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Abstract

Electroencephalography (EEG) data inevitably contains a large amount of noise par-
ticularly from ocular potentials in tasks with eye-movements and eye-blink, known
as electrooculography (EOG) artifact, which has been a crucial issue in the brain-
computer-interface (BCI) study. The eye-movements and eye-blinks have different
time-frequency properties mixing together in EEGs of interest. This time-frequency
characteristic has been substantially dealt with past proposed denoising algorithms
relying on the consistent assumption based on the single noise component model.
However, the traditional model is not simply applicable for biomedical signals consist
of multiple signal components, such as weak EEG signals easily recognized as a noise
because of the signal amplitude with respect to the EOG signal. In consideration of
the realistic signal contamination, we newly designed the EEG-EOG signal contam-
ination model for quantitative validations of the artifact removal from EEGs, and
then proposed the two-stage wavelet shrinkage method with the undecimated wavelet
decomposition (UDWT), which is suitable for the signal structure.

The features of EEG-EOG signal has been extracted with existing decomposi-
tion methods known as Principal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA) based on a consistent assumption of the orthogonality of signal
vectors or statistical independence of signal components. In the viewpoint of the
signal morphology such as spiking, waves and signal pattern transitions, A system-
atic decomposition method is proposed to identify the type of signal components or
morphology on the basis of sparsity in time-frequency domain. Morphological Com-
ponent Analysis (MCA) is extended the traditional concept of signal decomposition
including Fourier and wavelet transforms and provided a way of reconstruction that
guarantees accuracy in reconstruction by using multiple bases being independent of
each other and uniqueness representation, called the concept of “dictionary”. MCA
is applied to decompose the real EEG signal and clarified the best combination of
dictionaries for the purpose. In this proposed semi-realistic biological signal analysis,
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target EEG data was prepared as mixture signals of artificial eye movements and
blinks and iEEG recorded from electrodes embedded into the brain intracranially
and then those signals were successfully decomposed into original types by a linear
expansion of waveforms such as redundant transforms: UDWT, DCT,LDCT, DST
and DIRAC. The result demonstrated that the most suitable combination for EEG
data analysis was UDWT, DST and DIRAC to represent the baseline envelop, multi
frequency wave forms and spiking activities individually as representative types of
EEG morphologies.

MCA proposed method is used in negative-going Bereitschaftspotential (BP). It is
associated with the preparation and execution of voluntary movement. Thus far, the
BP for simple movements involving either the upper or lower body segment has been
studied. However, the BP has not yet been recorded during sit-to-stand movements,
which use the upper and lower body segments. Electroencephalograms were recorded
during movement. To detect the movement of the upper body segment, a gyro sensor
was placed on the back, and to detect the movement of the lower body segment,
an electromyogram (EMG) electrode was placed on the surface of the hamstrings
and quadriceps. Our study revealed that a negative-going BP was evoked around
-3 to -2 seconds before the onset of the upper body movement in the sit-to-stand
movement in response to the start cue. The BP had a negative peak before the onset
of the movement. The potential was followed by premotor positivity, a motor-related
potential, and a reafferent potential. The BP for the sit-to-stand movement had
a steeper negative slope (-0.8 to -0.001 seconds) just before the onset of the upper
body movement. The slope correlated with the gyro peak and the max amplitude of
hamstrings EMG. A BP negative peak value was correlated with the max amplitude of
the hamstring EMG. These results suggested that the observed BP is involved in the
preparation/execution for a sit-to-stand movement using the upper and lower body.
In summary, this thesis is help to pave the practical approach of real time analysis
of desired EEG signal of interest toward the implementation of rehabilitation device
which may be used for motor disabled people. We also pointed out the EEG-EOG
contamination model that helps in removal of the artifacts and explicit dictionaries
are representing the EEG morphologies.

Keyword

Brain-computer-interface (BCI), Electroencephalography (EEG), Electrooculography
(EOG), Electromyogram (EMG), Undecimated Wavelet Decomposition (UDWT),
Wavelet Shrinkage, EEG-EOG Contamination Model, Morphological Component Anal-
ysis (MCA), Discrete Cosine Transform (DCT), Local Discrete Cosine Transform
(LDCT), Discrete Sine Transform (DST), DIRAC and Bereitschaftspotential (BP).
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Chapter 1

Introduction

Advancements in modelling of mathematical methods and computational science has

been playing an important role for manufacturing the biological systems. There

has been a great interest in the effective and precise model that contributing to

solve the fundamental problem of many applications in daily life. The electrical

signal called electroencephalography (EEG) measured from the brain is one of the

biological aspects that has much more probability to assist and bring convenience

to our daily life. Many researcher and engineers are widely used EEG signals in

neuroscience, cognitive science, cognitive psychology and psychophysiological research

etc. EEG signals are used for clinical application , biometric systems and brain

computer interface (BCI), e.g. a smartphone display the brain activities in time and

frequency domain. There are many more application that has a great interest from

medicine to military objective[1, 2, 3, 4, 5, 6].

1.1 Motivation

During last few years, EEG-driven applications have been increased day by day.

The basic principle of these applications is work in real-time and may be used as

portable device. The BCI system [7] is one of the best example that communicate

between the device and EEG signal taken from scalp. It is independent of its normal

output pathway of peripheral nerves and muscles. The BCI system is allowed the
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user to interface with the device and is based on real-time analysis of EEG signals

associated with the recognition of the event related task. The BCI system is depend

on intermediary functional components, the control signals, and feedback loops. An

intention of the user relies on the brain state to generate a signal that has the input

signal for the BCI system. There were a lot of studies done by researcher throughout

the world for the accuracy, online analysis etc. And much more research is required

to achieve the sustainable goal.

Rehabilitation device is one of the option that may be used for motor disabled

and healthy people. However, every EEG-driven application has its own particularity

(e.g. under the condition which is during body movements, or in an almost still state

without any motion but intensive brain activities) therefore prediction of the brain

activities through EEG become a huge and highly attractive field of research. It is very

crucial to understand the principles by which neural ensembles encode sensory, motor

and cognitive information [8] and how to extract these features from EEG signals

that may be used for particular EEG-driven application. It is equally important

that the physiological features of neuron and which areas of the brain are involved

[9]. To overcome all these as a general framework is difficult. The more EEG-driven

application means the more meaningful feature from EEG signals. The EEG study

is assessed in term of frequency and time series analysis. The EEG in time series

[10, 11, 12] are used to measure the nonlinear dynamic behaviour, sparsity pattern of

the brain, understanding the time sequences, model the time series and estimate the

brain behaviour and it help to design the BCI system. The individual EEG frequency

bands reveal the information of neurophysiology in frequency analysis of the brain

[13]. The EEG signal features extraction have not clearly identified, such as which

frequency band is used or which event-related potential (ERP) to be tested during the

practical implications. So it is very important to specify the original purpose before

talking about EEG-driven application although there may exist some common point

between these EEG-driven applications. The brain activities is measured during a

task and removal of EOG artifact and feature extraction by decomposition is described

in next section.
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1.2 Objective of Dissertation

The main objective of this dissertation is a signal/noise separation in biological sys-

tem. For that a mathematical framework is proposed to optimize methods for denois-

ing and features extraction of EEG signals during voluntary movement related task.

To achieve this objective, this work is divided in three steps:

∙ A mathematical framework to optimize “signal decomposition with high visi-

bility”.

∙ To discriminate “ true biological signal” from noise clarification of information

representation.

∙ Pursuit of what kind of “information” can be obtained in the specific motion

control task.

This dissertation describes a robust methodology to denoise and decompose the

EEG signal into its component and an experimental paradigm provides the EEG

information for rise to stand-up behavior. In experimental paradigm, the EEG com-

ponent “negative going potential called bereitschaftspotential (BP)” based on move-

ment related cortical potentials (MRCPs) are efficient and practically may be used

for rehabilitation device for the functional movement disorder. The most prominent

problems are removing artifacts and robust algorithms for extracting the features

from EEG signal that is consider as the input for BCI system. A general view of this

dissertation is illustrated by Figure 1-1.

The highlighted block in Figure 1-1 is the new methodology based on sparsity

to improve the practicability of EEG analysis for real time. The main purpose is

to explored the morphological diversity of the component feature in the EEG signal.

Each component feature reveals the different morphological characteristics.

20



Cerebral

Cortex

Basal ganglia

Thalamus

Cerebellum

Acquisition

System

Denoising &

Decomposition

(UDWT)

Morphological

Features Extraction

(MCA)

Postprocessing

Robotic -assist device

Feedback

Physiological Signals

Figure 1-1: A proposed scheme for Denoising & removal of EOG artifacts using
‘UDWT’ and Morphological Features Extraction using ‘MCA’ for neurorobotics re-
habilitation, first of all the Physiological signal taken from the voluntary participant
performs rise to stand-up task. Then remove the artifacts and extract the features
based on morphology.

1.3 Organization of this Dissertation

This dissertation is organized in two major parts i.e mathematical framework and new

experiment paradigm for rise to stand-up. The first part consists of methodology &

algorithms for EEG denoising and decomposition. The second part consists of detail

study of experimental paradigm and decomposition of the raw EEG signal using

MCA.

Chapter 2: This chapter comprises all preliminary knowledge and information

related to human brain. The brain activity and their properties is mentioned that

includes the characteristics of EEG in term of frequency. The different types of

artifacts affect the EEG and the sources of artifacts.

Chapter 3: The eye-movements and eye-blinks have time-frequency properties

mixing together in EEGs. This time-frequency characteristic has been substantially

dealt with past proposed denoising algorithms relying on the consistent assumption

based on the single noise component model. In consideration of the realistic signal

contamination, we newly designed the EEG-EOG signal contamination model for

quantitative validations of the artifact removal from EEGs, and then proposed the
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two-stage wavelet shrinkage method with the undecimated wavelet decomposition

(UDWT), which is suitable for the signal structure.

Chapter 4: The advantage of a sparse representation of EEG signal has used to

extract the feature of EEG signal. In the viewpoint of the signal morphology such as

spiking, waves and signal pattern transitions, we proposed a systematic decomposition

method to be able to identify the type of signal components on the basis of sparsity

in time-frequency domain. Morphological Component Analysis (MCA) extended the

traditional concept of signal decomposition including Fourier and wavelet transforms

and provided a way of reconstruction that guarantees accuracy in reconstruction by

using multiple bases being independent of each other and uniqueness representation,

called the concept of dictionary”. MCA is applied to decompose the real EEG signal

and clarified the best combination of dictionaries. The different types of redundant

dictionaries (‘UDWT’, ‘DCT’, ‘LDCT’, ‘DST’ and ‘DIRAC) is used to decomposed

the sparse feature of EEG signal. In this part of the dissertation to decompose the

EEG signals in different morphological features and extract the useful information.

Chapter 5: This chapter comprises human brain information for a rise to stand-up

behavior experimental paradigm. The detailed study of EEG and EMG activity of

this experiment is recorded. It contains the Bereitschaftspotential as preceded the

motor related cortical potential. Here, the most important point to understand the

properties of the brain activities in a rise to stand-up behavior. The slow cortical

potential particularly Bereitschaftspotential is one of the parameters to be used for

rehabilitation BCI device. The EEG and EMG have been used to implement the

complex, dynamic and voluntary behavior for developing the robot-assisted device

for motor disabled person to stand-up.

The rest of the dissertation includes the summary and conclusion in Chapter 6.

