
(

2(l−1)−1
2L π, 2l+1

2L π
)

Then define it in the lth sub direction area. The value of l ranges from 1 to L. Different

L value means the different discrete direction model. Here we just give 3 discrete direction

models, which shows in Fig. 2.4.
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(a) 4 directions. (b) 8 directions. (c) 16 directions.

Fig. 2.4. Discrete direction models.

Due to the vertical relationship between the gradient direction and the texture direction,

the texture direction of every pixel can be obtained. By the texture direction we can select

the pixels that have a strong correlation to calculate in the FMM algorithm.

2.2.2 Select the texture direction by the gradient matrix

Traditional FMM shows the influence made by gradient through calculating the value

of dir index. Now in the improved method, the simple calculation is changed into a

pixel selecting processing. In section 2.2.1 the proposed method completed to obtain

the gradient matrix and next step is to select more significant pixels into the final gray

calculation.

The main idea of the proposed improvement can be described into three steps. Firstly

build a neighbor around pixel p and add up the gradient information of all the known pixels

in the neighbor. Then set the gradient direction which has the largest gradient amplitude

as the pixel p’s gradient direction. Finally only select the pixels on this gradient direction

into the gray calculation.

In fact, the size of the neighbor and the number of the discrete direction would make a

strong influence into the result. On the surface the more discrete directions would bring a

positive influence to keep a good edge, but instead more discrete directions would also lead

some pixels just part in the discrete direction. If select all these pixels into the calculation,

they would also bring a lot of noise into the result. But if don’t select them, the method

must use a larger neighbor to make sure there’re enough pixels in the calculation. What’s

more, the more discrete directions also would make the processing become more complex

and speed more time. So finally the proposed method set the number of discrete directions

13



       

(a) dir=1.

 

(b) dir=2.

(c) dir=3. (d) dir=4.

 

(e) dir=5.

Fig. 2.5. Pixels selecting model.

as 4, and the size of the neighbor is set 9 by 9. According to the discrete directions, the

proposed method set the number of pixel selecting model also 4, as the Fig. 2.5(a-d) shows

us. Besides, a stable gradient condition is created like Fig. 2.5(e). The stable gradient

condition means that in pixel p’s neighbor, the amplitude of all the discrete directions are

very small. The change of the pixels around p is not very large. On this condition, we

select the pixels around p into the final calculation.

In the model the red pixel p is pixel need to inpaint, the blue pixels are selected into

the calculation.

At last, using the FMM algorithm to compute gray value of the destroyed pixels, due to

the new method, here the proposed method just remain the dst index and the lev index

to compute, so the ω(p, q) is changed to be

ω(p, q) = dst(p, q) ∗ lev(p, q) (2.19)

In this equation, the dst index and lev index are the same as the traditional method.
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2.2.3 The inpainting result the improved FMM algorithm

Destroyed region inpainting and the specified object removal are the most widely used

applications. Here the improved method is applied on these two applications.

Firstlyɼthe proposed method tests the application of inpainting destroyed region. As

the group of images shown in Fig. 2.6, the author selects an original image (Fig. 2.6(a))

and adds the destroyed region, then generate the destroyed image(Fig. 2.6(b)).by the tra-

ditional FMM method ,the inpainting result is shown as Fig. 2.6(c), the result shows that

the left inpainting region contains many texture information, when inpainting from the

outside to the inside, there’re more and more noise mixed into the inpainting calculation,

the right destroyed region also have this problem so that the result is a little fuzzy. This

problem is well solved by improved FMM and finally the proposed method contributes

the result as Fig. 2.6(d) shown. The left region maintains a good edge and does not mixed

many noise.

2.2.4 The inpainting result the improved FMM algorithm

Table 2.2 shows parameters of the inpainting result

Table 2.2. Parameters of the inpainting result

PSNRʢdbʣ Time speedingʢsʣ

Traditional FMM 37.3864 6.076

Dir index changed method 41.0596 8.148

Next the proposed method tests the application of the specified object removal. Firstly

a scenery image is selected (Fig. 2.7(a)). In the image the small animal in the left is

needed to remove and then set this region as the destroyed region, as Fig. 2.7(b) shown

us. Secondly, use the traditional FMM and the improved FMM to inpaint the image.

Fig. 2.7(c)shows the inpainting result of the traditional FMM, the result shows that when

inpainting into the center region, it brings a lot of noise into the calculation, and then

cause to the fuzzy edge of the path, it also leads the lake has a obvious breaking on it.

But using the improved FMM which has a changed dir index in it, the proposed method

contribute the result like the Fig. 2.7(d) shows. The result shows that due to the pixels

selecting processing, these pixels whose gradient direction is different from the inpainting

pixel would be removed to join into the calculation. So the influence made by the noise

can be reduced. In the result, it is hard to believe that there had been a small animal

in this region. Not only the path is well connected, but also the wave in the lake is well

inpainted. But on the other hand some connection places are a little unnatural.

For the application of the specified object removal, the content of original image has

already been changed. This time the inpainting is not to restore the original image, but
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(a) Original image. (b) Destoryed image.

(c) Result of traditional FMM. (d) Result of employ the gradient matrix.

Fig. 2.6. Result comparison of FMM when using gradient matrix or not.

to preserve the integrity of the image. So there’s no need and no meaning to calculation

the MSE and the PSNR. The most important judgment is mainly by visual effect. Here

just by comparing the time speeding and the visual effect to show the inpainting result

(Table 2.3).

Table 2.3. The measurement of the specified object removal

Time speedingʢsʣ

Traditional FMM 3.378

Dir improved FMM 4.756
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(a) Original image. (b) Destoryed image.

(c) Restored by traditional FMM. (d) Restored by improved FMM.

Fig. 2.7. The object remove inpainting result comparison between the traditional FMM

and the improved one.

2.3 Improved FMM by edge prediction

In section 2.2 the author just tries to change the dir index, from the simple gray value

calculation to a pixel selecting processing. Although the improvement brings more com-

plexity to the method, the calculation time is just a little increased by reducing the pixels

in the calculation.

In fact, the inpainting sequence also makes a great influence to the result. In the

traditional FMM, the sequence is not detailed set, just from the outside to the inside.

So if the FMM firstly inapint the flat region then inpaint the edge, the inpainting would

bring many error information when inpainting the edge. So this section is tried to reset

the inpainting sequence to get better inpainting result.

The mainly idea of edge prediction process can be described into three steps. Firstly

detecting the edge in the known region and obtaining the breaking regions of the image.
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Then using the edge prediction method to extend these breaking edge pixel until to the

boundary of the inpainting region, and cutting the inpainting region into many sub regions.

Finally using the FMM algorithm to inpaint each sub region one after another and then

inpainting the whole image.

2.3.1 Edge detection in known region

To predict a good edge, firstly the method needs to obtain the edge information in the

known region. Now the edge detection algorithm has been developed and many methods

have been widely used. Now the mainly used methods contain differential edge detection

method, sobel method, Laplace method, Canny method and Morphology method. To

make the next processing becoming easy. The proposed method selects the Morphology

method which contributes a continuous, completed, and clear edge.

The mainly theory of Morphology edge detection method is firstly setting a specific

shape structure elements (structure element), and then use it to detect the target image.

Through detecting scaling characteristics of the structural elements in the image, the

proposed method obtains the structure information of the image, finally completing the

analysis and recognition of images.

How to set the structure element is the key to the edge detection processing. Different

structure elements would feed back different Geometry information, and make influence to

the detecting result. For the structure element, the size and the shape would make a large

influence to the detecting result. If the size is too small, it would strong the sensitivity of

the edge detail, but it would also make the denoising ability weak. If the size is too large,

the denoising ability would become strong but the detected edge would become coarse.

The shape also makes an influence to the detecting result.

The calculation of morphology contains erosion and dilation. Regard A is the target

image, B is the structure element, both A and B are regarded as the sets in the , then the

method defines B erosion A as:

A⊖B = {x|(B)x ⊆ A} (2.20)

Here, x means the displacement if the set.

The method defines B dilation A as:

A⊕B = {x|̃(B)x ∩A ̸= φ} (2.21)

Open operation and close operation are also important processing in morphology algo-

rithm, for A and B, the method defines the open operation as

A ◦B ɹ = ɹ (A⊖B)⊕B (2.22)

Define the close operation asɿ

A ·B ɹ = ɹ (A⊕B)⊖B (2.23)
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When detecting the edge, the Morphology method often use different processing to detect

different regions When detecting the inside region, it often by calculating the difference

between B erosion A and the image A, then obtain the edge image D1:

D1 = A− C = A− (A⊖B) (2.24)

When detecting the outside region, it often by calculating the difference between B dilation

A and the image A, then obtain the edge image D2

D2 = (A⊕B)−A (2.25)

For the edge of the gradientɼthe method needs to calculate the difference between B

erosion A and B dilation A, to obtain the edge image D3:

D3 = (A⊕B)− (A⊖B) (2.26)

After obtaining the edge, the proposed method also needs to use a judgment processing.

Due to the weakness of the Morphology method, the result maybe contains wrong edge

information, and the gradient of some edge pixels may be not very large. So the proposed

method select a neighbor of the edge pixel and judge the gradient information in it, if the

gradient is not changed obvious, then the proposed method removes it out of the edge

prediction processing.

2.3.2 Edge prediction

After getting the breaking region of the detected edge, then use the gradient information

of the breaking region to predict the edge in the destroyed region.

Fig. 2.8 introduces the math model of the edge prediction. Every pixel’s gradient con-

tains the amplitude and the direction, the gradient is called the gradient vector. Every

gradient vector can equals to effect on the neighborhood in 8 directions. The proposed

method regards these gradient vectors as the input vector to the next layer pixels and

the output vector from the last layer pixels. So for the spread processing, the proposed

method regards it as the pixel making an influence to the others neighbor pixels on the

same direction. And the diffusion process of the pixels is regarded as the main pixel

make an influence to the neighbor pixels, as the Fig. 2.8(a) shows. For these vectors get

by gradient calculation, the proposed method calls them the real vector. Their direction

value is continuous, so it’s hard for us to see the influence to the neighbor pixels obvious.

