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ABSTRACT: 

Quaternary ammonium base groups were introduced onto surfaces of SiO2-covered TiO2 

particles (SiO2-TiO2).  Oxidation of p-toluenesulfuric acid on the surface-modified TiO2 
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powders proceeded more efficiently than that on SiO2-covered TiO2 particles without 

surface modification.  On the other hand, the photocatalytic activity of surface-modified 

SiO2-TiO2 for oxidation of 1,4-dimethylpyridinium iodide was much lower than that of 

pure SiO2-TiO2.  In addition, no difference in photocatalytic activity for oxidation of 

toluene was observed between surface-modified SiO2-TiO2 and pure SiO2-TiO2.  The 

enhancement of the photocatalytic activity of surface-modified SiO2-TiO2 is due to 

electrostatic interaction between the substrate and functional groups introduced on 

SiO2-TiO2. 

KEY WORDS:  titanium dioxide; surface modification; quaternary ammonium base 

group; electrostatic interaction; selective oxidation 



1. Introduction 

 Titanium dioxide (TiO2)-mediated heterogeneous photocatalysis has attracted 

much attention recently because of its potential applications to decomposition of 

pollutants in water and air.[1-5]  In many applications, TiO2 powders having anatase 

phase with large surface areas are used as photocatalysts.  In addition to the importance of 

the crystal structures of TiO2 powders for improving photocatalytic activity as described 

above, the properties of surfaces of TiO2 particles are also important factors for 

determining their photocatalytic activity for degradation of organic compounds in 

aqueous media.  Under photoirradiation, the surfaces of TiO2 particles become 

hydrophilic because of change in the surface structure of TiO2.[6]  This hydrophilic 

property prevents hydrophobic organic compounds from being adsorbed on the surfaces 

of TiO2 photocatalysts in aqueous media.  This condition is a great disadvantage for 

degradation of organic compounds in aqueous media.  We have reported that surfaces of 

TiO2 particles were modified with hydrocarbon chains and fluorocarbon chains through 

Ti-O-Si bonds.  The level of photocatalytic activity of surface-modified TiO2 particles is 

higher than that of TiO2 particles without surface modification because the adsorbtivity of 



substrates on the surfaces of TiO2 particles is improved by the interaction between 

functional groups introduced on the surfaces of TiO2 particles and substrates.[7]  By 

applying these techniques, we developed surface-modified TiO2 powders having 

quaternary ammonium base groups and photocatalytic activities for oxidation of organic 

compounds (p-toluenesulfuric acid, 1,4-dimethylpyridinium iodide and toluene) in 

aqueous media. 

 

2. Experimental 

2.1. Materials and instruments 

 TiO2 particles uniformly covered with porous silica (SiO2-TiO2; average pore 

size: 50Å; anatase phase, 15% of SiO2 and 85% of TiO2; relative surface area: 170 m2 g-1) 

were supplied by Taihei Kagaku Sangyo.  p-Toluenesulfuric acid, 

1,4-dimethylpyridinium iodide, and toluene were obtained from Wako Pure Chemical 

Industries Ltd.  N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride was 

purchased from AZmax Co. Ltd.  Other commercial chemicals were of the highest 

available grade and were used without further purification.  The crystal structures of TiO2 



powders were determined from X-ray diffraction (XRD) patterns measured by an X-ray 

diffractometer (Philips, X’Pert-MRD) with a Cu target Ka-ray (l = 1.5405 Å).  The 

relative surface areas of the powders were determined by using a surface area analyzer 

(Micromeritics, FlowSorb II 2300).  X-ray photoelectron spectra (XPS) of the TiO2 

powders were measured using a Shimadzu ESCA1000 photoelectron spectrometer with 

an Al Ka source (1486.6 eV).  The shift of binding energy due to relative surface charging 

was corrected using the C 1s level at 284.0 eV as an internal standard.  The XPS peaks 

were assumed to have Gaussian line shapes and were resolved into components by a 

non-linear least squares procedure after proper subtraction of the baseline.  Fourier 

transform infrared spectroscopy was carried out using a Bruker IFS66 with a diffuse 

reflectance accessory.   