Chapter 3, 4 and 5 include the main contribution of this dissertation.
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Chapter 2

Research Background and

Preliminaries

This chapter is explained the brief overview of the human brain structure and their

different functional activities. The short description of brain measuring activity and

recording techniques. The different types of artifacts that usually contaminates in

the EEG signal.

2.1 Human Brain

The human nervous system is divided into two parts: the central nervous system

(CNS) and peripheral nervous system (PNS) [14]. CNS comprises of the brain and

spinal cord. The brain defined as an integration of many functional activities like

thought, emotion organ control. The spinal cord defined as the transmission medium

of sensory information to and from the peripheral nervous system. The PNS consists

of the afferent and efferent fibres. To be specific, the human brain structure organiza-

tion is a complex hierarchical network which comprises with billions of neurons [15].

The hierarchical network is split into various circuits, columns and functional areas.

Even the brain is distinguished in two hemispheres; they are separated by the central

sulcus and commutate with each through corpus callosum and anterior commissure

and further it can divide into four lobes frontal, parietal, temporal and occipital.
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Figure 2-1: A schematic representation of functional areas of human brain.
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The Figure 2-1 is cover the whole brain structure that illustrates the location

of the functional areas. The topological of the whole human brain is a functional

networks [16] and these networks separating into modules, each module is connected

with internal or intra-modular. The gray matter, white matter, axons and cell bodies

are the major components of the human brain. The gray matter is distributed over

the surface of the cerebral hemispheres. The motor cortex is a region of the cerebral

cortex associated with planning, control, and execution of voluntary movement.
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Figure 2-2: Organization of different parts of the body on the motor cortex.

The Figure 2-2 shows the motor cortex area according to the Penfield and Ras-
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mussen theory. And area on the cerebral are activated during preparation, posture

control and task execution of voluntary movement and are widely used in BCI as

non-invasive EEG [17]. There are several parts of brain those are contributing from

preparation to execution of voluntary movement that shown in Figure 2-3 [18].

Prefrontal

cortex

Basal ganglia

PreSMA

SMA

Motor

Area

Figure 2-3: From basal ganglia to prefrontal cortex, PreSMA, SMA to motor for
preparation of voluntary movement.

In voluntary movement, the motor cortex receives two input, one from the sup-

plementary motor area that flow from basal ganglia to prefrontal cortex and pre

supplementary motor area and second input receives from sensory cortices that flow

from parietal cortex [18]. The parietal premotor circuit is associated with object

oriented action such grasping, sensory input and voluntary behaviour [18].
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2.2 Brain Measuring Activity

A biosignal may be defined as the description of a physiological phenomenon, irrespec-

tive of the nature of description[19] and are classified in electrical and non-electrical

signals. The EEG, ECG, EMG, EOG and much more are categorized as electrical

signals. The biosignals are non-stationary, continuously measured and monitored. In

this dissertation, we focus on classifying the brain state for various mean by using

EEG signal. In 1920, the first EEG recorded from human scalp demonstrated by

Berger.

2.2.1 Brain rhythms

The brain is composed of billions of particular neurons and nerve cell or brain cell.

The neuron receives information from cells and transmits to other cells. Neuron

consists of nucleus and cell body, cell body is extensions to dendrites which bring

the information to the cell body and on opposite side of neuron extension called

axons which transmit the information to another neuron through axon terminals.

The information flows from dendrites to axon as shown in Figure 2-4.

The Figure 2-4 [20, 21] is illustrated the mechanism of electrical activity passes

from one end of a nerve cell to another cell that carries information about the intensity

of the nerve cell. Every neuron maintains a voltage difference between its membranes

and a significant voltage difference called the action potential or nerve impulse is

generated by ensembles of neurons at different spatial scales that reflect the activity

of few nearby nerves cells. The neuronal activity is connected through the spike across

the cortical regions that create local oscillations and establish their coherence between

distant cortical areas [22]. The electrical activity is measured as a wave called brain

wave or brain rhythms[20, 21]. The brain rhythms [23] are generated various forms of

rhythms by a central nervous system. These electric activities in the human brain are

capable of firing in specific patterns which cause rhythms and rhythms are ubiquitous

features of brain dynamics oscillation [24]. The functional task is associated with

physiological rhythms but generation mechanism of these rhythms remain a mystery.
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The brain rhythms play an important role to facilitate the internal and external

behaviour. The rhythms in the brain are initially and superficially uncovered in the

EEG measurement.

The undulation electrical potential is brain waves, monitoring and recording are

called EEG [25, 26]. The continuous electrical activity of the brain is measured

from the scalp by various recording apparatus (EEG, MEG, fMRI, TMS, PET etc.).

These apparatus are classified on their temporal and spatial resolution. EEG is a

high temporal resolution, low cost and easy to implement. The imaging techniques

such functional magnetic resonance imaging (fMRI) have the spatial resolution. The

combined implementation of fMRI and EEG is to grab the gap between temporal and

spatial resolution, but it is a sophisticated method to implement. Other imaging tech-

niques such transcranial magnetic stimulation (TMS) and magnetoencephalography

(MEG) is provided with the high temporal and spatial resolution. MEG measures

the electromagnetic fields that are generated by electrical currents in the intracellular
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fluid. However, MEG is the temporal resolution similar to EEG. It has the ability

to identify neural generators but it is expensive and time-consuming. TMS directly

stimulates the cortical regions using magnetic waves. TMS is good in spatial reso-

lution, fMRI is superior to TMS. The simultaneous recording of EEG and fMRI or

EEG and TMS are improved the temporal and spatial resolution to identify the neu-

ral activity [27, 28]. The intensity and pattern of electrical activity are determined

by the level excitation of different parts of the brain. Much of the time brain waves

are irregular and no specific pattern can distinguish in the EEG and MEG[29, 30, 31].

Due to the advancement of recording techniques, it is possible to monitor and record

the neuronal activity in the brain simultaneously. Mostly EEG is examined from the

scalp by electrodes that are not directly from neuron tissues. The indirect contact

is established by an electrolyte bond formed by electrode gel in between electrode

and skin. EEG is used to diagnose and analyse symptoms. EEGs has an advantage

that the EEG test contains vast information without an invasive procedure. The EEG

monitoring is proving the effective in the diagnosis of epilepsy, tumor, cerebrovascular

lesions, ischemia and many others brain disorder associated with the brain.

2.2.2 Brain rhythms frequency

The brain wave is the superimpose of many action potentials by the neuron in the

brain measured by monopolar and bipolar techniques. The first Human EEG was

recorded by the Hans Berger in 1924. The EEG wave is relatively small and measured

in microvolts (𝜇V). The human brain rhythmic is distinguished based on relevant

frequency bands. These frequency bands are used for classification. The rhythmic

activity within a certain frequency band of EEG is varied from 0.1 to 100 Hz for clinical

purpose and sometimes it have a strict band that varies from 0.5 to 70 Hz. Every

brain rhythmic is distributed over the scalp and it has a certain biological significance.

The range of relevant frequency bands of the EEG is used for measurement or analysis

is known as delta, theta, alpha, beta and gamma.

Delta: Delta frequency band tends to be the highest amplitude and slowest waves

(has frequency range of 0.5 - 4 Hz) [32]. It is normal as the dominant rhythm in
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infants up to one year and mainly characterized during deep NREM in stages 3 and

4 of sleep [33, 34]. It may occur focally with the subcortical lesion and in general

distribution with diffuse lesions, metabolic encephalopathy hydrocephalus or deep

midline lesions. It is usually most prominent frontally in adults and posteriorly in

children.

Theta: Theta frequency band is the frequency range of 4 - 7.5 Hz [34] and defined

by slow wave activity. It is normal in children and in sleep but abnormal in awake

adults. It is associated with emotion [35] and memory [36]. The midline frontal

activity is linked to low anxiety and increased approach related to behaviour [37]. It is

considered as a manifestation of focal subcortical lesions; it may be seen in generalized

distribution in diffuse disorders such as metabolic encephalopathy or some instances

of hydrocephalus.

Alpha: Alpha frequency band is the frequency range of 7.5 - 14 Hz and associate

with relaxed wakefulness state with closed eyes. It is generated in the occipital and

anterior regions [38, 39]. The higher amplitude is seen in the posterior regions. It

disappears when opening the eyes or calculating or thinking. It is the major rhythms

seen in normal relaxed adults. It is presented during most of life especially after the

thirteenth year.

Beta: Beta frequency band is the frequency range of 14 - 30 Hz and described

as a fast activity. It is a symmetrical distribution on both sides usually and is most

evident frontally. It may be absent or reduced in areas of cortical damage. It is

observed as a normal rhythm. It is dominant rhythms in patients who are alert or

anxious or have their eyes open [40, 41].

Gamma: Gamma frequency band is the frequency range of 30 - 100 Hz. It is as-

sociated with visual perception and cognition and related to cognitive task execution

and many researchers consider for working memory [42]. It is involved in the forma-

tion of memory, language processing, internal thought, behaviour, actions, attention,

arousal and object recognition.
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2.2.3 Artifacts in brain rhythms

EEG artifacts are non-cerebral in origin that considered as extraneous signals ap-

peared in the desired waveform. Although the artifacts are often recognised by the

experts due to their morphology and distribution. The systematic approach of recog-

nition, source identification and elimination of artifacts are an important process

to reduce the chance of EEG distort and limit the potential for adverse clinical

consequences. These artifacts are divided into two types physiological and non-

physiological based on their origin. The non-physiological artifact arises from the

external electrical interference and internal electrical malfunctioning of the record-

ing system (recording electrodes, electrode positioning, cables, amplifiers etc.). The

non-physiological (Extaphysiologic) artifacts [43] are based on the origin of the source

given below:

∙ Electrode Artifacts: The electrode artifacts are various types such as elec-

trode pop, electrode contact, electrode movement, perspiration, salt bridge and

lead movement. The electrode artifact [44] is brief transients and restricted

to one electrode and low-frequency rhythms across the scalp region. The brief

transient is spontaneous electrical potential discharging, it is happened due to

the electrode and skin interface to act as capacitor and store electrical charge

across the electrolyte gel [45, 46]. The electrode movement is produced the slow

wave. The salt bridge artifact is due to smearing of the electrode paste and

electrodes [45] and it produced the unwanted electrical connection by forming

a channel in between the electrodes.

∙ External Interference Artifacts: The external interference artifacts [47, 48]

are produced from the electrical fields, magnetic fields, mechanical effects on

the body and another form of external device noise. Due to this the high am-

plitude, irregular, spike-like signals are accumulated in the EEG signals. These

artifacts have high frequency, static morphology and periodically repetition rate

in nature. The Mechanical devices such as ventilators and circulatory pumps

are usually produced artifacts with slower components than other electrical de-
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vices. The artifact is typically repeated at fixed intervals and a slow or complex

wave includes a mixture of frequencies superimposed on a slow wave. It is a

great complex job to recognized the specific variety features of the artefacts that

each device may produce based on its setting. Usually, the artifacts from exter-

nal devices have produced the waveform that is highly dissimilar to cerebrally

generate waveform, therefore unusual waveform should always be suspected as

the artifact. The most common external artifact is due to alternating current

present in the electrical power supply. This artifact is usually medium to low

amplitude and has fixed frequency of the current, which may be 60 Hz and 50Hz

depends on the location of the world. It may present in all channel or in the

isolated channel due to poorly matched impedance.

The physiological artifacts arise from the movement (head, body and scalp), bio-

electrical potentials (potentials generated due eye, tongue and pharyngeal muscles

movements, the scalp muscles, heart or sweat glands), and change in skin resistance

as described below:

∙ The cardiac artifact are generated by the heart and mixed with EEG across

the head and left ear, particularly over-weighted participants or patients. It is

timely locked to cardiac contractions and easy to identify by their synchroniza-

tion with ECG channel.