But after discretizationɼevery real vector can be divided into several virtual vectors, then

the influence made by the real vector can be regard as the influence made by different

virtual vectors to the corresponding pixelsɼas the Fig. 2.8(b) shows us. By the transform

processing from real vectors to virtual vectors, the influence made by one pixel to the

neighbor pixels is obvious to realize and as shown:
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(a) Input and output vectors. (b) Real vectors and virtual vectors.

Fig. 2.8. The theory of the edge prediction.

Riv =
N∑

i−1

V iv(i) (2.27)

Rov =
N∑

i−1

V ov(i) (2.28)

Where, Riv ɺRov mean the real input vector and real output vector, V iv(i) ɺV ov(i)

mean the virtual input vector and virtual output vector, N means the number of the

virtual vector divided from the real vector. So in the proposed method regards the real

vector as the sum of the virtual vectors. In fact, in the calculation these vectors need to

transform to scalars, and the transform function is renewed to the following equation:

Riv(am) = cos(Riv(dir)) =
N∑

i−1

V iv(am) cos(V iv(i)(dir)) (2.29)

Riv(am) = sin(Riv(dir)) =
N∑

i−1

V iv(am) sin(V iv(i)(dir)) (2.30)

Rov(am) = cos(Rov(dir)) =
N∑

i−1

V ov(am) cos(V ov(i)(dir)) (2.31)

Rov(am) = sin(Rov(dir)) =
N∑

i−1

V ov(am) sin(V ov(i)(dir)) (2.32)

The real vectors and the virtual vectors should satisfy the two group functions. For a

smooth edge, the proposed method regards the curvature of the edge changing uniform.
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So by detecting the vectors on the same direction, the proposed method contributes the

changing rate r of the edge.

r =

∑N
i−1(Rivi+1 −Rivi)

N
(2.33)

Here the N is the number of the vectors on the same directions. With the change rate

r and the gradient amplitude of virtual input vector V ivam then the proposed method

contributes the gradient amplitude of virtual output virtual V ovam:

V ovam = V ivam ∗ (1 + r) (2.34)

On the surface, these processing just on the gradient amplitude, but in fact due to the

gradient amplitude on different virtual directions are changed. So the gradient amplitude

and direction of real vector are both already changed, and the pixels’ gradient in the

inpainting region is then predicted.

The whole processing actually completed to use the pixel’s gradient information to

predict the gradient of the next pixel on the same direction. Loop this processing until to

the detected edge pixel or the known pixel, then the prediction of this breaking region is

end. Then predicting the other regions one after another, at last the proposed method is

completed to predict all the destroyed regions.

2.3.3 The processing and result of the edge prediction

Fig. 2.9 shows the flow chart of the edge prediction.

For example, Fig. 2.10(a) is a circle image with a destroyed region, the edge is detected

and shows in Fig. 2.10(b). After getting the two breaking region. The detail gradient

matrix of the breaking region is regarded as an example to show our edge prediction

processing. The gradient information of the up breaking field is shown in Fig. 2.11, the

values out of the bracket are the gradient amplitudes and the values in the bracket are

the gradient directions.

In the Fig. 2.11, the first row and second row show the real gradient value of the break-

ing region on the top in the Fig. 2.11(b), the values out of the bracket are the gradient

directions (from 0 to 0.5, 0.11 means the direction is 0.11π) and the values in the bracket

are the gradient amplitudes. The third row is also the real gradient value and the fourth

row is the gradient value predicted by the first row and the second row gradient infor-

mation. The result shows that the proposed method is greatly contributing the gradient

information in the inpainting area. Then the proposed method uses this improvement to

predict the whole edge in the inpainting area, just like the Fig. 2.11 shows us.

Fig. 2.12(a) shows the result of edge prediction in the edge image, Fig. 2.12(b) shows

the result of edge prediction in the gray image(the black part in the circle is the destroyed

region). And Fig. 2.13 shows the result of the inpainting. To show the result more obvious,
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Fig. 2.9. The flow chart of the edge prediction.
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(a) Destroyed circle image. (b) Result of edge detection.

Fig. 2.10. The result of the edge detection.

Fig. 2.11. The difference between the real gradient and the predicted gradient

the proposed method uses the result after binaryzation to show the result. From the result,

it can be seen that the proposed method keeps a good edge effect.

The result of the example shows that the proposed method is reasonable. The proposed

method completes to maintain a good edge. But the texture in the images usually more

complex, so next an image with a little complex texture in it is selected to test the proposed

method.

The experiment selects an image with a complex texture in it, like Fig. 2.14(a). After

edge detection and breaking region selecting, it is clear that the image has several breaking

regions and the gradient in these regions is very complex. After using the edge detecting
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(a) Result of edge prediction(in edge im-

age).

(b) Result of edge prediction(in gray im-

age).

Fig. 2.12. The result of edge prediction.

Fig. 2.13. The inpainting result of destroyed circle image

processing introduced in section 2.3.1, and judging the gradient information of the neighbor

around the edge breaking region whether the gradient value satisfies the judgment. For

this image, the breaking region in the left bottom is not satisfied the judgment, so the

proposed method removes it out of the edge prediction processing.

After using the edge prediction introduced in section 2.3.2 for every breaking region, at

last the proposed method contributes the result like the Fig. 2.14(b). Fig. 2.14(c) shows

the edge prediction result in the edge image and Fig. 2.14(d) shows the edge prediction

result in the gray image. Especially in Fig. 2.14(d) the edge prediction processing is well

connected the breaking regions and divided the inpainting region into many sub regions.
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(a) Destroyed image. (b) Result of edge detection.

(c) Result of edge prediction(in edge im-

age).

(d) Result of edge prediction(in gray im-

age).

Fig. 2.14. The result of edge prediction in an image.

Though the breaking pixels is not detected, from the gradient information left in the right

regions, it well connected to the breaking pixels in the left.

Fig. 2.15 shows the final result. After adding the edge prediction processing, the im-

proved method can keep a good edge effect.

In the next section the improved method is tested on more experiments.
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(a) Result of proposed method .

        
(b) Result of PDE method .

        

(c) Result of traditional FMM method .

Fig. 2.15. Inpainting result of different methods.

2.4 Experiment and analysis

2.4.1 The preparation of the experiment

This research firstly researches on the traditional FMM inpainting method and the

find the disadvantage of it. To overcome the disadvantage, the author uses two items to

improve the inpainting method.

Fig. 2.16 shows the main program flow of this improved image inpainting method:

This experiment is mainly come true by matlab2010a, the hardware equipment is by

personal computer, which has a CPU of Intel Core i5− 2450M and the basic frequency is

2.5GHz ʷ 2.
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Fig. 2.16. The main flow chart of image inpainting

2.4.2 Measure parameter

To measure the quality of the inpainting result, this research uses two measure parame-

ters. One is using the computing time to show the speed of the inpainting .The other one

is the PSNR (Peak Signal to Noise Ratio), it can be calculated by (2.35):

PSNR = 10 log(
G2

f

MSE
) (2.35)
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Where, Gfmeans the max gray value of the image, here the Gf is set as 255. The MSE

is the mean square error and the equation is:

MSE =
1

N

N∑

i−1

(xi − Ii)
2 (2.36)

Where, ximeans the gray value of the current pixel in the inpainting image, Ii means the

gray value of the corresponding pixel in the original image, N means the number of the

destroyed pixels.

To compute the processing time, here use the tic and toc function given by the Matlab

to compute the time.

Also, this research uses the subjective judgment by eyes. Sometimes the visual effect

may be more important than the parameters.

2.4.3 Experiment result and the analysis

Image inpainting is widely used but it’s also mainly used in destroyed pixels inpainting.

This experiment would use the time speeding and the PSNR parameter to judge ability

of the improved method.

To test the improved method, first select an original image like Fig. 2.17(a). Then add

a destroyed region on the center of the main texture, like Fig. 2.17(b).

Comparing the traditional method result (Fig. 2.17(c)) and the improved method result

(Fig. 2.17(d)). The result shows that the edge of the main texture is better inpainted,

and the inpainting result doesn’t generate the breaking region. The factual PSNR also

shows that it has improved the inpainting quality. By the comparing of time, the im-

proved method cost more time by adding the edge prediction phase. But it is valuable for

the improving inpainting result, what’s more, the method also has spaces to be further

optimized in programing, so the time speeding can be further reduced.

For the original image Fig. 2.18(a), a destroyed region is added on the center of the main

texture, like Fig. 2.18(b). By the traditional FMM and the improved FMM, results are

shown in figure Fig. 2.18(c) and Fig. 2.18(d).

From the result we can see that two main edges have been improved, the edge on the

left is still fuzzy. By the edge prediction result we find the reason is that the left edge

is not detected by the edge detection method based on Morphology. The pixels on the

both sides of the edge are not changed obvious, so this region is still fuzzy, as the Fig. 2.19

shows us.

At last, the experiment uses a couple of images with the same display but different size

of destroyed region, and comparing the result with the traditional method.

From one group images, compared the result of the two methods, it can be seen that

the improved method has an advantage on preserving the integrity of image, especially on

maintaining the edge. Also the PSNR can show this advantage. Comparing the result of
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(a) Original image.

         

(b) Destroyed image.

        

(c) Traditional method result.

         

(d) Proposed method result.

Fig. 2.17. Image inpainting test 1.

different group images, a problem comes out that for the same image, when the size of the

destroyed region becomes large, it becomes harder to maintain the integrity of the image.

But the improved image is a little better than the traditional method. From this experi-

ment result, it shows that the improved method also has an advantage on large destroyed

region inpainting. Every coin has two sides, due to the matrix calculation and the edge

prediction process the proposed method added, this time speeding is become longer than

the traditional method. But comparing with the improving effect, it is valuable.

Table 2.4 shows the PSNR of these experiments.
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(a) Original image.

          

(b) Destroyed image.

           

(c) Traditional method result.