 

2.2. Modification of surfaces of SiO2-TiO2 particles 

 Modifications of the surfaces of SiO2-TiO2 particles with quaternary 

ammonium base groups was carried out according to previously reported methods.[7-11]  

Typical procedure for modification of SiO2-TiO2 is as follows.   



 

SiO2-TiO2 (6.0 g) was suspended in toluene containing 5.0 mmol of 

N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride.  The solution was 

refluxed and stirred for 1 h.  After the reaction, methanol was added to the solution to stop 

the reaction.  The precipitate was filtered and dried at 50°C under reduced pressure for 5 h.  

The obtained powder was labeled SiO2-TiO2-C3N+ (3: number of carbons).  Based on 

weight fractions of carbon and ash components obtained by elemental analysis, the 

amount of surface quaternary ammonium base groups was determined by assuming that 

the remaining ash is composed of a mixture of TiO2 and SiO2.  The amount of 

fluorocarbon groups attached to the photocatalysts was estimated to be 2.19 groups nm-2.  

These data were confirmed by XPS analysis. 

 

2.3. Physical properties of SiO2-TiO2-C3N+ particles 

 The overall hydrophobicity-hydrophilicity of SiO2-TiO2-C3N+ particles was 

evaluated by observing their floatability on water-acetonitrile mixtures of various 

compositions.[9]  Ten mg of SiO2-TiO2-C3N+ powder was added to 5 mL of a given 



concentration of aqueous acetonitrile solution.  The mixture was centrifuged and the 

precipitate was collected after shaking for 5 minutes.  The percent fraction of floating 

particles was calculated as the difference between weights of added and precipitated 

particles.   

 

2.4. Stability of quaternary ammonium base groups introduced onto the surfaces of 

SiO2-TiO2 particles 

 In order to evaluate the photostabilities of surface-modified TiO2 

(SiO2-TiO2-C3N+), the photocatalyst was photoirradiated using a 500 W Hg lamp (8.5 

mW cm-2) for 5.0 h in aqueous solutions.  FT-IR analyses and elemental analyses of the 

powder were performed before and after photoirradiation.  The powder before and after 

photoirradiation was also analyzed by XPS spectroscopy.    

 

2.5. Photocatalytic degradation of aldehyde compounds on SiO2-TiO2 modified with 

quaternary ammonium base groups 

 Activities of SiO2-TiO2-C3N+ were estimated by photo-degradation of organic 



compounds in aqueous media as follows.  Fifty mg of SiO2-TiO2-C3N+ was added to an 

aqueous solution of organic compounds (20 mM: p-toluenesulfonic acid, toluene, or 

1,4-dimethylpyridinium iodide) and H2O (5 ml).  Then the mixture was stirred vigorously 

to make an emulsion, and it was photoirradiated under aerated conditions.  

Photoirradiation was performed using a super-high-pressure mercury lamp (Wakom 

BMS-350S, 350 W) from the top of a cylindrical reaction vessel (transparent at >300 nm, 

2.5 cm in diameter) at room temperature.  The intensity of the incident light was 8.5 mW 

cm-2.  The reaction mixture was agitated vigorously with a magnetic stirrer during 

photoirradiation.  Decrease in organic compounds in the aqueous solution was 

determined using high-performance liquid chromatography with an ODS column.   

 

3. Results and discussion 

3.1. Physical properties of SiO2-TiO2-C3N+. 

 The average number of functional groups incorporated on SiO2-TiO2 particles 

was estimated to 2.19 groups nm-2 from the results of elemental analyses.  Floatability of 

SiO2-TiO2-C3N+ particles was also analyzed in water.  In contrast to the case of SiO2-TiO2 



particles modified with hydrocarbon chains, whose particles are floated on pure water, 

reported previously,[7,8,11] all particles of SiO2-TiO2-C3N+ were settled in water because 

of surface charges of SiO2-TiO2-C3N+ particles that is dues to the hydrophilicity of 

quaternary ammonium groups.   