∙ The pulse wave artifact is a periodic wave of smooth or triangular shape may

be picked up by an electrode on or near a scalp artery as the result of the

pulse wave. This is more likely to happen with the electrode in the frontal and

temporal areas. It is recognized by it usually regular occurrence or by touching

the electrode producing it.

∙ Skin potential is generated due to change in skin and produced the perspiration

artifact and galvanic skin response. The perspiration is caused the slow shift of

the electrical base line by changing impedance or contact between the electrode

and skin. It is revealed as low amplitude and beyond the frequency range of
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EEG. The sweat artifact is characterized by low frequency (0.25 to 0.5 Hz). Slat

bridge artifact are different from perspiration artifact by lower in amplitude and

typically including only one channel.

∙ The head and body movements are caused the movement artifact. It is rhyth-

mical in tremor, chewing and sucking, breathing and cardioballistographic [49].

These movements are produced artifacts during the EEG recording by mean of

the electrical field generated by muscle and this movement is effected on the

electrode contacts and their leads.

∙ Muscle artifact [50, 51] is one of the most common and significant source of ar-

tifacts in EEG signal. The muscle artifacts have high amplitude and frequency

as compared to EEG signal. Muscle artifact has appeared in beta frequency

band or spikes if high frequencies filter is used. EMG signal has a more dis-

organized appearance because the individual myogenic potential overlaps with

each other. The duration of muscles artifact is varied according to the duration

of the muscle activity i.e. from one second to entire recording. EMG artifact

has most commonly occurred in channels including the frontal and temporal

electrodes.

∙ Ocular artifact [52, 53, 54, 55] is due to slow roving eye movement and blinks;

each eyes inherent 10 mV electrical dipole. The slow eye movement has occurred

with the drowsiness and has an involuntary and repeated horizontal ocular

movement; has a constant period phase reversal due to eye dipoles. The electric

field due to dipole has occurred with eye gaze, eye opening and eye closing

become relevant to EEG recording; and myogenic potential has occurred due

to eyelid movement with eye opening and closing may also contribute ocular

artifacts. Due to rapid up and down movement of eyes are caused the blinking

artifacts. A slow wave ocular artifacts have occurred due to repetitive blinks

and it resemble with delta rhythms. These artifacts are may distinguished by

its morphology.

The experienced researcher are easily distinguished between the EEG signal and
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artifacts. By visually reviewed the entire EEG recording and selected the artifact

segments is one of the often to remove the artifacts by expert researcher. It is time

consuming and it became reader fatigue due to multichannel recording. There various

algorithms or methods are used to remove the artifacts but it quit difficult to remove

completely. The EEG analysis is limited to certain frequency bands, according to that

an algorithm can be designed to analyse in particular band, for example 1 to 20 Hz

band pass filter to remove muscle artifacts. Therefore this kind of algorithms cannot

be used for entire bandwidth of EEG as artifacts can be occurs at any frequency

varies from .5 to 100 Hz. The filtering processes is altered the appearance of EEG

signal and the artifacts identification become more difficult.

The EEG signals are the most complex electrical activities generated by the cor-

tical neurons in the brain. The scalp electric change representing collective spike

activities is very weak rather than electric changes from other biological signals, such

as electrooculography (EOG) and so on. However artifacts from various body sources

such as the heart, muscle movements are easily contaminated into EEG signals and

then the noise removal is an important issue. The ocular artifacts are potentially

in the range of 100 V that is much larger than EEG and low-frequency band. Ocu-

lar artifacts are happened especially near stimulation onset distort baseline and the

invoked potentials greatly. It is possible to improve the signal-to-ratio by signal av-

eraging, evoked potentials are usually very weak (for example < 10 V). The ocular

artifact doesn‘t follow any statistical distribution that is also one of the drawbacks.

The influence of ocular is suppressed by increasing the number of trials. The EOG is

overlapped the lower frequency band of EEGs and make the low-frequency component

of EEG unclear during spectrum analysis. These EEG data inevitably contains large

amounts of noise particularly from ocular potentials in tasks with eye-movements,

which is an inevitable issue in the brain-computer interface (BCI) study. To remove

the artifacts from EEG signals depends on their characteristics, which they hold. Ev-

ery artifact has different characteristics that make difficult to model as a universal

artifacts removal. And artifacts from various body sources interference to EEG sig-

nal which produce nonlinear and non-stationary signals. However, the artifacts have
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become a serious problem in the daily BCI application.

In this dissertation, we focused on wavelet and morphological based method to

remove the artifacts and to identify the particular artifacts and separate from the

EEG signals. These algorithms may be adapted for each kind of patient.
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Chapter 3

Introduction of Morphological

Component Analysis

This chapter explained the overview of the denoising, artifacts removal, feature ex-

traction and classification methods applied to the EEG signal. The brief overview of

the morphological component analysis method. The morphological component analy-

sis is allowing us to decompose/separate the source components of a biological signal

which have different morphological component.

3.1 Overview of EEG Signal Analysis Methods

There are various methods with a different approach has been used in the EEG signal

analysis and still in going state because of the complicated mechanism of physiolog-

ical behaviour or principles. Therefore, it is difficult to say one method is the best

method for EEG signal analysis. Moreover, there is no standard approach or method

can be used to compare with a new approach. Research are developing the methods

considering some assumption and verification theories to explore the representation

of neuron activities. The EEG signal is non-stationary signals. They have been con-

sidered the approach in time-domain, frequency domain and time-frequency domain.

The removal of artifacts is the most prompting problem.
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3.1.1 Methods for detection and rejection of artifacts

The various methods for detection and rejection of artifacts [56, 57] are given below:

∙ To detect the period and reject the EEG signal is the simplest approach to

remove artifacts. The artifacts related non-stationary behavior need to select

the method parameters.

∙ we can consider the energy operation for the sudden change in EEG signals

spikes and they are sensitive to instantaneous fluctuation. Due to moving subtle

change in signal spectrum become less sensitive.

∙ Autoregressive (AR) model of the signal within Kalman filter setting to pre-

dict future of time series and examine data for significant deviation from their

predictions.

3.1.2 Methods for suppressing artifacts

∙ The muscle artifacts cannot eliminate the EMG artifacts in the frequency se-

lective filters (low-pass, high-pass, band-pass used in artifacts processing band-

stop) due to their broad spectrum.

∙ To measured the reference signal in the Dual channel rejection scheme. The

EEG and the reference signal can be processed to remove the artifact. This can

be achieved by using time-domain regression, wiener filters, frequency domain

regression or adaptive filtering.

∙ The limitation of such approaches are the quality of the reference measured sig-

nal and cross contamination by the EEG signal of interest provides an absolute

limit on performance.

∙ For EMG artifacts removal the regression analysis and wiener filtering have

been used.

∙ Adaptive filtering has been used to remove EOG from general EEG signal.
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∙ The frequency selective filtering ha been applied on each channel independently

and dual channel methods exploit a dedicated reference channel.

∙ An ICA approach has been exploited the multichannel character of most EEG

signals to decompose the data into a set of random variables which are maxi-

mally independent.

3.1.3 Feature extraction

The features extracting from a signal of interest is often carried in the time series EEG

analysis. And the feature can be defined as parameters which provide information

about the underlying structure of a signal. The feature can be classified in various

category:

∙ Temporal features:

– Temporal features are characteristics obtained from the signal in the time

domain Instantaneous statistics: it is the simplest features which frequency

used temporal features in sleep EEG analysis. These statistics include mea-

sures derived from moments of the waveform including the mean absolute

amplitude standard deviation/ variance skewness and kurtosis as well mea-

sures relating to the probability density function of the waveform such as

mode, median or the entropy.

– Zero crossing and period amplitude analysis (PAA) Zero crossing are the

points at which the waveform crosses the x-axis they are simple to compute

and zero crossing rate encoding the frequency information PAA approach

can be adopted within the frequency band to mitigate the effects of noise

and to reduce the issues associated with signals comprised of multiple

components.

– Hjorth parameters The parameters are based on the variance of the deriva-

tives of the waveform and have been used for some time to characteristics

EEG waveforms. Three Hjorth parameters defined to describe activity
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mobility (shape) and complexity of EEG signals Hjorth parameters are

sensitive to noise.

– Detrended fluctuation analysis (DFA) DFA is a method to characterise

long-range temporal correlation in time series and used as a measure of

self-similarity. It is based on identify trends in the signals variance when

analysed with different block length and is inherently suitable for the anal-

ysis of non-stationary noisy signals.

∙ Spectral features:

– The most commonly extracted features are the spectral features from EEG.

They are an essential parameter which characterises the signals in fre-

quency domain.

– The fast Fourier transform is the most common spectral analysis of non-

parametric methods for spectral estimation.

– The multiple signals are used to measured the cross -spectral analysis is

called coherence analysis. It reflects the degree of synchrony between the

frequency component of two signals and can provide estimates of func-

tional connectivity in the brain. A related approach is the directed trans-

fer function method (directly coherence) which provides information about

causation and so is suitable for investing functional connectivity in the dif-

ferent brain region. DTF is sensitive to the phase shift between signals

but robust in the presence of noise.

– The parametric spectral estimation based model to spectral estimation

are used the digital filter excited by white noise, methods based on auto-

regressive (AR) modelling.

– The subspace methods are the form of parametric spectral estimation.

They are based on assumption that the signal consists of sinusoids in

white noise and exploits the Eigen structure of the resulting correlation

matrix. MUSIC multiple signals classification algorithms EEG application
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underlying model for there methods is not well matched to practical EEG

signals.

– Higher order spectral analysis(HOSA): The principle behind the power

spectral analysis have natural extensions to a higher order. A significant

problem when applying HOSA is that they require considerable quantities

of data in order to obtain good estimates.

∙ Time-frequency features: Time-frequency analysis is a powerful tool which al-

lows decomposition of signals into both time and frequency.

– The short time Fourier transform compute the signal of interest in unifor-

mally segmented manner into many short duration overlapping portion.

The time-frequency resolution of STFT is directly determined by the seg-

ment size, the smaller the segment the higher the time resolution and the

lower the frequency as resolution.

– The wavelet transform is closely related to the STFT whilst STFT can be

regarded as representing a signal as a set of windowed sinusoids of differ-

ent frequencies, the wavelet transform represent a signal using a function

which is scaled and shift in time. The scaling factor and time respectively it

uses variable size windows to achieve time-frequency decomposition short

duration function representing high frequency components and long du-

ration function representing low frequencies. Orthogonal discrete wavelet

transform is generally not time shift invariant. The different time shifts

in the input don’t results in time shifted in the input don’t result in time

shifted version of the decomposition but a different decomposition which

may limit its use in certain application.

– Matching Pursuits it is more recently developed time-frequency analysis

methods. It is based on signals description via collection of mathematically

function (commonly Gaussian modulated sinsusoids) called dictionaries.

An advantages of MP is the large dictionary size which is not not limited to

acertian form of function (as opposed to the Fourier transform which uses
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only sinsuoids or the wavelet transform which employ a mother wavelet

function .MP achieves time-frequency decomposition by finding the best

matches that fit structure of the signal from the dictionary. The parameter

of the identified matches in time , frequency amplitude and energy results

in a complete decomposition of the signals. A possible shortcoming of the

methods is its high computational cost which may limits it use in real time

application.

– The Empirical mode decomposition (EMD)is a heuristic decomposition

technique which provides a signal representation. The signal is broken

down into basis function(IMF Intrinsic mode function) which have distinct

oscillatory modes.