          

(d) Proposed method result.

Fig. 2.18. Image inpainting test 2.

Table 2.4. The PSNR of the experiment

test1 test2 lena(small region) lena(large region)

Traditional FMM method 25.45 27.27 26.68 23.89

Proposed method 26.03 28.04 26.59 24.27
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(a) Edge detection by method based

Morphology.

      

(b) The result of edge prediction.

Fig. 2.19. The edge prediction result of test 2.

 

(a) Small destroyed re-

gion image.

  

(b) Traditional method

result.

  

(c) Proposed method re-

sult.

 

(d) Large destroyed re-

gion image.

  

(e) Traditional method

result.

  

(f) Proposed method re-

sult.

Fig. 2.20. Inpainting result of the same image with different destroy region.
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Chapter 3

Exemplar-based image inpainting

method

Diffusion-based image inpainting method has a quite fast calculation speed in processing

and gives a not bad global effect. These advantages make diffusion-based method quite

suitable to inpaint the destroyed region which has a small width. But if the neighbor area

of the destroyed region has complex textures, or the width of destroyed region becomes

large, the inpainting visual effect will reduce, like the Fig. 3.1 shows us:

The Fig. 3.1 shows the advantage of exemplar-based image inpainting method compared

with diffusion-based image inpainting method. It is obvious that the destroyed region

contains a complex texture of grass. For the diffusion-based method, it is hard to keep the

texture because it inpaints the image in pixel level. Fig. 3.1(c) shows the result become

very blurred. But for the exemplar-based method, due to it inpaints the image in patch

level, the texture of the grass can be remained in the image Fig. 3.1(d). What’s more, the

result made by exemplar-based method gives a better visual effect.
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(a) Origin image.

    

(b) Mask image.

   

(c) Result of diffusion-based method.

    

(d) Result of exemplar-based method.

Fig. 3.1. Large destroyed region inpainting result.

3.1 The theory of exemplar-based image inpainting method

The theory of the exemplar-based method can be described as an isophote-driven image

sampling process. Fig. 3.2 shows the theory of the exemplar-based inpainting method.

From Fig. 3.2, the exemplar-based inpainting method can be concluded in three steps: for

an image I, Ωis the region that has already been destroyed, Φ is the source region that

used to inpaint Ω. The edge between the two regions is defined as ∂Ω(Fig. 3.2(a)). First,

search the pixel p which has the highest priority in ∂Ω, and obtain the patch Ψp with

p as the center (Fig. 3.2(b)). Second, find the most similar patch Ψq from the source

region by computing the similarities between Ψp and Ψq (Fig. 3.2(c)). Third, use the

corresponding region in Ψq to inpaint Ψp and update the edge ∂Ω (Fig. 3.2(d)). Finally,

loop the inpainting processing until the whole destroyed region Ω is inpainted.

For the traditional exemplar-based method, it determines the inpainting priority from
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(a) Origin image.

                                      

(b) Priorities calculation.

(c) Patch matching. (d) Inpainted patch.

Fig. 3.2. The theory of exemplar-based image inpainting.

two items: for one pixel p in the ∂Ω.

(1) If the corresponding patch Ψp has more pixels in the source region, regard the pixel

p has a higher inpainting priority. Fig. 3.3(a) shows this item determination, in Fig. 3.3(a)

the green pixels has a higher priority while the red pixels has a lower priority.

(2) If the pixel p located near a strong edge of the image, regard the pixel p has a

higher inpainting priority. Fig. 3.3(b) shows this item determination, in Fig. 3.3(b) the

green pixels has a higher priority. The traditional method employed the priority function

P (p) as the product of the two terms:

P (p) = C(p) ∗D(p) (3.1)

The confidence term C(p) represents the confidence of patch Ψp , it can be defined as:

C(p) =
Ns(p)

D(p)
(3.2)
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(a) Confidence term.

    

(b) Data term.

Fig. 3.3. The two items of inpainting priority.

Fig. 3.4. The detail presentation of D(p)

In function (3.2), Ns(p) =
∑

q∈Ψp∩Ω̄ c(p) c(p) means the confidence of one pixel, if q ∈ Ω,

c(p) equals to 0 while if q ∈ Φ , c(q) equals to 1. Ns(p) means the number of the pixels

both in the source region and patch Ψp. N(p)means the number of the pixels in the patch

Ψp. To measure the influence made by the gradient of the pixel p, traditional method use

the data term D(p), it is defined as shown in Fig. 3.4:

D(p) =
∇I⊥p • np

α
(3.3)

In function (3.3), ∇I⊥p means the gradient of the pixel p, the np means the unit vector

orthogonal to the edge in the pixel p, the α means the gray scale of the image.

The data term D(p) is a function of the strength of isophotes hitting the edge at each

iteration.

In the procedure of patch matching, to measure the similarities between the destroyed

patches and the known patches, patch features play an important role. The difficulty is

how to use part of patch and undestroyed patches to predict the whole patch. Gray value
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has firstly been used to describe the difference between the destroyed patch and candidate

patches. Traditional methods have used SSD to calculate the difference. The most similar

patch is obtained by:

Ψq̄ = argmin
Ψq∈Φ

ssd(Ψp̂,Ψp̂) (3.4)

In function (4.4), Ψp̂ = M̂ •Ψp, Ψq̂ = M̂ •Ψq, M̂ is the mask image and in the image the

pixel equals to 1 when in source region while 0 in destroyed region.

After the patch Ψp has been completed inpainted by the patch Ψq, the method needs

to update the confidence C(p) in the area to make sure the next inpainting processing.

The C(p) is updated in the area delimited by as follows:

C(p) = C(q)∀p ∈ Ψp ∩ Ω (3.5)

This simple update rule allows us to measure the relative confidence of patches on the

fill front, without image specific parameters. As filling proceeds, confidence values decay,

indicating that we are less sure of the values of the pixels near the target region.

The flow of the exemplar-based method is clearly described in Fig. 3.5.
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Fig. 3.5. The flow of the traditional exemplar-based method
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3.2 Proposed improvement

The traditional exemplar-based method overcomes the shortage of diffusion-based

method in principle, but in the inpainting process several deficiencies are still existed.

Firstly, due to the limitations of the traditional priority function, it will even makes

some noise pixel has a higher priority. Secondly, the traditional exemplar-based method

ignored the influence made by the patch size. In the inpainting process it uses a fixed

patch size from the beginning to the end. Thirdly, in the patch matching process, the

similarity measurement is confined to only use the gray value information. It will lose the

structure information. In this paper the proposed method tries to improve the traditional

method in these three items.

3.2.1 Inpainting priority

Traditional priority function focused on the single pixel, so noise pixels interfere with

the priority calculation. To overcome the deficiency of the traditional priority function,

the proposed priority function P (p) is defined as:

P (p) =
∑

q∈Ψp∩∂Ω

(C(q) ∗D(q)) (3.6)

The proposed method expands the focus from single pixel to a neighbor region. By cal-

culating the sum of the ∂Ω pixels’ confidence term and data term in the neighbor, the

propose method gives a high priority to the pixel whose neighbor contains more extreme

pixels.

3.2.2 Adaptive patch size

For the patch-level inpainting method, most of them use a fixed patch to inpaint. Even

under the same method, the different patch sizes will lead to quite different visual effects.

As shown in Fig. 3.6 and Fig. 3.7, it is quite obvious that different patch size makes different

result. In Fig. 3.6, it can be find that when inpainting a destroyed triangle to the roof of

it, by the matching method can not find a patch completely suit the source region, the last

inpainting lead an error to the image, but the smaller patch size can reduce the error. In

Fig. 3.7, when inpainting an image with a little complex structure, the patch size difference

make a large influence to the result. Especially the smallest one’s result is quite worse

even it can not be regard as a result. So changing the patch size to meet the needs of

different regions is very necessary. The proposed method initializes the patch size before

the inpainting process by using an adaptive function. Firstly the method used w0 as the

standard patch size (w0 depends on the image size and the destroyed region size, here it is

regarded as the fortieth of the destroyed region.) to compute the complexity of the patch
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(a) Origin image. (b) Result of patch 7*7. (c) Result of patch 13*13.

Fig. 3.6. Inpainting result of different patch size.

(a) Origin image. (b) Result of patch 7*7.

(c) Result of patch 11*11. (d) Result of patch 15*15.

Fig. 3.7. Inpainting result of different patch size.
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itself. The concept of patch complexity S(p) is proposed to represent the complexity. The

S(p) is defined as the follow:

S(p) =
√

(
∑

p∈Ns(p)

ω2
p,q) • C(p) (3.7)

In the function (3.7), ωp,q means the similarity between the patch Ψp and patch Ψq, and

it is defined as:

ωp,q =
1

Z(p)
exp(

d(Ψp̂,Ψp̂)

25
) (3.8)

The Z(p) is a normalized constant used to satisfy:
∑

q∈Ns(p)
ωp,q = 1. Function d(Ψp̂,Ψp̂)

uses Sum of Squared Differences (SSD) to calculate the difference between Ψp and patch

Ψq.

By the analysis of the S(p) value the proposed method can obtain the location infor-

mation of the patch Ψp. A large value of S(p) means that the patch Ψp is quite different

from most of the patches in the neighbor, often Ψp is regard located in an edge region.

On the opposite, a small value of S(p) means that the patch Ψp is similar with most of

the patches in the neighbor, often Ψp is regard located in a stable region.

Then the proposed method defined Wm as the matching process patch size and Wp as

the inpainting process patches size. So if the proposed method inpainted the patch in

an edge region, the proposed method will uses a large patch size in matching process to

obtain more information against the mismatch and use a small patch size in inpainting

process to reduce the interference to the other inpainting directions. While if the proposed

method inpainted the patch in a stable region, the proposed method will just select a large

inpainting size to improve the speed of the process.