 

3.2. Stability of SiO2-TiO2-C3N+. 

 The stability of surface-modified TiO2 particles was estimated by 

photoirradiation of SiO2-TiO2-C3N+ particles in aqueous media.  After photoirradiation of 

SiO2-TiO2-C3N+ particles, the amount of functional groups was determined by elemental 

analyses.  It was confirmed from elemental analysis of the resulting TiO2 photocatalysts 

that there is little degradation of quaternary ammonium base groups after photoirradiation.  

The number of functional groups (quaternary ammonium base groups) was estimated to 

be 2.19 groups nm-2 before irradiation.  This value hardly changed after photoirradiation.  

The number of functional groups after irradiation for 3 and 5 h were 2.11 and 2.04 groups 

nm-2, respectively.  We also observed FT-IR spectra of the photocatalysts before and after 

photoirradiation in order to determine the stability of functional groups introduced onto 



the surfaces of SiO2-TiO2-C3N+ particles.  The intensities of IR peaks at around 

1460-1490 cm-1, which were attributed to vibrations of C-N bonds, hardly changed after 

photoirradiation as shown in Fig. 1.  We also observed XPS spectra of SiO2-TiO2-C3N+ 

particles before and after photoirradiation. (The data did not show here)   XPS spectra that 

were attributable to the functional groups on SiO2-TiO2 particles.  The intensity of the 

peaks assigned to Si1s and N1s did not change after UV light irradiation for 5 h.  These 

results suggested that the quaternary ammonium base groups introduced onto the surfaces 

of SiO2-TiO2 particles are stable under photocatalytic conditions.   

 

3.3. Photocatalytic activities of SiO2-TiO2-C3N+.   

 Figure 2 shows the photocatalytic activities of TiO2 powders for oxidation of 

p-toluenesulfuric acid, 1,4-dimethylpyridinium iodide, and toluene by irradiation for 1 h 

at room temperature.  When p-toluenesulfuric acid, 1,4-dimethylpyridinium iodide, and 

toluene were used as substrates, photooxidation of these compounds proceeded on 

SiO2-TiO2 photocatalysts with a relatively high yield as shown in Fig. 2.  Photocatalytic 

activity of SiO2-TiO2-C3N+ particles for oxidation of p-toluenesulfuric acid was much 



higher activity than that of pure SiO2-TiO2 photocatalyst.  On the other hand, 

SiO2-TiO2-C3N+ particles showed a much lower levels of activity for oxidation of 

1,4-dimethylpyridinium iodide than did pure SiO2-TiO2 photocatalyst.  When toluene 

was used as a substrate, photocatalytic activity of SiO2-TiO2-C3N+ particles was similar to 

that of pure SiO2-TiO2 particles.  In order to elucidate of interaction between functional 

groups (quaternary ammonium base groups) on the surfaces of SiO2-TiO2 particles and 

substrates (p-toluenesulfuric acid, 1,4-dimethylpyridinium iodide, and toluene), 

adsorbtivities of these compounds on the surfaces of SiO2-TiO2 particles with or without 

surface modification were estimated (Fig. 3).  The adsorbtivity of p-toluenesulfuric acid 

on SiO2-TiO2-C3N+ particles was about 7-times larger than that on pure SiO2-TiO2 

particles because electrostatic interaction between the substrate and the quaternary 

ammonium base groups introduced on the surfaces of SiO2-TiO2 particles was improved 

the adsorbtivity.  When 1,4-dimethylpyridinium iodide was used as a substrate, 

SiO2-TiO2-C3N+ particles showed lower adsorbtivity (1/17) than that of SiO2-TiO2 

particles because electrostatic repulsion between quaternary ammonium base groups on 

the surfaces of SiO2-TiO2 particles and substrates result in a decrease in adsorbtivity.  



Regardless of surface modification of SiO2-TiO2 particles, the amount of adsorbed 

toluene on SiO2-TiO2-C3N+ particles was larger than that on pure SiO2-TiO2 particles 

because surface properties of SiO2-TiO2 particles modified with functional groups are 

more hydrophobic than these of SiO2-TiO2 particles without surface modification, 

resulting in improvement of adsorbtivity. 