∙ Non-linear features In non-linear feature methods assumed that EEG signals

are generated from stochastic processes EEG signals may be generated from

a deterministic nonlinear process. There are some non-linear methods such as

Fractal dimension (FD), Correlation dimension, Entropy measures and Lya-

punov exponents.

3.1.4 Features classification

The features are measurable characteristics of a time series used to reduce the signals

dimension and methods such as Neural networks classification, clustering (unsuper-

vised learning ) self organizing maps or kohonen maps. And the statistical classifica-

tion such as the Linear discriminant analysis (LDA), support vector machines (SVM),

Hidden markov model, Fuzzy classification and the combined classification.

3.2 Morphological Component Analysis

The decomposition of signal component into its constructed component is one of the

great interests for many applications. In this kind of problems, there is an assumption

that any given signal/image is a linear combination of several source components of
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more coherent origin. There is a lot of research to draw the attention. A signal 𝑆 is

a linear combination of the different component generated by a various source. Here,

we describe the EEG signal in this way

𝑆 = 𝐵 ×𝑋 (3.1)

Most of the researcher used the various method such as ICA, PCA, wavelets and

much more to decomposed a signal into its constructed components. PCA methods

compute the orthonormal basis to minimizing the average linear approximation error

over of a signal component. Suppose the 𝑆 is a signal that has to decompose in 𝑘

component of the raw signal, except that all component have unit variance. In the

case of the blind source separation methods, the aim is to blindly estimate both the

mixing matrix 𝐵 and the 𝑋 from the known 𝑆 signal only. This problem is called

ill-posed problem which requires the prior knowledge of mixing matrix and the source

components to be recovered. There is a classical approach (discriminant information

or diversity between the source components) for this kind of problem. Therefore

the ICA methods are work by assuming the statistically independent of the source

components.

Due to the advancement of Harmonic analysis and applied mathematics, the mor-

phologically sparse modelling of signals has attracted a lot of interest. We assumed

that each source can be sparsely decomposed in some basis, waveform dictionary

or some signal representation. The MCA is recently developed methods to decom-

posed the signal and image into it different component, Now the component depends

upon the types of dictionaries it is based on the signals description in the form of

mathematical function. The sparsity methods are typically used for the separation

of signal mixtures with varying degrees of success. The morphological component

analysis is used to morphologically decompose / separate the building component of

the signal. This method relies on the sparsity and over-completeness dictionary; An

over-complete dictionary Φ ∈ 𝑅𝑛×𝑘, where 𝑘 morphological component coefficient of

signal for {𝜑𝑘}𝑘=1 and a signal 𝑆 is sparse linear combination of source components.
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The over-complete dictionary Φ is a set of redundant transforms /mathematical func-

tion that represents the specific waveform/signal source components or designed by

adapting its coefficient to fit a given set of signal that leads to sparse representation.

A dictionary/redundant transform can reproduce the specific source components of

the signal using the sparse representation. The sparsity and over-completeness dic-

tionary concept benefits the signal decomposition extends to source component ex-

traction and more. Extraction of the sparest representation is a hard problem that

has been extensively investigated in the past few years.

The dictionary is usually used for sparse representation or approximation of the

signal/image and dictionary learning or training in the signal processing. A dictio-

nary is a collection of elements and 𝑛 length elements are the real column vector. A

finite dictionary can be represented by 𝑛 × 𝐿 matrix of 𝐿 elements. The dictionary

such as discrete sine transform (DST) is a Fourier transform similar to the discrete

Fourier transform (DFT) but using a purely real matrix and the dictionary discrete

cosine transform (DCT) which is equivalent to a DFT of real and even function.

There are various types of transforms such as DCT, Orthogonal Wavelet transforms,

Bi-orthogonal wavelet transforms and lifting scheme. Redundant transform such

as Local DCT, Undecimated Wavelet Transform, Isotrophic Undecimated Wavelet

Transform, Ridgelet Transform, Curvelet Transform. Basically, these transforms are

filtered coefficients.

The limitation of traditional tools such as linear systems and Fourier analysis for

solving the geometry based problem because they don’t directly address the issues

of how to quantify the shape and the size of the signals. A complex signal such

as EEG signal often are not well represented by a few coefficients in single basis,

therefore, large dictionaries in cooperating more pattern can increase sparsity and

thus improve the application to compression, denoising, inverse problem and pattern

recognition. The important thing to finding the set of 𝑘 dictionary coefficients that

approximate a signal with minimum non-deterministic polynomial-time (NP) hard

error in redundant dictionaries. Therefore we can compute the redundant dictionary

of 𝑛× 𝐿 which minimizes the average non-limitation approximation error of signals.
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NP-hard but greedy optimization are possible. The best combination 𝑘 approxi-

mation, Φ = {𝜑𝑘}𝑘∈Γ be a over-complete dictionary of 𝑘 basis coefficients in signal

space. The type of dictionary includes a combination of orthonormal basis (Fourier

basis, Dirac delta basis, wavelet DCT and Gabor dictionary. The Gabor dictionary

is constructed by scaling, modulating and translating a Gaussian window on the

signal-sample grid on the basis of time and frequency translation-invariant. The 𝑛

elements of the waveform 𝜑𝑘 are discrete time signals. Depending on the dictionary,

the parameter k can have the interpretation of indexing frequency, in this case, the

Fourier dictionary. Time scaling indexing the dictionary is a time scale dictionary,

time-frequency indexing the dictionary is a time-frequency dictionary. Dictionaries

are complete or overcomplete in that case they contain exactly 𝑛 elements or more

than 𝑛 elements but continuum dictionaries containing an infinity of atoms and under

complete dictionaries for special purposes, containing fewer than 𝑛 elements, many

of interesting dictionaries have been proposed over last few years. Suppose that a 𝜑

discrete dictionary of 𝑗 waveform and we consider all these waveforms as columns of

𝑛× 𝑝 matrix and the decomposition is given by

𝑆 =

𝑗∑︁
𝑘=1

𝜑𝑘𝛽𝑘 (3.2)

When the dictionary furnishes a basis then 𝜑 is an 𝑛 × 𝑛 non-singular matrix

and we have the unique representation 𝛽 = 𝜑−1𝑠, when the elements are mutually

orthonormal, then 𝜑−1 = 𝜑𝑇 . The difference between the synthesis waveform 𝑆 = Φ𝛽

and the analysis waveform 𝛽 = Φ𝑇𝑆.

A signal 𝑆 as a linear combination of different component generates by the various

source with the desired source the representation of these signals are sparse over the

augmented dictionaries Φ. Blind the source separation by MCA to determine the

original source set of signals, where each signal is assumed to be a linear mixture of

the source, disadvantage the component do not necessarily only contain artifacts data,

but also contains underlying EEG data removing this lead to loss of EEG data. The

morphology of signal can be used for recognized and based on the separate from the

44



combined signal. The sparsity, morphological diversity play an important role in de-

composing. It is devised the quantitative measures of diversity to extricate between

the sources. The signals with different morphology have disjoint significant coeffi-

cients in a sparsifying dictionary. The linear mixture with additive Gaussian noise

and the mixing mixing matrix criterion measures a deviation between the true mixing

matrix and estimate source components. To extend the spatial and spectral sparsity

constraints. Morphological component analysis consist of mathematical and theoret-

ical concepts for signal analysis, nonlinear signal operator design methodologies and

application system that are related to mathematical morphology.

A over-complete dictionary as collection of waveforms {Φ𝑘}𝑘∈Γ, assume that EEG

signal is linear combination of a small number basis elements 𝜑𝑘. It would be expressed

as one dimension 𝑆 ∈ 𝑅𝑁 and combination of many signals, 𝑆 = 𝑠1 + 𝑠2 + · · · + 𝑠𝑘,

where 𝑠1, 𝑠2, . . . and 𝑠𝑘 represents different types of morphology of the signal to

decomposed. The signal 𝑆 approximation decomposition into its building components

can be expressed as

and to estimate 𝑘 unknown source components of a signal from 𝑚 linear mixture

with 𝑚 > /𝑛

𝑆 =
∑︀𝑘

𝑖=1 𝜑𝑘𝛽𝑘 +𝑊

= 𝜑1𝛽1 + 𝜑2𝛽2 + · · ·+ 𝜑𝑘𝛽𝑘 +𝑊

= 𝑠1 + 𝑠2 + · · ·+ 𝑠𝑘 +𝑊

(3.3)

We expressed equation above without external noise as

𝑆 =
𝑘∑︁

𝑖=1

𝜑𝑘𝛽𝑘 (3.4)

And we need to solve, this is given by

{𝛽𝑜𝑝𝑡
1 , 𝛽𝑜𝑝𝑡

2 , · · · , 𝛽𝑜𝑝𝑡
𝑘 } = argmin

𝛽1,··· ,𝛽𝑘

∑︀𝑘
𝑖=1‖𝛽𝑖‖0

subject to: 𝑆 =
∑︀𝑘

𝑖=1 𝛽𝑖𝜑𝑖.

(3.5)

The above equation suffered with several drawbacks,therefore to minimized the draw-
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backs the source coefficients are defined as follows [58]

{𝛽𝑜𝑝𝑡
1 , 𝛽𝑜𝑝𝑡

2 , · · · , 𝛽𝑜𝑝𝑡
𝑘 } = argmin

𝛽1,··· ,𝛽𝑘

∑︀𝑘
𝑖=1 ‖𝛽𝑖‖1

subject to: 𝑆 =
∑︀𝑘

𝑖=1 𝛽𝑖𝜑𝑖

(3.6)

Here the 𝑙2 norm as the error norm is intimately related to the assumption that the

residual behaves like a white zero-mean Gaussian noise. The functions in dictionaries

subdirectory provide fast implicit analysis and synthesis operation. All dictionaries

are normalized such that elements have unit 𝑙2 norm. To estimated the source coef-

ficients by solving the above equation in iterative manner. The iterative algorithm is

used to estimate the sparse source EEG signals as proposed by Starck et al [58]. The

mathematical derivation of the methods and algorithms is given in article [58].

1. Initialize = 𝐼𝑚𝑎𝑥, number of iteration and threshold 𝛿 = 𝜆 * 𝐼𝑚𝑎𝑥.

2. Perform J times:

3. For 𝑘 = 1, · · · , 𝐾:

Update of 𝑠𝑘 assuming all 𝑠𝑖, 𝑖 ̸= 𝑘, are fixed:

∙ Calculate the residual 𝑟𝑘 = 𝑆 −
∑︀

𝑖=1,𝑖 ̸=𝑘 𝑠𝑖

∙ Calculate the transform 𝑇𝑘 of 𝑠𝑘+𝑟 and 𝛽𝑘 = 𝑇𝑘(𝑠𝑘 + 𝑟)

∙ Calculate 𝜑𝑘 = 𝑥𝑘𝑇𝑘

∙ Soft threshold the coefficients

𝑏𝑒𝑡𝑎𝑘 with threshold 𝛿 and obtain 𝛽𝑘

∙ Reconstruct 𝑠𝑘 by 𝑠𝑘 = 𝑅𝑘𝛽𝑘

∙ Apply the constraint correction by 𝑠𝑘 = 𝑠𝑘 − 𝜇𝛾
𝜕𝐶𝑘{𝑠𝑘}

𝜕𝑠𝑘

∙ The parameter 𝜇 is chosen either by a line search minimizing the overall.