Wm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.5 ∗ w0 S(p) ≥ λ1(pmax − pmin) + pmin

w0 λ2(pmax − pmin) + pmin ≤ S(p) ≤ λ1(pmax − pmin) + pmin

1.25 ∗ w0 S(p) ≤ λ2(pmax − pmin) + pmin

(3.9)

Wp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.75 ∗ w0 S(p) ≥ λ1(pmax − pmin) + pmin

w0 λ2(pmax − pmin) + pmin ≤ S(p) ≤ λ1(pmax − pmin) + pmin

1.25 ∗ w0 S(p) ≤ λ2(pmax − pmin) + pmin

(3.10)

In the functions, pmax means the maximum of the S(p) while pmin means the minimum

of S (p).Threshold λ1 and λ2 are set by the experience, in the experiment the proposed

method set λ1 as 0.55 and λ2 as 0.15.

By the method proposed before, the proposed method is completed to initialize the

patch size before the inpainting process.

Before introducing the second improvement, firstly introduce a concept of the pixel

difference and the texture difference. These two types of differences are both generated
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(a) Matching result of traditional method. (b) Matching result of candidate method.

Fig. 3.8. The theory of candidate method.

between the patches. For a pair of patches, the textures are almost the same, but the

distribution of the pixel value is complex and then it generate a large difference, this

difference is called the pixel difference. On the other hand, the texture difference means

the difference generated by the different texture. The pixel difference is always generated

in several regions and each one has a small value while the texture difference is always

generated in few regions but has a large value.

By the template matching algorithm, it generally selects the most similar patch to

inpaint the destroyed region. This phase sometimes improves the mismatch rate because

the accumulation of several pixel differences may larger than one texture difference. But

in fact the texture difference always makes a larger influence than the pixels difference in

the matching process. So here the candidate method is used to reduce the mismatches.

Candidate method is a matching method not only using the most similar one but also using

a group of similar patches. In the method the top several most similar patches is sort by

the difference. Calculate the distance between these candidate patches, if the distances

between them are larger than 10 pixels, these patches will be expand and compared one

more time. By this method mismatch rate is reduced. Fig. 3.8 shows an example of the

candidate patch system, in Fig. 3.8(a), the right patches are the three most similar patches

to the sample patch. For the traditional method, it may select the top patch because it

has the minimal difference. But if expand the sample patch and the candidate patches, it

is obvious that the third patch is more suitable patch.
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3.2.3 Patch matching based on image rotation invariance

In the procedure of patch matching, to measure the similarities between the destroyed

patches and the known patches, patch features also play an important role in the image

inpainting process. The difficulty is how to use part of patch and undestroyed patches

to predict the whole patch. Gray value has firstly been used to describe the difference

between the destroyed patch and candidate patches. Traditional methods have used SSD

to calculate the difference.

Ψq̄ = argmin
Ψq∈Φ

ssd(Ψp̂,Ψp̂) (3.11)

Gray value only shows the difference between corresponding pixels in two patches. It just

compared two patches in pixel level. What’s more, to show more structure information of

the patches, structural similarity (SSIM) index is used to describe the difference between

the destroyed patch and candidate patches.

Ψq̄ = argmin
Ψq∈Φ

ssim(Ψp̂,Ψp̂) (3.12)

The SSIM index is calculated on two patches. The measurement between two patches x

and y is defined as:

ssim(x, y) = l(x, y) ∗ c(x, y) ∗ s(x, y) (3.13)

In function (3.13), l(x, y) shows the difference in luminance between the two patches,

c(x, y) shows the difference in contrast between the two patches, s(x, y) shows the difference

in structure between the two patches. The detail of these three functions is defined as

follow:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(3.14)

l(x, y) =
2σxσy + c1
σ2
x + σ2

y + c1
(3.15)

s(x, y) =
σxy + c3
σxσy + c3

(3.16)

Жx means the average of x, Жy means the average of y, М2
x means the variance of x, М2

y

means the variance of y, Мxy means the covariance of x and y. c1 = (k1L)2 , c2 = (k2L)2,

c3 = 0.5c2 are the two variables to stabilize the division with weak denominator, L is the

dynamic range of the pixel values, k1 = 0.01 and k2 = 0.03 are by default.

In the proposed paper, it tries to compare two patches not only on patch level but also

adding the rotation information. It can help to predict the result that gray value and

structure differences can’t give. Traditional SSD has no requirement in the order of the

pixels arrangement, just along the coordinate position. So the method proposed a new

rotation arrangement. In detail the proposed method transformed the patch into a matrix
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Fig. 3.9. Transformation from patch to rotation vectors

contains several vectors like the Fig.3.8 shows. From the center pixel to the edge pixel,

every vector li represents one scale of rotation information of the patch. So the rotation

of the patch can be equivalent to the movement of the matrix elements. Due to the pixel

number of different scale are not equal, here the proposed method add 0 to make it become

a matrix.

So that it can achieve the rotation of the patch by the cyclic motion of every layer

vector. The proposed method defines a ROR function to represent the cyclic motion of

vectors:

For the vector li = (p1, p2, ..., p(8i−1), p(8i))in layer i, pixel pi are the pixels in the vector.

ROR(li, 1) = (p(8i), p1, p2, ..., p(8i−1)) means right cyclic moving one position. And

ROR(Ψp̂, s) = RORn
i=1(li, numi) (3.17)

In function (3.17), s = 1, 2ʜS. S means the rotation scale. The relationship between s

and numi is defined as:

numi = floor(
8 ∗ i ∗ s

S
) (3.18)

The proposed similarity measure function can be defined as:

Ψq̄ = argmin
Ψq∈Φ,s=1,2ʜS

ssd(Ψp̂, ROR(Ψq̂, s)) (3.19)

In the experiment the rotation scale S is set as 18.

The optimized similarities function add the rotation invariance, In Fig. 3.10 and Fig. 3.11

the proposed method uses two examples to show the patch matching difference between the

proposed matching method and existing matching method in a local region. Fig. 3.10(a) is

the Origin destroyed image. Fig. 3.10(b) is the local region expanded from the red rectangle

region in Fig. 3.10(a) and the red rectangle region in Fig. 3.10(b) means the destroyed

region. Fig. 3.10(c) is the matching patch calculate by SSD method and Fig. 3.10(d) is

the inpainting result by this patch. Fig. 3.10(e) is the matching patch calculate by SSIM
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(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 3.10. Matching result compared with algorithm based on SSD and SSIM. (a) De-

stroyed image. (b) Destroyed patch. (c) Matching result of SSD. (d) Inpainting

result of SSD. (e) Matching result of SSIM. (f) Inpainting result of SSIM. (g)

Matching result of proposed. (h) Inpainting result of proposed.

method and Fig. 3.10(f) is the inpainting result by this patch. Fig. 3.10(g) is the matching

patch calculate by proposed method and Fig. 3.10(h) is the inpainting result by this patch.

Compared with SSD result Fig. 3.10(d) and SSIM result Fig. 3.10(f), the proposed result

based on rotation invariance selects more significant patch to inpaint. Also it has a higher

SSIM and a higher PSNR in the local region. In Fig. 3.11 the experiment apply the

Table 3.1. The PSNR and SSIM of the Fig.3.9 local region

Feature descriptions SSD result SSIM result Proposed result

PSNR 7.3268 8.1992 16.6082

SSIM 0.0071 0.5336 0.9349

proposed method on a circle, circle graph has a stronger rotational similarity in the image.

It is obvious to show the advantage of the proposed method based on image rotation

invariance. Fig. 3.11(a) is the Origin destroyed image. Fig. 3.11(b) is the local region

expanded from the red rectangle region in Fig. 3.11(a) and the red rectangle region in
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(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 3.11. Matching result compared with algorithm based on SSD and SSIM. (a) De-

stroyed image. (b) Destroyed patch. (c) Matching result of SSD. (d) Inpainting

result of SSD. (e) Matching result of SSIM. (f) Inpainting result of SSIM. (g)

Matching result of proposed. (h) Inpainting result of proposed.

Fig. 3.11(b) means the destroyed region. Fig. 3.11(c) is the matching patch calculate by

SSD method and Fig. 3.11(d) is the inpainting result by this patch. Fig. 3.11(e) is the

matching patch calculate by SSIM method and Fig. 3.11(f) is the inpainting result by this

patch. Fig. 3.11(g) is the matching patch calculate by proposed method and Fig. 3.11(h)

is the inpainting result by this patch.

Table 3.2 shows the PSNR and the SSIM inpainting on a circle. In this experiment

the SSD and the SSIM just select the same patch in the matching process. The proposed

method based on image rotation invariance has a higher SSIM and a high PSNR in the

local region, it also has a better visual effect. From the result, it also can be seen that the

Table 3.2. The PSNR and SSIM of the Fig 3.10 local region

Feature descriptions SSD result SSIM result Proposed result

PSNR 20.9347 20.9347 21.9753

SSIM 0.8076 0.8076 0.8649
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proposed matching method improves the matching accuracy.

3.3 Experimental result

In the experiment the proposed method is implemented on a series of destroyed images

that contain structure images and normal natural images. Also a comparison with the

traditional methods is mentioned. All the experiments run on a computer environment

made up of Matlab 2015a, CPU Intel Core i5-2450M 2.5GHz*2, RAM 8G.

Fig. 3.12(a) is the origin image, Fig. 3.12(b) is the mask image, Fig. 3.12(c)is the result

made by [17], Fig. 3.12(d) is the result made by[34], Fig. 3.12(e)is the result made by

proposed method.

Fig. 3.12 shows a result on a structure image, for the traditional method, the patches

was just choose from the source region, so both of them can not completely inpaint the

roof of the triangle. The proposed method used the similarity function based on rotation

invariance so that it can find a rotation version of the source patch to inpaint. From the

result it can seen that the image is quite near the triangle.

Fig. 3.13(a) is the origin image, Fig. 3.13(b) is the mask image, Fig. 3.13(c)is the re-

sult made by [17], Fig. 3.13(d)is the result made by[34], Fig. 3.13(e)is the result made by

proposed method.

