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Abstract: We present a motion classification approach to detect movements of interest (abnormal motion) based on 

optical flow. By tracking all feature points of a moving human in successive frames, we calculate the coordinate space 

and create feature space. This is done directly from the intensity information without explicitly computing the 

underlying motions. It requires no foreground segmentation, no prior learning of activities, no motion recognition and 

no object detection. First, we determine the abnormal scene and speed by using the velocity histogram. Then by using 

k-means clustering over velocity orientation and magnitude, we determine the abnormal direction. The performance of 

the proposed method is experimentally shown.  
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1. INTRODUCTION 
 

In recent years, abnormal motion detection has 

attracted great research attention in computer vision. 

Most current surveillance systems only provide reactive 

security by enabling the analysis of events after the 

event has already occurred. What is really needed by the 

security community is, however, proactive security to 

help prevent future attacks.  

Many approaches of video event analysis are based 

on the object trajectories extracted from video.  

Abnormal events can be detected through a prior 

learning of normal events or without a learning process 

by analyzing the trajectory result directly. 

Jiang et al. [1] used spatial and temporal context and 

performed frequency-based analysis to detect 

anomalous video events. The normal observation is 

modeled by Hidden Markov Model (HMM). This 

research detected an anomalous car trajectory on the 

road from top view. Kiryati et al. [2] recognized an 

abnormal human behavior from high camera view. 

Before the detection phase, they included the training 

phase for normal condition. Baranwal et al. [3] detected 

an abnormal motion indoors and in a static background 

environment. They trained various motions using radial 

basis functions networks (RBFN). Park et al. [4] used 

clustering of motion based on similarity measurement of 

a feature space. They detected an abnormal motion, 

especially in a different direction case, from high 

camera view.  

In this paper, we propose an abnormal motion 

detection in an occlusive environment, which occur 

often in real life. We capture a scene of a 2 meter height, 

indoor and outdoor scene, as shown in Fig. 1. It requires 

no foreground segmentation, no prior learning of normal 

motion, no motion recognition and no object detection. 

We analyze the trajectory of the points tracked by 

Lucas-Kanade tracker. 

 

2. OVERVIEW OF THE PROPOSED 

METHOD 

Definition of abnormal motion in this paper is a 

human motion with different speed and orientation 

rather than speed and orientation of motion of a group 

people in a scene, whether in the same direction or 

opposite direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) scene A 

(b) scene B 

(c) scene C 

Fig. 1. Examples of successful abnormal motion 

detection: (a) An indoor case, and (b) an outdoor 

case: The abnormality is in opposite direction  

against normal motion. (c) An outdoor case, where 

the abnormality is in the same direction but faster 

speed against normal motion.  
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Based on this definition, we describe the proposed 

system in the following. 

There are three main processes in the proposed 

method. The first process is the tracking of human 

motion. We extract tracking points on motion objects in 

every two successive frames by using Harris corner 

detector followed by the Lucas-Kanade tracker.  

The second process is creation of coordinate spaces. 

After tracking the motion of objects, there are many 

tracking points belong to a moving human and noise. To 

reduce the noise caused by the change of light intensity, 

we eliminate static points. Then, we create coordinate 

spaces. Coordinate spaces are the tracking point series 

from the observation frames. Each feature point in the 

last frame will have one coordinate space, which shows 

a trajectory of the point in an observation time. 

 Next, we create feature spaces as in [4]. A feature 

space has four dimensions. It consists of velocity of x, 

velocity of y, magnitude of velocity, and orientation of 

the velocity. 

 The third process is detection of abnormal objects and 

speed. This detection process analyzes the velocity 

histogram. The histogram shows the velocity of each 

point in an observation time. With this histogram, we 

can decide whether abnormality has occurred or not in a 

scene and detect its speed. 

 After abnormality has been detected, we determine 

the abnormal direction by using k-means clustering over 

velocity orientation and magnitude. Figure 2 depicts the 

overview of the proposed system. 

 

3. METHOD 

 
3.1. Extracting Feature Points 

Harris corner detector, a popular feature point detector, 

is applied to extract feature points in a given image. The 

Harris corner detector is based on the local 

auto-correlation function of a signal, where the local 

auto-correlation function measures the local changes of 

the signal with patches shifted by a small amount in 

different directions. 

For a small shift [u,v], we have bilinear 

approximation as follows: 
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The Harris measure of a corner is defined by 
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Here λ1 and λ2 are the eigenvalues of the matrix M. 

 Find the points with larger corner response function R 

(R > threshold), and take the points of local maxima of 

R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2. Tracking Feature Points 

The Lucas-Kanade tracker, one of the most 

well-known feature points tracking algorithms is 

employed in the proposed method. 