4. Update the threshold by 𝛿 = 𝛿 − 𝜆.

5. If 𝛿𝑘 > 𝜆𝑘

Return to Step 2. else finish.
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In the decomposition process normalize the threshold has an important impact.

The signal processing and function approximation, overcomplete can help the re-

searcher to achieve a more stable robust or more compact decomposition than using

a basis. Based on above theory question rose in mind, how we can embed MCA

methodology in the biomedical signal especially EEG signal. A new MCA method

has been used to identification of component on the basis of time-frequency of EEG

recording. As we already mention the dictionary and requirement of MCA method-

ologies that lead the success of arbitrary EEG signal decomposition. The effectiveness

of MCA is mostly clarified in image processing [58, 59, 60, 61, 62].
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Chapter 4

Two-Stage Undecimated Wavelet

Shrinkage Method

In this chapter, EOG artifacts are removed from the recorded EEG and denoising

the EEG signal. The artifacts are an inevitable issue in the brain-computer inter-

face study. The scheme of EEG-EOG signal contamination model is proposed and

the two-stage wavelet shrinkage method with undecimated wavelet decomposition is

used for quantitative validations of the artifacts removal from EEGs, which is suit-

able for the signal structure. A hundred dataset of open-source clinical intracranial

EEGs in each behavioural condition is introduced to the validation to be raw EEG

before the contamination of artifacal EOGs. The EEG signal reconstruction is vali-

dated according to the frequency spectrum profile representing a specific brain state.

Numerical analyses demonstrated that the first stage is pursued the signal envelop

with high amplitude fluctuations provided by artificial EOGs and the significant EEG

spectrum was reconstructed in the second stage, which exceeded the performance of

the conventional shrinkage, suggesting threshold values properly set depending on

the individual amplitudes of multiple signal sources in the proposed method. The

present results are focused on actual amplitude-frequency structure in the polyge-

netic signal and contributed to not only provide the decomposition performance but

also revealed how they are mixed together in the viewpoint of a standard model for

robust validations.
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4.1 Introduction

EEG signals are very popular tool to observe the brain activity for clinical purpose

like reflecting sensation, recognition, action plans even with mental imagination, neu-

roscientific investigation and BCI in recent demand [63, 64, 65]. The EEG signals

are recorded from the scalp and are susceptible to external interference such electric

power noise or other electromagnetic radiation sources. These artifacts are easily

removed from EEG signals depending on signal electrical characteristics. However,

the artifacts from various sources such as EOG, ECG and EMG are easily contam-

inated with the EEG signals because multiple electrophysiological mechanisms exist

in the brain and other biosignals [66, 67, 68], which makes the EEG signal nonlinear

and non-stationary. Therefore the artifacts removal and denoising become a very

important issue in EEG signal need to be solved. Many time-frequency analyses have

been studied such as fast Fourier transform (FFT), wavelet transform (WT) [69] and

eigenvectors for EEG signal features extraction [70]. The speed and accuracy of fea-

ture extractions are the critical issue in EEG signal and wavelet methods have been

discussed as a solution for unstable signals if the mother wavelet is appropriately

introduced. The subspace projection methods such as principal component analysis

(PCA) and independent component analysis (ICA) are frequently used to remove the

artifacts. But every method has some limitation and not used for real time analysis.

A PCA is a sophisticated method as it influences the overall data space based on

the principal components (PC) therefore it is difficult to suppress the artifacts and

component that represent the artifacts. To identify PC requires the prior knowledge

as the artifact [52, 66]. ICA based methods were getting popular in the purpose of

the signal decomposition into independent components having high order statistics.

It works after the recording as an offline analysis under the sufficient computational

power, which assures a high reliability in accuracy while the selection of components

of interest requires a classification by human experts to be semi-automatic or heuristic

approaches [71]. Secondly it does not confirm the extracted component have original

scale and sequence. More over EEG recording can be rather noisy and since ICA is
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based on a measure of independence, the noise in the input channel can be even am-

plified by ICA, which again makes the detection of the true EOG component rather

difficult most ICA methods are blind to Gaussian noise and spread the noise among

the extracted components which is undesired [67, 68, 72, 73].

An adaptive filtering [74] is a powerful technique to suppress the artifacts from the

EEG signal. The spectral distortion is the main limitation in filtering method that

harms the further application. The artifacts are removed by decomposition method

EMD (Empirical mode decomposition) from the EEG signals has been used [75]. It

is represent the non-stationary signals as sums of zero-mean amplitude modulation

frequency modulation components [76]. The artifact are suppressed by adaptive fil-

tering approach from EEG signals [77]. The EMD method is used the time domain

filter to the extract the artifacts. The EMD makes no priori assumption about the

composition of the signal. It is used the spline Interpolation between maxima and

minima to generate the IMF (Intrinsic Mode functions). Each IMF will be a single

periodic oscillator and cannot be predicted empirically from the signal. The number

of IMF cannot be predicted before the decomposition is based on a signal feature and

doesnt depend on a basis function and therefore it makes difficult to work.

The above methods are suggested that they are not process on-line in comparison

of time-frequency analyses such as WT and another subspace projection methods that

do not preserved original signal amplitudes in decomposed components, which is a

serious lack in some clinical cases because a diagnosis is analyzed based on EEG wave-

form abnormalities [78, 79, 80] and then those methods were used for the pre-filtering

before the time-frequency analyses [81]. The FFT based methods are obtained con-

sensus for being assured detection methods of specific disorders, e.g. epileptic seizures

and attention-deficit/hyperactivity disorder (ADHD) [82, 83, 84]. WT based on-line

approach for signal decomposition have high expectations with less computational

costs. The time-frequency characteristics of EEG signal is preserved to maximum

extent, and radically improved FFT analyses [85, 86, 87, 88, 89].

As discussed above that EEG is composed with different characteristics in time-

frequency domain and have specific waveform. Similar, the noise source and artifacts
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can be represent with time-frequency characteristics that different from EEG sig-

nals. Therefore, focusing on the denoising and artifacts removal in EEG signal. WT

which removes the high frequency components, the undecimated wavelet transform

(UDWT) is the perfect method to denoising and artifact removal and an effect of

the UDWT was preliminary reported by Lang et al. [90] in 1995, and recently it is

applied to bio-signal recordings [91]. The wavelet shrinkage is effectively used in the

image processing application to reduce the contaminated noise and it works for data

size compression, which is known in the JPEG2000 standard for image compression

[92]. In principle, wavelet denoising was defined in the continuous wavelet transform

(CWT) mathematically and evaluated in comparison with the discrete wavelet trans-

form (DWT) to test how much accurately the original signal can be reconstructed

by Lang et al. [90] which suggested the importance of the shift-invariance property

in the UDWT. Starck [91] demonstrated the effectiveness of the UDWT in various

cases and noted that the threshold value is not simply determined in general, rather

it requires to tune carefully the level depending on the target signal.

4.2 Wavelet Shrinkage and Denoising

The decomposition of EEG signal using WT also known as decimated wavelet trans-

form as one of the best technique in analyzing non-stationary EEG signals.The in-

formation is lost in the process of denoising based on thresholding and resulting im-

proper reconstruction of signals. The DWT which down samples the approximation

coefficients and details coefficients at each decomposition level but UWDT doesn’t

incorporate the down sampling operation, thus the approximation coefficients and

details coefficients at each level have the same length as original. The UWDT up

samples the coefficients of the low pass and high pass filter at each level. The up

sampling operation is equivalent to dilating wavelets. The resolution of the UWDT

coefficients decrease with increasing levels of decomposition, therefore we have to

choose proper levels for decomposition. The approximation coefficients and details

coefficients of EEG signal length will not decreased and at the same time no aliasing
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information is present after the decomposition of EEG signals. The Figure 4-5 shows

the decomposition scheme of EEG signals at different levels by UWDT.

Signal

G1

G2

G3H1

H2

H3

dj+1

dj

dj

dj-1

dj-1

dj-2

dj-2

Figure 4-1: A wavelet decomposition scheme.

In addition to the UWDT has the translation or shift invariant property. If the two

signals have shift version with respect to each other, then the UDWT results also have

shifted version each other while it does not exist in an ordinary DWT. UWDT gives

more amount of information compared to DWT. The translation invariant property is

important for feature extraction in EEG signals. Denoising with UWDT also is shift

invariant and the denoising result with UWDT is better balance between smoothness

and accuracy than DWT [90, 91, 93]. UWDT is supported both the real and complex

signal as compared to DWT used for real signals. The drawback of UWDT is that

it requires higher computational memory and redundancy in the coefficients. UDWT

modifies the DWT decomposition scheme by changing the low pass and high pass at

each level [93]. It is imitated the sub-sampling of the filtered signal by including zeros

between each of the filter coefficients to up-sampling the low-pass filter at each level.

The UDWT is based on the ’a trous’ algorithms. The UDWT using the wavelet filters

of a 1-D signal [91, 94].
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4.2.1 Denoising

The denoising signal model initially formulated by Donoho [95, 96, 97, 98, 99, 100]

defined as the output signal 𝑦 of a function 𝑓 with a white noise 𝑧, described by

equation 5.1

𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜎𝑧𝑖 (𝑖 = 1, . . . , 𝑛)

= 𝑓𝑖 + 𝜂𝑖
(4.1)

where 𝑛 = 2𝐽+1, the the unit interval 𝑡𝑖 = 𝑖/𝑛(𝑡 ∈ [0, 1]), 𝑧𝑖 is a Gaussian white

noise, and 𝜎 is the noise level. The Figure 4-2is schematically illustrate the denoising

signal model. The recording signal in the double lined box in the Figure 4-2 is

obtained as the summation and then it can be decomposed by the denoising method

[95, 96, 97, 99, 100] if the relationship between the signal 𝑓 and noise 𝜂 satisfies 𝑓 ≫ 𝜂.

Signal Record

Noise

Denoising

method

Noise

Reconstructed 
signal

Figure 4-2: Typical signal model 𝑓 with a noise 𝜂 in the form of the linear combination.

To design denoising algorithms [90, 91] with adaptive thresholds, three following

steps can be applied,

1. pyramid wavelet filtering of Cohen et al. [101] to the coefficient of signal 𝛽𝐽+1,𝑘 =

𝑦𝑘/
√
𝑛, yielding noisy wavelet coefficients 𝑤𝑗,𝑘 (𝑗 = 𝑗0, . . . , 𝐽 ; 𝑘 = 0, . . . , 2𝑗 − 1)

2. the wavelet coefficients are passed through thresholding protocol either with

soft-threshold operation 𝑠(𝑤) or hard-threshold operation ℎ(𝑤) with a certain

threshold level 𝜆, yielding renewed wavelet coefficients 𝑤𝜆𝑗,𝑘

3. the signal 𝑓(𝑡), (𝑡 ∈ [0, 1]) is recovered by inverting the wavelet transform using

the renewed coefficients for 𝑗 > 𝐽
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Here the soft-thresholding is given as

𝑠(𝑤) =

⎧⎪⎨⎪⎩ sgn(𝑤)(|𝑤| − 𝜆) |𝑤| ≥ 𝜆

0 |𝑤| < 𝜆
(4.2)

and the hard-thresholding is given as

ℎ(𝑤) =

⎧⎪⎨⎪⎩ 𝑤 |𝑤| ≥ 𝜆

0 |𝑤| < 𝜆
(4.3)

as non-linear operations, as illustrated in Figure 4-3. Hard-thresholding, called “keep-

or-kill”: a wavelet coefficient 𝑤 with an absolute value under the threshold 𝜆 is

replaced by zero and soft-thresholding: coefficients with magnitude above the thresh-

old are shrunken, contributing to preservation of the smoothness of the original signal

[102]. The difference clearly appears in the error magnitude curve with respect to the

threshold level.