Fig. 3.13 shows a result on a structure image. For the other method, the patches are

just chosen from the source region. When the inpainting process goes into the center of

the region, the method makes a mismatch. The proposed method used the adaptive patch

so it can adaptively change the patch size and select significant patch. The result shows

that the proposed method has a better visual effect.

Fig. 3.14 shows an experiment on an image, in which destroyed region locates in a texture

region. Fig. 3.14(a) is the origin image, Fig. 3.14(b) is the mask image, Fig. 3.14(c)is the

result made by [17], Fig. 3.14(d)is the result made by[34], Fig. 3.14(e)is the result made

by proposed method. From the destroyed image it can be seen that although the region

around the destroyed region contains a complex texture of grass, the structure information

around is only a few. From the result the three exemplar-based methods all completed a

good result. It is mainly due to the advantage of the exemplar-based methods. But on

the connection with the structure region there also comes few differences. Then expand

two part of the region to analysis the result.

Fig. 3.15 show the detail of the inpainting result, Fig. 3.15(d), Fig. 3.15(e), Fig. 3.15(f)

is responded to the inpainting result Fig. 3.15(a), Fig. 3.15(b), Fig. 3.15(c). Associate the

local region with the whole image the result shows that this local region is located between

strong structure and texture of grass. Fig. 3.15(d) leads a mismatch to the patch near the

cow. Fig. 3.15(e) eliminates the bad influence by calculation weighted average of a set

of patches. Fig. 3.15(f) also eliminates the bad influence by expand the matching size
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(a) Origin image. (b) Mask image.

(c) Result of [17] method. (d) Result of [34] method.

(e) Result of proposed method.

Fig. 3.12. Structure image inpainting result.
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(a) Origin image. (b) Mask image.

(c) Result of [17] method. (d) Result of [34] method.

(e) Result of proposed method.

Fig. 3.13. Structure image inpainting result.
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(a) Origin image. (b) Mask image.

(c) Result of [17] method. (d) Result of [34] method.

(e) Result of proposed method.

Fig. 3.14. Natural image inapinting result.

to obtain more significant patch. Fig. 3.16 show the detail of the inpainting result, local

region Fig. 3.16(d), Fig. 3.16(e), Fig. 3.16(f) is respond to the inpainting result Fig. 3.16(a),

Fig. 3.16(b), Fig. 3.16(c). Associate the local region with the whole image the result shows

that this local region is located in the middle of two weak structures. Fig. 3.16(d) blurs

the local region Fig. 3.16(e) keeps the structure information but do not connect them.

Fig. 3.16(f) not only keeps the structure information but also connects them. Fig. 3.17(a)is

the origin image, Fig. 3.17(b)is the mask image, Fig. 3.17(c) is the result made by[17],

Fig. 3.17(d) is the result made by[34], Fig. 3.17(e) is the result made by proposed method.
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(a) Result of [17] method. (b) Result of [34] method. (c) Result of proposed

method.

(d) Local region

in Fig. 3.15(a).

(e) Local region

in Fig. 3.15(b).

(f) Local region

in Fig. 3.15(c).

Fig. 3.15. Local region of the result in Fig. 3.14.

Fig. 3.17 shows the comparison in normal natural image. The difference is focused on the

centre of the destroyed region, especially on the edge of the house. When inpainting into

the center region, [17] made a mismatch because the center region contains all directions

the information. [34] selects a series of candidate patches to reduce the influence made

by the single mismatched patch. The proposed adaptively changed the patch size so that

it can use more information to match significant patch and finally keep a good edge.

Fig. 3.18(a) is the origin image, Fig. 3.18(b) is the mask image, Fig. 3.18(c) is the result

made by[17], Fig. 3.18(d) is the result made by[34], Fig. 3.18(e) is the result made by

proposed method.

Fig. 3.18 also shows an inpainting result for destroyed natural image. Compared with

the origin image of Fig. 3.17, the content of origin image in Fig. 3.18 is more periodic.

And the width of the destroyed region is larger. By the traditional method [17], at the

beginning the inpainting result is not bad, but when the inpaint process goes into the

middle of the destroyed region, the patch matching accuracy decreased and the result

become worse. [34] selects a series of candidate patches to reduce the influence made

by the mismatched patches. The proposed method using adaptive changed patch and

the optimized similarities function to obtain the patch, so it can add more information

to choice the more significant patch. For the visual appearance the proposed method
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(a) Result of [17] method. (b) Result of [34] method. (c) Result of proposed

method.

(d) Local region

in Fig. 3.16(a).

(e) Local region

in Fig. 3.16(b).

(f) Local region

in Fig. 3.16(c).

Fig. 3.16. Local region of the result in Fig. 3.14.

improved the global effect.
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(a) Origin image. (b) Mask image.

(c) Result of [17] method. (d) Result of [34] method. (e) Result of proposed

method.

Fig. 3.17. Natural image inpainting result.
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(a) Origin image. (b) Mask image.

(c) Result of [17] method. (d) Result of [34] method.

(e) Result of proposed method.

Fig. 3.18. Natural image inpainting result.
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Chapter 4

Dictionary learning based Image

inpainting method

The exemplar-based inpainting method uses the most similar patch to inpaint the de-

stroyed region. The advantage of the exemplar-based inpainting method is that it can

keep the texture of the image and exemplar-based method has a better visual effect. But

sometimes the destroyed pixels are distributed over images. In this situation it is hard to

match a suitable patch and the exemplar-based method will lead a bad inpainting effect.

The dictionary learning based image inpainting method can inpaint the images while

training the dictionary learnt from the source region. And it can provide information that

does not exist in the source region. These two points are its most prominent advantages.

Fig.4.1 shows the appropriate destroy situation that dictionary learning based inpainting

method can inpaint. For this destroy situation the exemplar-based method is impossible

to inpaint because in the image even one complete patch is not existed. Fig.4.1(a) is the

(a) Destroyed image. (b) Mask image.

Fig. 4.1. The appropriate situation for dictionary learning based method.
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destroyed image and Fig.4.1(b) is the mask image.
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4.1 Theory of sparse approximation

Matching pursuit (MP) is a sparse approximation algorithm which involves finding the

”best matching” projections of multidimensional data onto the span of an over-complete

dictionary D. The basic idea is to approximately represent a signal f from Hilbert space

H as a weighted sum of finitely many functions gγn(called atoms) taken from D. An

approximation with N atoms has the form

f(t) ≈ f̂N (t) =
N∑

n=1

angγn(t) (4.1)

Where an is the scalar weighting factor (amplitude) for the atom gγn ∈ D. Normally, not

every atom in D will be used in this sum. Instead, matching pursuit chooses the atoms

one at a time in order to maximally (greedily) reduce the approximation error. This is

achieved by finding the atom that has the biggest inner product with the signal (assuming

the atoms are normalized), subtracting from the signal an approximation that uses only

that one atom, and repeating the process until the signal is satisfactorily decomposed, i.e.,

the norm of the residual is small, where the residual after calculating γn and an is denoted

by

RN+1 = f − f̂N (4.2)

If RN converges quickly to zero, then only a few atoms are needed to get a good approxi-

mation to f. Such sparse representations are desirable for signal coding and compression.

More precisely, the sparsity problem that matching pursuit is intended to approximately

solve is

minx∥f −Dx∥22 subject to∥x∥0 ≤ N (4.3)

With ∥x∥0 the L0 pseudo-norm (i.e.the number of nonzero elements of x). In the previous

notation, the nonzero entries of x are xγn = an, and the γn th column of the matrix

D is gγn . Solving the sparsity problem exactly is NP-hard, which is why approximation

methods like MP are used.

For comparison, consider the Fourier series representation of a signal - this can be

described in the terms given above, where the dictionary is built from sinusoidal basis

functions (the smallest possible complete dictionary). The main disadvantage of Fourier

analysis in signal processing is that it extracts only global features of signals and does not

adapt to analyzed signals f. By taking an extremely redundant dictionary a signal f can

be best matched.

As mentioned above, due to the signal residual is not orthogonal to the chosen atom,

the result in each iteration becomes a suboptimal one rather than an optimal one, this

situation makes convergence need many iterations. For example: in two-dimensional space,
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there is a signal y is represented by d = [d1, d2]. MP algorithm iteration will be found

repeated the iterations on x1 and x2, like shown in

y = d1x1 + d2x2 + d1x3 + d2x4 (4.4)

This result is made by the non orthogonality, which is generated from the vertical projec-

tion of the signal residual to the chosen atom. So Orthogonal Matching Pursuit (OMP)

algorithm is very necessary to overcome the disadvantage.

The improvement of the OMP algorithm is that each step of the decomposition is

orthogonal to all the selected atoms, so that the convergence speed of the OMP algorithm

is faster when the accuracy requirements are the same.

The OMP model can be defined as in (4.5), after k order approximation

y =
k∑

n=1

dnx
k
n +Rky, with < Rky, dn >= 0, n = 1, 2, · · · , k (4.5)

After k+1 order approximation,

y =
k+1∑

n=1

dnx
k+1
n +Rk+1y, with < Rk+1y, dn >= 0, n = 1, 2, · · · , k + 1 (4.6)

Use (4.6) minus (4.5),

k+1∑

n=1

dn(x
k+1
n − xk

n) + dk+1x
k+1
k+1 +Rk+1y −Rky = 0 (4.7)

Suppose the relationship between the atoms in dictionary matrix is:

xk+1 =
k∑

n=1

dna
k
n + rk, with < rk, dn >= 0, n = 1, 2, · · · , k (4.8)

Put equation (4.8) into (4.7)

k+1∑

n=1

dn(x
k+1
n − xk

n + xk+1
k+1a

k
n) + (xk+1

k+1rk +Rk+1y −Rky) = 0 (4.9)

So it means that:

xk+1
n − xk

n + xk+1
k+1a

k
n = 0 (4.10)

xk+1
k+1rk +Rk+1y −Rky = 0 (4.11)

xk+1
k+1rk = Rky −Rk+1y (4.12)

Finally the OMP method is described in these phases:

1) Input: the dictionary D contains d1, d2, · · · , dn in it, the sample vector y sparsity

K;

2) Output: the coefficient matrix X
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3) Initial: residual r0 = y Index set Λ0 = Ї, Θ0 = Ї, t=1;

4) Loop the phase 1-5

• Phase 1 calculate the λt = argmaxj=1,··· ,n| < rt−1, dj > | ;
• Phase 2 update the Λt = Λt−1˫ {λt}, and record the atom Θt = [Θt−1, dλt ]

• Phase 3 calculate the x̂t = argminx∥y −Θtx̂∥2;
• Phase 4 update the residual rt = y −Θtx̂t, t = t+ 1;

• Phase 5 judge the t if t > K, then stop the iteration, else back to phase 1.