 Photocatalytic decomposition of substrates was observed as a function of 

irradiation time as shown in Fig. 4.  When SiO2-TiO2-C3N+ particles were used as a 

photocatalyst, photodecomposition of toluene proceeded more efficiently than that in the 

case of SiO2-TiO2 because surface properties of SiO2-TiO2-C3N+ particles remained 

hydrophobic under photoirradiation.  Furthermore, these substrates (p-toluenesulfuric 

acid, 1,4-dimethylpyridinium iodide and toluene) were completely decomposed using 

SiO2-TiO2-C3N+ particles as shown in Fig. 4.  Surface properties of TiO2 (SiO2-TiO2) 

particles became hydrophilic under photoirradiation.  Therefore, adsorbtivity of 

substrates having hydrophobic properties on the surfaces of TiO2 (SiO2-TiO2) particles 

rapidly decreased with increase in photoirradiation time, resulting in a decrease in their 

photocatalytic activities.  Finally, the decomposition of substrates on SiO2-TiO2 particles 



stopped under prolonged photoirradiation because of change in surface properties of 

SiO2-TiO2 particles as shown in Fig. 4-6.   

 In addition, the difference in photocatalytic activity between SiO2-TiO2-C3N+ 

particles and SiO2-TiO2 particles is most remarkable for oxidation of p-toluenesulfuric 

acid and 1,4-dimethylpyridinium iodide as shown in Fig. 5-6.  Namely p-toluenesulfuric 

acid was decomposed more easily on SiO2-TiO2-C3N+ than on SiO2-TiO2.  On the other 

hand, photocatalytic activity of SiO2-TiO2 for degradation of 1,4-dimethylpyridinium 

iodide is higher than that of SiO2-TiO2-C3N+ as shown in Fig. 6.  As described in above 

section, the electrostatic interaction between substrate and functional group on 

SiO2-TiO2-C3N+ is one of factor to determine photocatalytic activity.   

 These results suggested that hydrophobic and electrostatic interaction between 

substrates and TiO2 photocatalysts is the most important factor to control photocatalytic 

activity for decomposition of organic compounds in aqueous media using this system.   

 

 

4. Conclusions 



 It is notable that oxidation of p-toluenesulfuric acid proceeded more efficiently 

on the surface-modified TiO2 photocatalyst (SiO2-TiO2-C3N+) than on pure TiO2 particles 

without surface modification (SiO2-TiO2) because of electrostatic interaction between 

quaternary ammonium base groups on SiO2-TiO2 and substrates (p-toluenesulfuric acid).  

On the other hand, a decrease in photocatalytic activity for oxidation of 

1,4-dimethylpyridinium iodide was observed by surface modification of SiO2-TiO2 

particles, which is due to the electric repulsion between the surface modified groups of 

SiO2-TiO2-C3N+ and substrates.  Further improvements in TiO2 photocatalysts 

surface-modified with various functional groups are currently being investigated.   
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Figure captions 

Figure 1.  FT-IR absorption spectra of SiO2-TiO2-C3N+ before and after photoirradiation 

in water for 5 h and SiO2-TiO2 without surface modification (irradiation time: 5 h, light 

intensity: 8.5 mW cm-2). 

Figure 2.  Photocatalytic activities for oxidation of p-toluenesulfuric acid, 

1,4-dimethylpyridinium iodide, and toluene on surface-modified TiO2 powders with 

different coverages. 

Figure 3.  Adsorbtivities of p-toluenesulfuric acid, 1,4-dimethylpyridinium iodide, 

and toluene on the surfaces of SiO2-TiO2 particles with or without surface 

modification. 

Figure 4.  Photocatalytic decomposition of toluene on both SiO2-TiO2-C3N+ and 

SiO2-TiO2 as a function of irradiation time.   

Figure 5.  Photocatalytic decomposition of p-toluenesulfuric acid on both 

SiO2-TiO2-C3N+ and SiO2-TiO2 as a function of irradiation time.   

Figure 6.  Photocatalytic decomposition of 1,4-dimethylpyridinium iodie on both 

SiO2-TiO2-C3N+ and SiO2-TiO2 as a function of irradiation time.   
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