(a) (b)

Figure 4-3: Noise reduction by wavelet shrinkage, where gray and black lines respec-
tively denote the original and shrunken wavelet coefficients. (a) Hard-thresholding,
(b) Soft-thresholding

There are various ways to define the optimal threshold such as Minimax and

rigorous SURE, we used the universal threshold,𝜆𝑢𝑛𝑖𝑣 = 𝜎
√︀
2𝑙𝑜𝑔(𝑛), known as larger

than the Minimax for any particular value of 𝑛 [68]. According to Donoho and

Johnstone [97, 99], the threshold can be consider as

𝜆 =
√︀

log 𝑛 · 𝛾 · 𝜎/
√
𝑛 (4.4)
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where 𝛾 is a constant if the empirical wavelet transform of 𝑓 is denoted as 𝑊 𝑛
𝑛 𝑓 that

is quasi-orthogonality [99]. The multiplier factor of the threshold of the threshold

value is depended on the target signal. And the universal thresholds [96] value can

be given as 𝜆 = 𝜎̂
√
log 𝑛 where the error 𝜎̂ is set as

𝜎̂ =
median(|𝑤𝐽−1,𝑘)| : 0 ≤ 𝑘 < 2𝐽−1)

0.6745
(4.5)

If the noise is a Gaussian white noise [69, 98]. However this model is not simply

applicable for the signal 𝑓 if 𝑓 contains multiple signal sources with different amplitude

levels.

4.2.2 Shift invariant effect in UDWT

The theoretical viewpoint by Coifman and Donoho [102] mentioned clearly that the

shift invariant property in wavelet analysis is crucial for denoising the signal. The self

generated artifacts are generated in the conventional DWT according to the Gibbs

phenomena, it is due to discontinuities in the neighboring coefficients that reflect

the lack of translation invariance of the wavelet basis. This drawback is effectively

suppressed in the UDWT and stationary wavelet transform and then proposed the

cycle-spinning over the range of all circulant shifts in order 𝑛 log2(𝑛) time for de-

noising equivalent to UDWT and stationary WT. The aliasing effect occurs in DWT in

the details coefficients at different level of decomposition therefore the information is

lost while denoising based on thresholding and improper reconstruction of coefficients

[90, 91] is take place.

Due to shift invariant advantage in UDWT , the biomedical signals are tested

for validations in the proposed iEEG-based validation framework. In the effect, it

is simply expected that the quick pursuit is relied on the Hard-thresholding and the

smoothness is on the Soft-thresholding as is illustrated in Figure 4-3 according to the

definition of Eq. 4.3, which needs to be investigated in the real EEG signals.
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4.3 EOG-EEG Signal Contamination

We consider that the electrophysiological mechanism is coupled with myogenic po-

tential evoked by ocular movements in the nervous system [55, 103]. The generation

of amplitude is depending on the degree of eyeball rotation [104, 105], which is ob-

served as the staying potential of approximately 500 𝜇𝑉 as maximum from the EOG

recording in the 4-20 Hz range [106], known as the corneo-retinal dipole. The sac-

cade movements phenomena have been in investigated in past studies [71, 107, 108].

The overall biological mechanism is schematically illustrate in Figure 4-4. The EEG

Nose

Eye

Dura matter

Skull bone

Brain
 (neurons)

Electolode

Cell 

Neurodendrite

V

t

-100   V

100   V

t

EOG

EEG
Contaminated EEG

Figure 4-4: Schematic process in the signal contamination of EEGs and EOGs with
respect to the biological structure. Note that arrows with 𝑔 simply represent an strong
influence to EEG but this does not indicate the direct pathway such as a traveling
wave.

signals consider the representation which ‘information’ is reflected by the individ-

ual neuronal spikes in the brain, the collective process is important as is observed

a specific range of neuronal oscillations, rather than individual spikes, and the fact

has extended the possibility of EEG/MEG measurements [109]. According to the in-

evitable decay of the signal amplitude from the inside of the scalp to the outside, the

signal 𝑓 can be considered 𝜅𝑓 where 𝜅 < 1. In accordance with electrophysiological

evidences of the simultaneous recording between the scalp EEG and intracranial EEG

(iEEG) [110, 111, 112, 113, 114], the reduction ratio of EEG signals is estimated as
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𝜅 ≃ 0.25 in the simplest way. In addition, EOG ( 𝑔 in the figure) ranges from 200-500

𝜇𝑉 and the scalp EEG level is about 10-50 𝜇𝑉 in the ERP studies [71, 115], which

implies the ratio of EOG and scalp EEG, 𝑔/𝜅𝑓 , in 10-50 as is observed in the scalp

EEG measurement and quite less in the intracranial [116]. Consistently, the ratio of

intracranial EEG and EOG can be estimated in the same manner as 𝜅 ≃ 0.25 and

then 𝑓 ≫ 𝑔.

4.4 Two-Stage Signal Model

There is a serious risk in the EOG-EEG signal contamination framework as discussed

in section 4.3 [95, 96, 97, 98, 99, 100]. And the decomposition of the signal and noise

will be treated respectively 𝜅𝑔 and 𝜅𝑓 + 𝜂 so that

𝑦 = 𝜅 (𝑓 + 𝑔) + 𝜂

= 𝜅𝑔 + (𝜅𝑓 + 𝜂)

= 𝑔 + (𝜅𝑓 + 𝜂)

(4.6)

where the EOG 𝑔 (∼ 500𝜇𝑉 ) ≫ 𝜅𝑓 + 𝜂 (∼ 10𝜇𝑉 ) in the most serious case.

Record

Noise

Denoising

1st stage

Denoising

2nd stage

Noise

Reconstructed 
EOG

Reconstructed 
EEG

Signal 
(EOG)

Signal 
(EEG)

Amplitude 
reduction

Figure 4-5: Two-stage signal model of 𝑓 and 𝑔 with the condition 𝑓 ≫ 𝑔, which is
focused on our proposed method and frequently happens in the signal contamination
of EEGs and EOG (Figure 4-4). In this figure, the amplitude reduction ratio 𝜅 is
used as the single constant but if two signals are contaminated after the amplitude
reduction (passing the scalp) 𝜅 can be considered as the average of 𝜅1 for EEGs and
𝜅2 for EOGs. The same extension can be considered in multiple noise factors on 𝜂.

In this dissertation, we proposed the two-stage wavelet shrinkage to improve the

effectiveness of the potential risk to remove necessary EEG components as noise if it
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is mixed with EOGs. Thus, we hypothesized that the efficacy of the decomposition of

the two signal sources is improved in comparison with the conventional single-stage

method to fit for the requirement of the EEG data analysis. The proposed two-stage

wavelet shrinkage scheme is summarized in Figure 4-5, which is an extended version of

the single-stage scheme in Figure 4-2 according to the above theoretical background.

4.5 iEEG Based Validation Framework for Semi-

Artificial Signals

In the dissertation study, We analysis the multifrequency signals with a intracranial

electroencephalography (iEEG) with small amplitude and scalp recorded EEG ob-

tained by real human EEGs and the step function is defined by Eq. 4.7 to reproduce

a large amplitude potential frequently generated in the saccade eye movements is used

and then the mixed signal provides a smooth curve with baseline changes unexpect-

edly. As the results in image processing [93, 117] is validated whether the proposed

method is effective or not in the biomedical signals because the signals are sponta-

neously generated from the biological system inside and it is difficult to determine

what is ‘true signal’. Therefore, the validation remains in practical applications in

past studies [118, 119, 120, 121] by using their own biomedical data to be a special

case, rather than numerical analyses or quantitative validation. In the purpose of the

establishment of the standard validation method for biomedical signals especially for

EEG studies, we addressed the standard noise model as the framework how the EEG-

EOG signal contamination data can be provided to be able to validate systematically

and numerically. It provides a standard numerical validation in EEGs available for

the comparative study of similar methods.

The semi-artifical EEG-EOG contamination data set is newly introduced by con-

sidering the requirement of the efficacy validation of our proposed method using the

real human data of iEEGs by Andrzejak et al. [122]. This dataset is obtained from

epileptic patients in the Department of Epileptology at the University Hospital of
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Bonn [123] under the ethical procedure. The iEEGs data is contained a hundred

dataset of open-source clinical intracranial EEGs in each from five behavioral con-

ditions. In this dissertation, we used the dataset in the eye-closed condition after

removal of the epoch of epileptic seizures. According to Andrzejak et al. [122], the

iEEGs were recorded at a sampling rate of 173.61 Hz through the 12 bit analog-to-

digital conversion with the band-pass filter of 0.53 – 40 Hz. The existence of a sharp

peak in the alpha frequency band (9 - 11 Hz conventionally) of EEGs when subjects

are closing their eyes is the useful criterion to verify whether or not the necessary

EEG components is preserved after the noise removal. We assumed the iEEGs as

‘true EEG’ and used it to be 𝑓 , and then stationary EOGs with slow changes is set

artificially to mimic random eyeball rotations, which is given as

𝑔(𝑡) = 𝑉 𝑔
𝑘 (𝑇𝑘 ≤ 𝑡 < 𝑇𝑘+1) (4.7)

where the time length of 𝑘-th period 𝐷𝑘 = |𝑇𝑘+1 − 𝑇𝑘| and the potential magnitude

of the EOG 𝑉 𝑔
𝑘 are respectively given by random variables in [−1, 1] · 2𝐽 · 𝐿𝑠𝑢𝑏 and

[−1, 1] · 𝑉 𝑚𝑎𝑥 with the uniform distribution.

4.6 Results

4.6.1 Threshold level control

As we described the denoising in section 4.2.1, in past studies [95, 96, 97, 98, 99,

100]. The threshold level is not determined completely because of the existence

of the multiplication constant 𝛾 [97, 99], which may be related to data dimension.

The multiplier 𝛾 dependency with different threshold definitions in the denoising is

investigated with the comparison of UDWT and DWT by using the artificial EEG

with a EOG step function provided by Eq. 4.7 (an example is shown in Figure 5-3).

The Haar wavelet as mother wavelet is used for the this chapter.
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Figure 4-6: An example of the target signal for denoising, including the artificial singe
wave EEG, a EOG step function and white noise.
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Figure 4-7: Denoised signals in the first stage applied to the artificial singe wave
EEG with a EOG step function. Right panel denotes individual setting of the denos-
ing method either UDWT or DWT, thresholding method either soft or hard, and
threshold value criterion (‘uni’ : universal threshold is

√︀
2 log2𝑁 · 𝜎, ‘rSure’ : adap-

tive threshold selection using principle of Stein’s Unbiased Risk Estimate, ‘hSure’ :
heuristic variant of the first option, ‘mMax’ : mMax thresholding). (b) Enlarged view
marked by the dotted line in (a).
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Figure 4-8: Comparison between the artificial EEG signal amplitude (10 Hz sine wave
in ±6 𝜇𝑉 ) and the white noise ranging ±30 𝜇𝑉 , which was provided to the numerical
analysis before the denoising experiment in Figure 5-4. Due to the weakness of the
EEG signal, noise amplitudes sometimes exceeds the signal amplitude level in the
actual human brain measurement.