4.2 Theory of K-SVD method

In applied mathematics, K-SVD is a dictionary learning algorithm for creating a dictio-

nary for sparse representations, via a singular value decomposition approach. K-SVD is

a generalization of the k-means clustering method, and it works by iteratively alternating

between sparse coding the input data based on the current dictionary, and updating the

atoms in the dictionary to better fit the data.[52][53] K-SVD can be found widely in use in

applications such as image processing, audio processing, biology, and document analysis.

K-SVD is a kind of generalization of k-means, as follows. The k-means clustering can

be also regarded as a method of sparse representation. That is, finding the best possible

codebook to represent the data samples {yi}Mi=1 by nearest neighbor, by solving

minD,X∥Y −DX∥2F subject to ∀i, xi = ek for some k (4.13)

Which is equivalent to

minD,X∥Y −DX∥2F subject to ∀i, ∥xi∥0 = 1 (4.14)

The letter F denotes the Frobenius norm. The sparse representation term xi = ek enforces

K-means algorithm to use only one atom (column) in dictionary D. To relax this constraint,

the target of the K-SVD algorithm is to represent signal as a linear combination of atoms

in D.

The K-SVD algorithm follows the construction flow of the K-means algorithm. However,

in contrary to K-means, in order to achieve a linear combination of atoms in D, the sparsity

term of the constraint is relaxed so that the number of nonzero entries of each column xi

can be more than 1, but less than a number T0.

So, the objective function becomes

minD,X∥Y −DX∥2F subject to∀i, ∥xi∥0 ≤ T0 (4.15)

Or in another objective form

minD,X

∑

i

∥xi∥0 subject to∀i, ∥Y −DX∥2F ≤ ϵ (4.16)
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In the K-SVD algorithm, the D is first fixed and the best coefficient matrix X is found. As

finding the truly optimal X is impossible, an approximation pursuit method is used. Any

algorithm such as OMP, the orthogonal matching pursuit can be used for the calculation

of the coefficients, as long as it can supply a solution with a fixed and predetermined

number of nonzero entries T0.

After the sparse coding task, the next is to search for a better dictionary D. However,

finding the whole dictionary all at a time is impossible, so the process is to update only

one column of the dictionary D each time, while fixing X. The update of the k-th column

is done by rewriting the penalty term as

∥Y −DX∥2F = ∥Y −
K∑

j=1

djx
j
T ∥

2
F = ∥(Y −

∑

j ̸=k

djx
j
T )− dkx

k
T ∥2F = ∥Ek − dkx

k
T ∥2F (4.17)

Where xk
T denotes the k-th row of X. By decomposing the multiplication DX into sum of

K rank 1 matrix, the other K-1 terms are assumed fixed and the k-th remains unknown.

After this step, solve the minimization problem by approximate the Ek term with a rank-

1 matrix using singular value decomposition, then update dk with it. However, the new

solution of vector xk
T is very likely to be filled, because the sparsity constraint is not

enforced. To cure this problem, define ωk as

ωk =
{
iᴹ 1 ≤ i ≤ N, xk

T (i) ʺ 0
}

(4.18)

Which points to examples yiNi=1 that use atom dk (also the entries of xi that is nonzero).

Then, define Ωk as a matrix of size N × |ωk|, with ones on the (i,ωk(i)) − th entries

and zeros otherwise. When multiplying xk
R = xk

TΩk this shrinks the row vector xk
T by

discarding the zero entries. Similarly, the multiplication Y R
k = Y Ωk is the subset of the

examples that are current using the dk atom. The same effect can be seen on ER
k = EkΩk.

So the minimization problem as mentioned before becomes

∥EkΩk − dkx
k
TΩk∥2F = ∥ER

k − dkx
k
R∥2F (4.19)

and can be done by directly using Singular Value Decomposition (SVD), which is intro-

duced in the next section. SVD decomposes ER
k into UΣV T . The first column of U is

used to update the dictionary atom dk, and use the first column of V × Σ(1, 1) to up-

date the coefficient vector xk
R at the same time. After updating the whole dictionary, the

process then turns to iteratively solve X, and then iteratively solve D. For one matrix

A, the aiming of SVD is to find the full rank decomposition of A, it is shown in Fig.4.2,

and SVD can be regard as a factorization of a real matrix. Sometimes the aiming are

more often describe as in Fig.4.3: Now suppose there is a m*n matrix A, in fact, the

A matrix maps the vectors in n-dimensional space to the k (k ≤ m) dimensional space,

k=Rank (A). The goal now is to find a set of orthogonal bases in n-dimensional space,

which keeps still orthogonal after making the A transform. It is assumed that such a set
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Fig. 4.2. The Aiming of SVD(1)

Fig. 4.3. The Aiming of SVD(2)

of orthogonal bases has been found: {v1, v2, · · · , vn} The A matrix maps the set of bases

to: {Av1, Av2, · · · , Avn}
To make each pair of them orthogonal, it means that:

AviAvj = (Avi)
TAvj = vTi A

TAvj = 0 (4.20)

According to the hypothesis, it exists that vTi vj = vivj = 0.

So if the orthogonal basis v is chosen as the eigenvector of A’A, since A’A is the sym-

metric matrix and v is mutually orthogonal, then...

vTi A
TAvj = vTi λjvj = λjv

T
i vj = λjvivj = 0 (4.21)

Thus the orthogonal basis which keeps still orthogonal after the mapping is found, so then

unit the orthogonal basis of after the mapping: Because of AviAvi = λivivi = λi

So |Avi|2 = λi ≥ 0

And take the unit vector ui =
Avi
|Avi| =

1√
λi
Avi

Avi = Мiui,Мi =
√
λi, 0 ≤ i ≤ k, k = Rank(A) (4.22)

Then extended {u1, u2,ʜ, uk} to {uk+1,ʜ, um} according to the condition k ≤ i ≤ m, to

satisfy {u1, u2,ʜ, um} become an orthonormal basis in m dimensional space. Similarly, for

{v1, v2,ʜ, vk} extend to {vk+1,ʜ, vn}(this n-k vectors exist in the zero space of A, it means

that these vectors are the basis of the solution space for Ax=0), so that {v1, v2,ʜ, vn}are
the set of orthogonal bases in n dimensional space. It means that if selecting {vk+1,ʜ, vn}
from the solution space for Ax=0, and define the Мi = 0, for i > k, then the equation
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Fig. 4.4. The low order approximation of SVD

(4.22) can extend to :

A [v1v2ʜvk|vk+1ʜvn] = [u1u2ʜuk|uk+1ʜum]

⎡

⎢⎢⎢⎢⎢⎣

М1

. . . 0

Мk

0 0

⎤

⎥⎥⎥⎥⎥⎦
(4.23)

Finally, it is transformed to:

A = [u1u2ʜuk|uk+1ʜum]

⎡

⎢⎢⎢⎢⎢⎣

М1

. . . 0

Мk

0 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT1
...

vTk
vTk+1
...

vTk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

So the representation of SVD is obtained

A = UΣV T (4.25)

In the equation (4.25)ɼU is an m × m unitary matrix (if k = R , unitary matrices are

orthogonal matrices),Σ is a diagonal m×n matrix with non-negative real numbers on the

diagonal, V is an n × n unitary matrix over k. On the other hand, U and V are feature

vector of A,Σ is the singular value matrix of A.Мi in Σ are the singular value of A, it

has an advantage of fast convergence speed. So sometimes a low order approximation

is used to replace Σ. It is shown in Fig.4.4. In general, the main idea of dictionary

learning based image inpainting method is to find the most suitable sparse approximation

to the destroyed patch. In the method the overlapped sampled patches are used as the

data sample {yi}Mi=1. It contains two steps in the method. First step is to use the OMP

method to calculate the sparse representation of the patch sample {yi}Mi=1 in the source

region. In this process fix the dictionary before sparse representation. The second step

is updating the each atom dl(l = 1, 2, 3ʜk) in the dictionary after fixing the coefficient

matrix. It contains three phase.

1.Find every patch sample yl that the corresponding coefficient xl
T > 0.
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2.Calculate the residual Er = Y −DX

3.Use the SVD to update the dictionary atom dl and the coefficient xl
T

Loop constant iterates the two steps until to the iteration times T or a threshold ϵ set

before.

Finally the method obtained the dictionary D and the coefficient matrix X.

In the inpainting process, due to the patches are overlap sampled. So after us obtaining

the dictionaryD and the coefficient matrixX, it is necessary to transform the patch sample

set back to the image by weighted averaging of the influence made by the overlapped

patches.

4.3 Adaptive sparsity method

The K-SVD based image inpainting method provides another idea to keep the textures

in the image. Not only the most similar one patch, but also a set of dictionary atoms

are used to learn more information in a single inpainting process. This method uses a

sparse representation of atoms so that it generates a new patch and it is no longer limited

to the content of the original image. What’s more, the sparse representation makes an

influence to the whole patch so it also reduces the noisy pixel’s influence. In the sparse

approximation process, the K-SVD method uses a fixed sparsity to obtain the sparse

approximation. It is easy to ignore the influence made by sparsity but in fact the sparsity

also plays an important role in the inpainting. Fig.4.5 shows a sparse approximation

example on a natural image. Fig.4.5(a) is the original image. Fig.4.5(b) is the destroyed

image and in it 25% pixels lost its gray value. Fig.4.5(c) is the updated dictionary after

the inpainting process.