The L-K algorithm relies only on local information 

that is derived from some small windows surrounding 

each of the points of interest. Based on the condition, 

we can get the final expression in the form of 
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The disadvantage of using small local windows in the 

Fig. 2. Overview of the proposed abnormal motion 

detection method 
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Lucas-Kanade algorithm is that large motions can move 

points outside of the local window and thus become 

impossible for the algorithm to find them. This problem 

led to the development of the pyramidal L-K algorithm, 

which starts tracking from the highest level of an image 

pyramid and working down to lower levels. Tracking 

over image pyramids allows large motion to be caught 

by local windows. Figure 3 shows the image of motion 

vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.3. Creating the Feature Space 

Since it is difficult to detect an abnormal motion 

only by the motion vectors between successive frames, 

we need to accumulate some frames from the first 

frame. 

The feature points are tracked over the entire frames 

and their location information is stored into a coordinate 

space [4]. Suppose that a feature point n 

(n=0,1,2,…,N-1) is tracked through T image frames and 

its position on the frame t (t=0,1,2,…,T-1) is denoted by 

(x1
(n)

,y1
(n)

). We then define a sequence of T coordinates 

of the feature point by the following form [4]; 
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Figure 4 shows the tracking result throughout the T 

frames. 

However, the movement cannot be known only by 

the position information of points in the coordinate 

space. Therefore the coordinate space is converted to the 

feature space. There are three kinds of feature spaces 

such as velocity (8),velocity magnitude (9), and velocity 

orientation (10). They are defined respectively as 

follows; 
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3.4. Detection of abnormal scene and speed 

To detect abnormal scene and speed, we propose a 

method based on a velocity histogram. A resultant 

image of tracking and their corresponding velocity 

histogram are shown in Fig. 5. 

Due to our definition that a normal motion is a 

motion  performed by a group of people, its amplitude 

of histogram should be greater than the abnormal one. 

Based on velocity histogram in Fig. 5 (b), the property 

of the velocity histogram belonging to an abnormal 

scene is described in Fig. 6, where w is the difference 

between vmax and vmin. Then the abnormal scene is 

determined as follows; 
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Fig. 3. Motion vectors 

Fig. 4. Tracking result throughout T frames 
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The abnormal speed is determined as follows; 
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where vΣpeak is a velocity at a peak value of number of 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.5. Determining abnormal direction 

We determine the abnormal direction by using 

k-means clustering over velocity orientation, θ, and 

velocity magnitude, |v|. The velocity orientation and the 

corresponding abscissa are shown in Fig. 7. To cluster 

the velocity orientation on the abscissa, we need to shift 

the original abscissa shown in Figure 7 (b) into a new 

abscissa shown in Fig. 7 (c). Then we can perform 

k-means clustering. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The result of k-means clustering: (a) 

Tracking images, (b) their clustering by k-means 

algorithm 
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Fig. 7. Finding an abnormal direction of the velocity: 

(a) Velocity orientation, (b) corresponding abscissa of 

(a), (c) a shifted abscissa of (b)  
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Fig. 5. Result of tracking and their corresponding 

velocity histogram: (a) An abnormal scene, (b) 

velocity histogram of (a), (c) a normal scene, (d) 

velocity histogram of (c) 
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4. EXPERIMENTAL RESULTS 
 

For experiment, we use indoor and outdoor scene, as 

shown in Fig. 1, where many people do normal motion 

(walking) and a person do abnormal motion (running 

and toward a camera). The video frame rate and the size 

of an image are 30 fps and 320x180 pixels, respectively.  

The observation frames consist of 10 successive 

frames. The experimental environment is as follows: 

Operating system is Windows 7 ultimate; processor is 

Intel® core™ i7 CPU 870 @2.93GHz and the used 

software is Microsoft Visual Studio 2010. The average  

execution time per observation frames is 247 ms. 

The experimental results are shown in Fig. 9. Red 

tracking lines are abnormal motion, whereas green 

tracking lines are normal motion. 

 

5. CONCLUSION 
 

In this paper, we proposed an abnormal motion 

detection method in an occlusive environment, which 

occur often in real life. We presented a motion 

classification approach to detect movements of interest 

(abnormal motion) based on optical flow. This is done 

directly from the intensity information, without 

explicitly computing the underlying motions. It requires 

no foreground segmentation, no prior learning of 

activities, no motion recognition and no object 

detection. 

As future work, we are going to conduct experiments 

on the recognition of abnormal motion under stronger 

occlusion. 
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(a) (b) 

(c) 

Fig. 9. Performance of abnormal motion detection from various scenes. The red line in the frames shows the 

abnormal notion of a person having a different motion from others. Time elapses in the order of upper left, 

upper right, lower left and lower right image. 
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