4.6.2 UDWT v.s. DWT

The quantitative analyses is discussed in the following section with the specification

of the iEEG dataset by Andrzejak et al. [122]. The sampling rate is mentioned as

173.61 Hz (0.00576 s/sample) and then 210(=1024) samples are corresponded about

6s (5.89824s). The artificial EEG signal is assumed to be a single wave with 10Hz for

while. The results of signal denoising in comparative analyses with combinations of

wavelet types (UDWT/DWT), thresholding method (soft/hard) and threshold value

criterions as shown in Figure 5-4. This simple result is demonstrated the effective-

ness of the UDWT rather than DWTs even with different threshold value criterions,

and the UDWT soft-threshloding provided smoothing effect to the signal excessively.

In this preliminary test consequence, the reconstructed signal by the UDWT hard-

threshloding was closest to the EOG signal. On other hand, the first-stage by UDWT

denoising is correspond to the conventional wavelet denoising and then the method

completely ignore the EEG wave because of the weakness of the signal amplitude

with respect to the noise amplitude (Figure 5-5), this suggests that the necessity of

the second-stage as is discussed in Figure 4-5.

Here, we introduced a criterion for sake of numerical evaluations that determines

how much the signal can be reconstructed finely. In accordance with the EOG signal

assumption by using the step function, the flatness without moments of stepping is
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evaluated. The rate of change (𝑔)′ of 𝑔 represents differences in signal along the time

and then the differences without moments of change {𝑡 |(𝑔)′ > 0} should be 0. Thus,

the definition of the EOG smoothness is described as

(𝑔)′𝐼 = (𝑔)′𝐼(𝑡) =

⎧⎪⎨⎪⎩ (𝑔)′(𝑡) (𝑔)′(𝑡) = 0

0 (𝑔)′(𝑡) > 0
(4.8)

where 𝐼 = {𝑡 |(𝑔)′ = 0} leads (𝑔)′𝐼 ≡ 0 according to its definition as shown in

Figure 5-10 (a) (bottom). Therefore the quality of the reconstructed EOG abbreviated

as 𝑔WT
ℎ/𝑠:th, where ℎ/𝑠 denotes either Hard or Soft thresholding, WT is either UD

(UDWT) or D (DWT) and th is the type of threshold value criterion, can be estimated

in the minimization of (𝑔WT
ℎ/𝑠:th)

′
𝐼 , which is zero if the reconstructed EOG is equivalent

to the original EOG signal. As is demonstrated in Figure 5-10 (b-c), the UDWT finely

reconstructed the EOG signal rather than DWTs in the viewpoint of the criterion.

4.6.3 Multiplier effect

The Pearson’s correlation coefficient (cc) is introduced for the serious evaluation as

𝜌WT
ℎ/𝑠:th = 𝜌

(︁
𝑔, 𝑔WT

ℎ/𝑠:th

)︁
=

1

𝑁 − 1

𝑁∑︁
𝑖=1

(︃
𝑔 − 𝜇𝑔

𝜎𝑔

)︃⎛⎝𝑔WT
ℎ/𝑠:th − 𝜇𝑔WT

ℎ/𝑠:th

𝜎𝑔WT
ℎ/𝑠:th

⎞⎠ (4.9)

where 𝑇 = 2𝐽 is used for comparisons between two time series. According to the

section 4.6.1 result, we focusing on the simple EOG artificial signal for the EOG

smoothness, or flatness. The minimization of the summation of (𝑔WT
ℎ/𝑠:th)

′
𝐼 in the

whole period of 𝐼 such as the averaged fluctuation evaluator,

⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩
=

1

𝑇

∫︁
𝐼={𝑡|(𝑔)′=0}

|(𝑔WT
ℎ/𝑠:th)

′(𝑡)|𝑑𝑡 (4.10)

The reconstructed EOG smoothness in time domain (shortly ‘EOG smoothness in

time domain’) is considerable in the first phase. On other hand, the criterion is

required to evaluate the quality of the reconstruction with respect to the shift invariant
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Figure 4-9: An example of the target signal for denoising, including the artificial singe
wave EEG, a EOG step function and white noise.
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Figure 4-10: Comparison of errors in two criterion between the original EOG and
reconstructed signal. Statistical evaluation was analyzed from data with 50 different
white noise components. (a) In the case of the EOG smoothness in time domain. (b)
In the case of the EOG smoothness in frequency domain. Abbreviations of threshold
value criterion are consistent with the description in Figure 5-4.

effect, which appear in the difference between UDWT (Figure 5-10 (c)) and DWT

(Figure 5-10 (d)) results. In the simple summation of cc, the existence of high

frequency spikes in the DWT reconstructed signal is estimated as less difference with

the original signal with respect to the UDWT in some cases. As shown in Figure 5-11

(a), the comparison among different denoising methods including UDWT and DWT,

by using the EOG smoothness in time domain defined as
⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩
. The result is

indicated the criterion does not effectively works for the evaluator.

In the second phase, the flatness of the averaged fluctuation evaluator can be

evaluate in the frequency domain is called the reconstructed EOG smoothness in

frequency domain (shortly ‘EOG smoothness in frequency domain’), which is given

as ⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩
𝐹 =

1

𝑇𝑓

∫︁
𝐼𝑓

|(𝐺̂WT
ℎ/𝑠:th)

′(𝑓)−𝐺′(𝑓)|𝑑𝑓 (4.11)

where

(𝐺̂WT
ℎ/𝑠:th)

′(𝑓) =

∫︁ 2𝐽

0

(𝑔WT
ℎ/𝑠:th)

′(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡, 𝐺′(𝑓) =

∫︁ 2𝐽

0

𝑔′(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡. (4.12)

The comparison of reconstructed signals with multiple methods of the EOG smooth-
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Figure 4-11: Multiplier 𝛾 dependency in UDWT denoising methods evaluated by cc

and EOG of smoothness in frequency domain
⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩𝐹
. (top) Decomposition

level 𝐿 = 2. (middle) Decomposition level 𝐿 = 5. (bottom) Decomposition level
𝐿 = 10.
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ness in frequency domain is shown in Figure 5-11 (b). As the Figure 5-10 is visualized

that the UDWT reconstructed has smooth line with less spikes especially in the zone

in-between up-and-down transition points and the criterion focusing on the frequency

domain
⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩
𝐹 clearly demonstrated the validity. If the high frequency spikes

is remain in the EOG signal before going to the second stage, it contains a part

of EEG signals and then it influences the lack of EEG signals in the reconstructed

process of the second stage.

Table 4.1: Statistical difference between reconstructed EOGs evaluated by the EOG
smoothness in time domain. The mark * denotes the significant difference (T test; p
< 0.05).

UDWT
Hard Soft

UDWT
Hard

*
(𝑝 = 3.09× 10−47)

Soft
*

(𝑝 = 3.09× 10−47)

DWT

Hard

rSure
*

(𝑝 = 9.42× 10−35)
*

(𝑝 = 1.70× 10−31)

hSure
*

(𝑝 = 9.57× 10−35)
*

(𝑝 = 1.74× 10−31)

uni
*

(𝑝 = 5.63× 10−16)
*

(𝑝 = 6.50× 10−51)

mMax
*

(𝑝 = 5.48× 10−14)
*

(𝑝 = 2.36× 10−5)

Soft

rSure
*

(𝑝 = 5.07× 10−30)
*

(𝑝 = 3.65× 10−19)

hSure
*

(𝑝 = 5.13× 10−30)
*

(𝑝 = 3.70× 10−19

uni
*

(𝑝 = 6.36× 10−62)
*

(𝑝 = 1.35× 10−44)

mMax
*

(𝑝 = 4.28× 10−42)
*

(𝑝 = 5.64× 10−6)

The efficacy of the UDWT denoising method is significantly different from results

of DWT methods as shown in Table 4.1 and 4.2. In consideration of the definition of

the criterion, the EOG smoothness in frequency domain is required to be used and the

efficacy is validated with the significantly difference (T test; 𝑝 < 0.05). Therefore,

the multiplier 𝛾 dependency in the UDWT denoising are evaluated (Figure 5-12)
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Table 4.2: Statistical difference between reconstructed EOGs evaluated by the EOG
smoothness in frequency domain. The mark * denotes the significant difference (T
test; p < 0.05).

UDWT
Hard Soft

UDWT
Hard

*
(𝑝 = 1.3× 10−04)

Soft
*

(𝑝 = 1.3× 10−4)

DWT

Hard

rSure
*

(𝑝 = 2.01× 10−23)
*

(𝑝 = 1.12× 10−22)

hSure
*

(𝑝 = 2.01× 10−23)
*

(𝑝 = 1.12× 10−22)

uni
*

(𝑝 = 7.57× 10−13)
*

(𝑝 = 2.16× 10−9)

mMax
*

(𝑝 = 5.93× 10−11)
*

(𝑝 = 9.33× 10−10)

Soft

rSure
*

(𝑝 = 4.01× 10−28)
*

(𝑝 = 1.06× 10−24)

hSure
*

(𝑝 = 4.01× 10−28)
*

(𝑝 = 1.06× 10−24)

uni
*

(𝑝 = 5.89× 10−43)
*

(𝑝 = 6.71× 10−42)

mMax
*

(𝑝 = 2.70× 10−32)
*

(𝑝 = 8.67× 10−30)
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by using cc and
⟨
(𝑔WT

ℎ/𝑠:th)
′
𝐼

⟩
𝐹 . The result is demonstrated the moderate number of

decomposition level such as 𝐿 = 5 is appropriate for keeping the less error with respect

to the change of the the multiplier 𝛾. According to the concept of the two-stage model

( Figure 4-5),the large value of the multiplier 𝛾 has a less risk to preserve EEG signal

in the reconstructed signal in the first stage, while the reconstructed signal if 𝛾 > 4

is getting worse to reproduce the EOG signal. Thus, the appropriate 𝛾 is placed in

the range from 3 to 4.

4.6.4 Wavelet shrinkage and denoising

The true EEG signal is taken from the iEEG data set [122] to validate the proposed

method. We considered the EEG signals which is contaminated with noise and EOGs,

is decompose up to N (N=5) level and the threshold is applied to EEG signal for

denoising at each level. The EEG samples is taken from open open eye and close eye
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Figure 4-12: Two samples of iEEG signals and averaged frequency spectrum of the
signals from ‘Open Eye’ and ‘Close Eye’ at awake state condition. In the close eye
condition, there exists a sharp peak around 10Hz, which is used for the following
validation whether this profile preserved in the reconstructed EEG signal successfully.

at awake state condition have shown in Figure 4-12(a) and (b). In the time domain,

the EEG samples have same kind of tendency as shown in Figure 4-12(a) and (b). In
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the close eye condition, it is known that a sharp peak around 10 Hz appears [122], and

the closed eye condition EEGs is used for the validation of proposed method whether

the peak clearly preserved in the reconstructed signal without any other pseudo peaks

in the frequency profile. The averaged frequency spectrum is exhibited the peak at

the low frequency range as shown in the Figure 4-12 (c). The time series difference of

two EEG samples is unclear in time domain (Figure 4-12(a-b)) but they are different

with respect to the peak profile in the frequency domain (Figure 4-12(c)). The close

eye signal has the power peak at the lower frequency but it is absent at open eye,

this kind of tendency is difficult to recognized in the time domain. In this section,

the first and second stages are abbreviated as stage-I and stage-II respectively.

The amount of white Gaussian noise is selected based on the amplitude percentage

of the EEG signals.

The different amount (𝜂𝑚 :[𝜂1, 𝜂2, . . . , 𝜂8] = [0, 0.1, 1, 5, 10, 20, 50, 100]%) are catego-

rized with respect to the maximum of EEG amplitude. Thus, the amount of noise

potential mixed with the EEG signal is denoted by 𝜂. The Figure 4-13 is showed an

example of the Combined EEG signal with artificial EOG and white gaussian noise.