Table 4.1 shows the PSNR of the K-SVD method inpainting result. From the result it

shows that in a patch size from 6*6 to 10*10 and the sparse (here the sparse means the

(a) Original image. (b) Destroyed image. (c) Updated dictionary.

Fig. 4.5. Sparse approximation on image ʠpeppersʡ.
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Table 4.1. The PSNR of the inpainting result in different patch size and sparsity

Sparsity 6*6 patch 7*7 patch 8*8 patch 9*9 patch 10*10 patch

2 31.4949 32.0009 32.0705 32.1882 32.0826

3 31.7709 32.0063 32.2001 32.4742 32.2497

4 31.6690 31.9919 32.3137 32.3024 32.2999

5 31.5940 31.9815 32.1822 32.5274 32.4290

6 31.4823 31.8755 32.2289 32.2827 32.2586

maximum number of atom in coding process) from 2 to 6, the difference the maximum

and the minimum in the form is 1.04. Even in the same patch size, the PSNR difference

in different sparsity is about from 0.13 to 0.35. It is almost equal to the difference made

by different inpainting methods. So introducing an adaptively changed sparsity is very

necessary.

In chapter 3 an improvement of adaptive patch size is proposed; in the method firstly the

complexity of the patch itself is calculated. Then by a pair of threshold shown before, the

proposed method can obtain the location information of the patch and adjust the patch

size according to the location information. Here still use the patch complexity function

to realize the location information. If the sparse approximation process the patch in an

edge region, a large sparsity is used to keep the structure information and against blurring

influence. While if the sparse approximation process the patch in a stable region, a small

sparsity is used to make the inpainting result become smooth.

Finally optimize the OMP by adding a sparsity adaptively change process.

1) Input: the dictionary D contains d1, d2, · · · , dn in it, the sample vector y sparsity

K;

2) Output: the coefficient matrix X

3) Initial: residual r0 = y Index set Λ0 = Ї, Θ0 = Ї, t=1, K=K0=0.5*length(y);

4) Loop the phase 1-7

• Phase 1 calculate the S(p) introduced in chapter 3.

• Phase 2 judge the S(p) if S(p) < 0.15(pmax − pmin) + pmin,K = K0 + 1; if

S(p) > 0.55(pmax − pmin) + pmin,K = K0 − 1.

• Phase 3 calculate the λt = argmaxj=1,··· ,n| < rt−1, dj > | ;
• Phase 4 update the Λt = Λt−1˫ {λt}, and record the atom Θt = [Θt−1, dλt ]

• Phase 5 calculate the x̂t = argminx∥y −Θtx̂∥2;
• Phase 6 update the residual rt = y −Θtx̂t, t = t+ 1;

• Phase 7 judge the t if t > K, then stop the iteration, else back to Phase 1.
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4.4 Experimental result

In this section the proposed method is applied on several experiments. compared the

proposed result with the result made by an inpainting method based on MRF [40] and

the result made by K-SVD method [32]. The images used in the experiment are from the

Berkeley segmentation dataset.

In the first group, the destroyed images contains 25% pixels lost its gray value.

In this experiment, Fig. 4.6 shows the global visual effect of the inpainting result and

Fig.4.7 shows the local visual effect. In Fig.4.6, the proposed method gives the inpainting

result with the highest PSNR. In Fig.4.7 the local regions of the inpainting result show

the detail difference between these methods. Compared with Fig.4.7(f) and Fig.4.7(g),

Fig.4.7(h) gives more natural result especially on the edge because the methods inpaint

the destroyed pixels and update the dictionary at the same time. The K-SVD method

continues to update the atoms in the dictionary so that the method generate the patch

which is more natural. Further more, the proposed method provides more texture than the

traditional K-SVD method by adding the adaptive sparse. By detecting the complexity of

the patch, if the patch locates in a edge region, the proposed method uses a small sparse

to keep the structure, if the patch locates in a stable region, the proposed method uses a

big sparse to gain more texture to the result. At last the proposed method gives a result

seemed containing more content than the traditional K-SVD method. In the following

experiment the inpainting methods are applied on more images with different types.

In the next group, 50% pixels lost its gray value in the image.

Table 4.2 shows the PSNR of the experiments in this chapter. In this chapter 4 images

added 25% and 50% destroyed pixels are applied on MRF method, K-SVD method and

proposed method.

Table 4.2. The PSNR of the experiments in chapter 4

MRF result K-SVD result Proposed result

’sculpture’ (25%destroyed) 25.35 25.35 25.48

’castle’ (25%destroyed) 29.21 29.10 29.41

’lion’ (25%destroyed) 26.95 26.98 27.05

’tiger’ (25%destroyed) 27.82 27.73 27.97

’sculpture’ (50%destroyed) 22.63 22.40 22.67

’castle’ (50%destroyed) 25.67 25.67 25.89

’lion’ (50%destroyed) 24.15 23.91 24.23

’tiger’ (50%destroyed) 24.67 24.18 24.63

From the experiment result, the improvement of the proposed method is shown in two

aspects.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.6. The inpainting result on image ʟsculpture’.

Firstly, the result shows that the proposed method has a better visual effect because

the proposed method uses the adaptive sparsity in the sparsity approximation. When

inpainting the patch near a edge region, the proposed uses a small sparsity to keep the

structure information. When inpainting the patch near a texture region, the proposed

method uses a large sparsity to gain more texture information in the patch.

Secondly, compared with the K-SVD method, it is obviously that the proposed method

has a little improved in PSNR. By using the adaptive sparsity the proposed method can
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(a) Origin image. (b) MRF result.

(c) K-SVD result. (d) Proposed result.

(e) Local (a). (f) Local (b). (g) Local (c). (h) Local (d).

Fig. 4.7. Local region of the result in Fig. 4.6.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.8. The inpainting result on image ’castle’.

get a closer sparsity approximation, so at last the proposed method can get a higher PSNR.

Compared with the MRF result, the proposed method also has a small improvement of

PSNR in most result.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.9. The inpainting result on image ’lion’.

(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.10. The inpainting result on image ’tiger’.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.11. The inpainting result on image ʟsculpture’.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.12. The inpainting result on image ’castle’.
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(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.13. The inpainting result on image ’lion’.

(a) Origin image. (b) Destroyed image.

(c) MRF result. (d) K-SVD result. (e) Proposed result.

Fig. 4.14. The inpainting result on image ’tiger’.
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Chapter 5

Experimental analysis

In this chapter, the three types of the proposed methods are applied on different de-

stroyed type images. Firstly the origin images and their sizes are shown in Fig. 5.1.

Fig. 5.1(a) and Fig. 5.1(b) are normal images, containing natural scenery image and person

image. These two images are used to show the comprehensive performance of the three

types methods. Fig. 5.1(c) has a strong structure in it and this figure is used to show the

structure keeping ability of the methods. Fig. 5.1(d) contains a lot of textures and it is

used to show the texture keeping ability of the methods.

In this group the proposed method is applied on the pixels type destroyed images.

For this type, the destroyed pixels are evenly distributed over the image. Due to the

exemplar-based method can not inpaint this type destroyed image. The experiment is just

on diffusion-based methods and dictionary learning based method. The Fig. 5.2 shows the

inpaint result and the visual effect.

Fig. 5.2 shows the inpainting result for the image which has 20% pixels destroyed.

Fig. 5.3 shows the inpainting result for the image which has 30% pixels destroyed.

Fig. 5.4 shows the inpainting result for the image which has 50% pixels destroyed.

From the result only by the visual effect it is hard to distinguish the difference. On

the followed information in Table 5.1 and Table 5.2 shows the ability of these two type

method. With the number of the destroyed pixels become larger, dictionary learning based

method can remain more details because it divides the image into patches to inpaint so

in the inpainting process not only the gray value but also the regional information in the

image are used. In the next group the blocks and the line contains pixels will be used to

destroy the image. Three types of the methods will be applied on.

Fig. 5.5 shows the inpainting result for the image which has destroyed blocks on it, the

size of the block is 6*6.

Fig. 5.6 shows the inpainting result for the image which has destroyed blocks on it, the

size of the block is 10*10.

Fig. 5.7 shows the inpainting result for the image destroyed by a line.

Blocks destroyed type and line destroyed type can be regard as the expansion of the

pixels destroyed type, not only in quantity but also in quality. This destroyed type loses
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(a) (481*321). (b) (512*512).

(c) (512*512). (d) (512*512).

Fig. 5.1. The origin images used in the experiment.

not only the pixels’ gray value but also the regional information in the image. Compared

the results of these three types methods, it can be seen that the traditional FMM ignores

the relationship between pixels so the edges in the result is fuzzy. The proposed diffusion-

based method reduces this bad influence and gives a little clear edge, by only selecting the

gradient direction pixels in the inpainting process. Dictionary learning based methods re-

alize the regional information between pixels and give a better result. The K-SVD method

divide the image into patches to inpaint so that the method can remain more details in

the image. Also this type method can generate a clear edge. Because of the destroyed

blocks locate in different places, the proposed dictionary learning based method adaptively

changes the sparsity in the sparse approximation to respond to different destroyed parts in

the image so that the method can give a further similar result. Exemplar-based methods

give the most similar results. And compared the traditional and proposed exemplar-based
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(a) Origin image. (b) Mask image. (c) Destroyed im-

age.

(d) FMM inpaint-

ing result.

(e) Proposed dif-

fusion method re-

sult.

(f) K-SVD result. (g) Proposed dic-

tionary learning

result.

Fig. 5.2. 20% pixels destroyed inpainting result.

method, the proposed one gives a further similar result. The proposed one uses adaptively

changed patches to inpaint so that the method can better deal with the destroy part in

different places and select more significant patch to inpaint.

Fig. 5.8 shows the inpainting result destroyed by a small region(90*90).

Fig. 5.9 shows the inpainting result destroyed by a large region(185*185).

Fig. 5.10 shows the inpainting result destroyed by a small region(90*90).

Fig. 5.11 shows the inpainting result destroyed by a large region(185*185).

Region destroyed type can be regard as the expansion of the blocks and lines destroyed

type. The regional information is further lost, containing structure information and tex-

ture information. From the result, traditional FMM selects all the pixels in the neighbor

to calculate the destroyed pixels’ gray value so that this method leads into a lot of error

information and generates a fuzzy edge. Even if the destroyed region is quite large, tradi-
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(a) Origin image. (b) Mask image. (c) Destroyed im-

age.

(d) FMM inpaint-

ing result.

(e) Proposed dif-

fusion method re-

sult.

(f) K-SVD result. (g) Proposed dic-

tionary learning

result.

Fig. 5.3. 30% pixels destroyed inpainting result.

tional FMM almost loses the whole edge. The proposed diffusion-based method keeps the

edge by using the edge prediction and direction selection process. The method predicts the

edge from the remaining part of the image and uses the prediction to define the inpainting

order so that this method can keep the edge. Both of the two diffusion-based method can

not keep the texture in the image due to the limitation of diffusion-based method itself.

On the other hand, the exemplar-based method overcomes this disadvantage because this

type method inpaints the image on patches level. The exemplar-based method calculates

the similarity between destroyed patch and candidate patch, and selects the most sim-

ilar one to inpaint. This process can remain the texture in the patch. Compared the

traditional and the proposed exemplar-based method, the proposed one generates a more

similar result by matching the patch in different sizes and in different rotation situations.

Table 5.1 and Table 5.2 shows the PSNR and the calculation time of all the inpainting
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(a) Origin image. (b) Mask image. (c) Destroyed im-

age.

(d) FMM inpaint-

ing result.

(e) Proposed dif-

fusion method re-

sult.

(f) K-SVD result. (g) Proposed dic-

tionary learning

result.

Fig. 5.4. 50% pixels destroyed inpainting result.

result, With these two measurements each type of inpainting methods is suitable for what

type of destroyed images becomes clear.

From the results , it is clear to make these conclusion.

1. To inpaint the pixels type destroyed images, it is clear that both diffusion-based

inpainting methods and dictionary learning based methods can give a good visual effect.

Diffusion-based inpainting method also has a fast calculation speed. Exemplar-based

inpainting methods are hardly to inpaint the image because the source region doesnʟt

contain a complete patch. Dictionary learning based methods gives a higher PSNR than

the diffusion-based inpainting method but instead speed more to calculation time. Higher

PSNR means the dictionary learning based methods keep more texture in the image. Also

it can be easily seen that the calculation time of diffusion-based inpainting method is grown

according to the number of the destroyed pixels, while the calculation time of dictionary
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(a) Origin image. (b) Mask image. (c) Destroyed im-

age.

(d) FMM inpaint-

ing result.

(e) Proposed dif-

fusion method re-

sult.

(f) Traditional

exemplar method

result.

(g) Proposed

exemplar method

result.

(h) K-SVD result. (i) Proposed dic-

tionary learning

result.

Fig. 5.5. 6*6 blocks destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed im-

age.

(d) FMM inpaint-

ing result.

(e) Proposed dif-

fusion method re-

sult.

(f) Traditional

exemplar method

result.

(g) Proposed

exemplar method

result.

(h) K-SVD result. (i) Proposed dic-

tionary learning

result.

Fig. 5.6. 10*10 blocks destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed image.

(d) FMM inpainting result. (e) Proposed diffusion

method result.

(f) Traditional exemplar

method result.

(g) Proposed exemplar

method result.

(h) K-SVD result. (i) Proposed dictionary

learning result.

Fig. 5.7. Line destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed image.

(d) FMM inpainting result. (e) Proposed diffusion

method result.

(f) Traditional exemplar

method result.

(g) Proposed exemplar

method result.

Fig. 5.8. Small region destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed image.

(d) FMM inpainting result. (e) Proposed diffusion

method result.

(f) Traditional exemplar

method result.

(g) Proposed exemplar

method result.

Fig. 5.9. Large region destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed image.

(d) FMM inpainting result. (e) Proposed diffusion

method result.

(f) Traditional exemplar

method result.

(g) Proposed exemplar

method result.

Fig. 5.10. Small region destroyed inpainting result.
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(a) Origin image. (b) Mask image. (c) Destroyed image.

(d) FMM inpainting result. (e) Proposed diffusion

method result.

(f) Traditional exemplar

method result.

(g) Proposed exemplar

method result.

Fig. 5.11. Large region destroyed inpainting result.
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Table 5.1. The PSNR of all the inpainting result

FMM Proposed

Diffusion

method

Traditional

Exemplar

method

Proposed

Exemplar

method

K-SVD

Method

Proposed

Dictionary

method

pixels

20%

21.36 23.11 25.66 25.75

pixels

30%

20.80 22.73 24.41 24.90

pixels

50%

20.31 22.23 22.90 23.19

blocks

6*6

20.43 20.94 21.79 23.15 21.33 23.38

blocks

10*10

19.27 19.43 20.96 21.80 20.40 23.32

line 23.87 24.82 29.20 30.66 23.27 27.58

region1

90*90

20.66 33.89 34.16 35.72

region1

185*185

13.24 31.83 32.05 32.83

region2

90*90

16.63 19.40 21.59 22.96

region2

185*185

16.62 18.73 18.44 19.33

learning based methods are almost the same. Because no matter how many the destroyed

pixels are the dictionary learning based methods divide the image into patches to inpaint.

2. To inpaint the blocks type and line type destroyed images, when the size of the blocks

become 10*10, the result made by diffusion-based inpainting method becomes not clear in

some place, but the exemplar-based inpainting method and the dictionary learning based

methods keep the edge better.

3. To inpaint the region type destroyed images, diffusion-based inpainting methods

almost lost the texture of the image, though in some place the PSNR is not bad. Compared

with the FMM, the proposed diffusion-based method improves the edge keeping ability.

It has a better visual effect. Exemplar-based methods keep the texture of the image and

give a better visual effect. The proposed exemplar-based method selects more significant

patches by the improvement and at last gives a better result. Exemplar-based inpainting

methods generate a good visual effect and have a higher PSNR.

84



Table 5.2. The calculation time of all the inpainting result

FMM Proposed

Diffusion

method

Traditional

Exemplar

method

Proposed

Exemplar

method

K-SVD

Method

Proposed

Dictionary

method

pixels

20%

16.26 25.33 481.39 582.35

pixels

30%

22.24 32.81 488.71 602.79

pixels

50%

30.47 42.38 502.60 623.53

blocks

6*6

10.48 22.34 59.28 63.46 491.14 606.48

blocks

10*10

21.37 48.98 105.33 127.46 492.80 612.32

line 13.57 24.63 60.29 64.66 610.67 722.18

region1

90*90

7.67 30.25 66.16 87.76

region1

185*185

27.33 119.67 149.76 186.67

region2

90*90

7.53 49.22 71.49 102.69

region2

185*185

28.70 167.52 162.80 269.91

As a conclusion, the diffusion-based inpainting methods are more suitable to be used

in a condition that it is hopeful to get the result in less time. Exemplar-based inpainting

methods are suitable to inpaint the images which has a large destroyed region. Dictionary

learning based methods also keep the texture of the image and they are more suitable to

inpaint the image which contains destroyed pixels all over the images.
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Chapter 6

Conclusion

In this paper the research on image inpainting technology is conduct in three fields,

diffusion-based field, exemplar-based field and dictionary learning based field.

In diffusion-based field, the traditional FMM method has a less calculation time but it

is short for contributing an optimal edge result. Two improving ideas are adapt to the

traditional FMM in-painting algorithm. To overcome the disadvantage and remain the ad-

vantage of traditional FMM method, Gradient matrix was calculated in the known region

to help to select the less but more related pixels to join into the FMM calculation. On the

other hand, the gradient matrix of the detected edges makes a contribution to predicting

the edges in the destroyed region. And the predicted edges is useful for the inpainting.

By the experiment, the resulting images seem more reasonable and more similar to the

natural scenes. Compared with the traditional method, the proposed approach not only

remains the advantage of fast processing speed, but also contributes a better estimation

result of edges.

In exemplar-based field, three aspects have been researched to improve the traditional

exemplar-based method. They are the inpainting priority, the size of the patch and the

patch matching method. These three aspects are closely correlated to obtain the most

similar patch in the inpainting process. From the experimental result it is shown obvious

that the improvement increased the accuracy of the patch selection process. The proposed

method gives a better global visual effect, especially for the images with more structure

contents and the destroyed region which has a large width. In dictionary learning based

field, the traditional K-SVD method has been analyzed. And the deficiency that the

traditional OMP method using a fixed the sparsity in the whole approximation process

has been found. To overcome the deficiency, an optimized OMP method using adaptive

sparsity is proposed. The experiment result shows that the proposed method keeps better

texture information and prevents the blur influence.

In general the applicability of the image inpainting has been strengthened in these

three fields: For diffusion-based method, the inpainting effect when inpainting the image

contains a large destroyed region has been strengthened. For exemplar-based method,

the matching accuracy in the inpainting has been improved. For dictionary learning
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based method, the sparse approximation process has been optimized through the adaptive

sparsity.
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Chapter 7

Future work

In this paper different patch scales make a strong influences into the inpainting pro-

cessing has been found. Large scale makes the patch contain more texture and structure

information; it will make the matching result more accurate. But instead using a large

scale to inpaint will make a strong influence to the followed inpainting process. So in the

paper the adaptively patch size method is introduced to improve the inpainting result. In

this paper the method focused on finding the most suitable scale and calculated the simi-

larities, but it ignored the association between different scale patches in a single inpainting

process. In the future, the association between different scale patches will be researched

on and the combination of Multi-scale patches will be used to inpaint images.

Whatʟs more, the exemplar-based methods and dictionary learning based methods

both inpaint image in patch level. The edge between the patches from different inpainting

processes more or less brings some unnatural feelings. In the research image fusion tech-

nology is used to reduce this bad influence but not completed. In the future this attempt

will continue.
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