And this mixed signal is the input of the stage-I

The Figure 4-14 is showed the reconstructed artificial EOG and noisy EEG after

the stage-I by UDWT and DWT methods. The threshold value for hard and soft as

per 𝜆 =
√
log 𝑛 · 𝛾 · 𝜎/

√
𝑛 where 𝛾 is a constant related to the quasi-orthogonality

[99]. As we discussed above about the multiplier factor of the threshold is played an

important role in reconstruction of the EOG signal. And here, the multiplier factor 𝛾

3 is used consistently. The Figure 4-14 (a) and (b) are showed the fluctuating noisy

EEG signal at different level of noise. The fluctuating EEG is subtracted from the

reconstructed EOG signal. The EOG signal is removed from mixed EEG signal at

the stage-I, but still have noise, which is corresponding to the traditional single stage

denoising.

Therefore, we proposed the stage-II to remove the small potential noise in section

4.4. The performance of the EEG signal reconstruction after the stage-II is compared

between UDWT and DWT denoising.
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Figure 4-13: An example of the combined EEG, artificial EOG and the white noise.
(a) 𝜂 = 0. (b) 𝜂 = 0.1. (c) 𝜂 = 10, (d) 𝜂 = 100. Numerical analysis were done with
2000 data set (100 iEEG set) with the white noise in each 𝜂 condition.
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EOG artifact.
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Figure 4-15: Reconstructed EEG signals by using DWT denoising methods with hard
and soft thresholding after stage-II, which is originally proposed in the present study.
(a) 𝜂 = 0. (b) 𝜂 = 0.1. (c) 𝜂 = 10, (d) 𝜂 = 100. The reconstructed signal formed a
step-like function.
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Figure 4-16: Reconstructed EEG signals by using UDWT denoising methods with
hard and soft thresholding after stage-II, which is originally proposed in the present
study. (a) 𝜂 = 0. (b) 𝜂 = 0.1. (c) 𝜂 = 10, (d) 𝜂 = 100. The reconstructed signal
clearly reproduce a consistent form with respect to the original signal in the condition
𝜂 ≤ 10.
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The reconstruction of denoised EEG signal with DWT and UDWT is shown in the

Figure 4-15 and Figure 4-16 respectively. As seen in the time course, the reconstruc-

tion using UDWT is seemed to be better than DWT because of the similarity of the

temporal profile. For the quantitative analysis, the data set (8×20×100) is prepared

as the combination of 100 iEEG signal, 20 artificial EOGs and 8 noise level. And

the reconstructed EEGs are evaluated with the correlation coefficient cc between the

reconstructed signal and the original EEG in frequency domain. The Figure 4-17 is

showed the averaged frequency spectrum of original EEG and reconstructed EEG us-

ing UDWT and DWT. The result is demonstrated that UDWT clearly reconstructed

the consistency in the frequency spectrum profile with the single peak around 10Hz,

yet DWTs is not upto mark because it has the less height of the peak and reproduced

unnecessary peaks in the high frequency range.
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Figure 4-17: Frequency spectrum of reconstructed EEG signals by using UDWT
denoising methods with hard and soft thresholding after stage-II. (a) 𝜂 = 0. (b)
𝜂 = 0.1. UDWT clearly reconstructed the consistency in the frequency spectrum
profile with the single peak around 10Hz, yet DWTs had the less height of the peak
and reproduced unnecessary peaks in the high frequency range.

In the final result, correlation coefficients among all the trial EEG signals are
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Figure 4-18: Averaged time series correlation coefficient cc of all reconstruction EEG
signal with hard and soft threshold after stage-II. UDWT and DWT were significantly
different as shown in Table 4.3.

evaluated according to the noise level in time domain (Figure 4-18) and frequency

domain (Figure 4-19). Furthermore, the significant difference (Table 4.3) is also

demonstrated that reconstructed EEG signal using UDWT has the advantage rather

than the DWT. The results as shown in the Figure 4-18 and 4-19 are the comparison

between all combination of UDWT based stage-II model, while on the other hand,

the significant difference between UDWT hard and UDWT soft is not exhibited.

Thus, our hypothesis of the efficacy of the two-stage model and the sift invariant

advantage of UDWT is clearly examined in the quantitative analyses and proved.

Therefore, the proposed two-stage wavelet shrinkage scheme is validated as schemat-

ically shown in Figure 4-5, which represents the suitable signal is the contamination

model in the case of the EEGs and EOGs.

The Table 4.3 is illustrated the significant correlation (T test; p < 0.05) between

UDWT and DWT at different 𝜂. The calculation of the frequency spectrum corre-

lation coefficient and is found to be significant correlation. The averaged frequency

spectrum correlation coefficient is shown in Figure 4-19. The shrinkage UDWT is
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Table 4.3: Statistical difference between reconstructed EEGs evaluated by the cc in
frequency domain, including the change of the noise level 𝜂𝑚. The mark * denotes
the significant difference (T test; p < 0.05).

DWT
Hard Soft

UDWT
Hard

𝜂 ≤ 10*

(𝑝 = 1.50× 10−3)
𝜂 ≤ 50*

(𝑝 = 2.27× 10−4)

Soft
𝜂 ≤ 100*

(𝑝 = 0.04)
𝜂 ≤ 10*

(𝑝 = 0.036)
UDWT

Hard Soft

UDWT
Hard

𝜂 ≤ 50*

(𝑝 = 1.38× 10−4)

Soft
𝜂 ≤ 50*

(𝑝 = 1.38× 10−4)
DWT

Hard Soft

DWT
Hard

𝜂 ≤ 50*

(𝑝 = 4.25× 10−4)

Soft
𝜂 ≤ 50*

(𝑝 = 4.25× 10−4)

better than shrinkage DWT and above results suggested that our proposed model

good for EEG signal. Only the criteria is to select the appropriate multiplier to the

threshold value.

4.7 Discussion

‘Blocks’, ‘Bumps’, ‘HeaviSine’ and ‘Dopples’, some standard time series test signals

with various inhomogeneities are consider in the traditional evaluation of the wavelet

transform [102, 90, 91]. The ‘Blocks’ with abrupt changes that is similar to the

horizontal and vertical eye movement that described by Patrick [52, 53]. Even though

‘Bumps’ may be similar to the blinks but the trigger is unexpected timings. Rest two

standard test signal are not similar to the bio-medical especially EEG signal therefore

it is difficult to consider them. Due to the similarity between the real EOG signal

with different standard signal in time series as discussed above. We consider the block
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signal is ideal for the proposed method with UDWT to denoise the EEG signal.

The wavelet denoising is to cut-off the coefficient values if the threshold (hard

thresholding) and cut down on the threshold (soft thresholding) according to the

Donoho et al [91]. The Figure 4-5 is illustrated based on the single-noise-and-single

signal-source model. However, in the case of the mixed signal sources of EOGs and

EEGs the assumption of EEG amplitudes to be a noise level with respect to the EOG

level, illustrated in Figure 4-5. Therefore, the EOG signal removal in the first place,

and then the EEG signal denoising is the plausible steps to assure preservation of

signals with large amplitude differences. The Figure 5-3 is showed the combination

of two signal EEG and Block (artificial EOG). The block form of is reconstructed as

artificial EOG as shown in the Figure 5-4(a) is due to the advantage of shift-invariant

property. Here we have to choose proper levels of decomposition. The reconstructed

from UDWT using hard and soft threshold are good as compare to the DWT using

different scheme. Even-though the UDWT using hard threshold is better than UDWT

soft threshold as shown in the Figure 5-4(b).

We used the different types of wavelet filter coefficient for UDWT and DWT

decomposition as mention earlier, in that the Daubechis filter is better for the de-

composition. The approximation coefficients and details coefficients of EEG signal

length is not decreased and no aliasing is take place at the decomposition of EEG

signals. The Figure 4-5 is demonstrated the decomposition scheme of EEG signals

at different levels by UWDT. The smoothing of EEG signal is increased as compared

to other wavelet filter due to the increment in vanishes moment. UWDT gives more

amount of information for feature extraction in EEG signals as compared to DWT due

to the translation invariant property. The denoising result with UWDT has better

balance between smoothness and accuracy than DWT [90][91], [93]. UWDT method

is support both real and complex signal as compared to DWT is used for real signals.

Here, we focused on the wavelet shrinkage for the decomposition of the contami-

nated signals accompanied with the capability of the artifact removal. The qualitative

validation is based on the standard noise contamination model. It is highly impor-

tant for the comparative study of similar methods and providing clues of possible
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improvements. Even the one(Block test signal) has possibility which is very impor-

tant because it changed the base of the EEG signal due slow eye movement that is

very difficult recognized on real time basis. But at same we cannot ignore the blinks

that similar is to blocks. In future we consider the blocks test signals.
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Chapter 5

Morphologically Decomposition of

EEG Signals

In this chapter, morphologically features are extracted by varieties of component de-

composition procedures that can be efficiently summarized a wide range of problem

in electrophysiology. The component analysis methods from Principal Component

Analysis and Independent Component Analysis have been used for decomposition of

the component but there are suffering from constraints of orthogonality or statistical

independence of components. Therefore, this new method is used to overcome of

those methods by identify the component on the base of sparsity in time-frequency

and time-scale EEG signal is decomposed into their morphology component by using

the large number of developed waveform dictionaries. The Morphological Compo-

nent Analysis (MCA) extended the traditional concept of signal decomposition and

reconstruction using basis which not only guarantees accuracy in reconstruction but

also requires being independent of each other and the uniqueness of the represen-

tation using the basis. By admitting a redundancy in representations of the signal

i.e. a way of decomposition, MCA used a concept of dictionary such as a mixture of

traditional basis. The MCA is applied to decompose the real electroencephalogram

(EEG) in time-frequency domain. In this analysis, the EEG signal is decomposed

into signal sources that can be represented by a linear expansion of waveforms such

as redundant dictionaries: UDWT, DCT, LDCT, DST, and DIRAC. These morphol-
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ogy decomposed components are represent the irregular spike, smooth curve in both

frequency and time domain. In this chapter, we discuss the results are decomposed

by MCA and suggested that the effectiveness of separation by component. And fur-

ther decomposition may be useful to search for activity with a given spectral and this

method may be useful for artifact recognition and removal.

5.1 Introduction

According to the electrophysiological mechanism, it is unclear that how EEG signals

are generated and which information represent is what and the most plausible hypoth-

esis is suggest that the signals are composed of synchronous spiking activities with

respect to the oscillatory modulation of the local field potential [124]. Therefore, the

brain state such as awake, sleep and selective attention is represented as EEG’s index.

It is also estimated the activation of brain region by comparison with other regions

if they are located in the superior surface of the brain close to the cranial bone, like

a part of the cerebrum. The most difficult issue is an uncertainty in EEG signals to

discriminate the EEG signals having different morphology and noise. EEG signals is

contained a multiple types of morphologies caused by different internal mechanisms

such as EOG generated by eyeballs and eyelids movements, and EMG by muscular

movements of body parts. The problem of true EEG signal is inevitable and it may be

solve by the isolation of individual electrophysiological mechanisms. As we discussed

earlier the EEG signal is known as the most noninvasive tool in particular for clini-

cal diagnosis and neuroscience research, while medical professionals and researchers

in related fields have faced the difficulty of the signal contamination. The ocular

artifacts i.e. eye movements and eye blinks is the most serious artifacts and many

past studies based on linearity and stationary signal decomposition had proposed for

EOG removal [67, 72, 73]. However there are a few methods to treat nonlinear and

non-stationary properties in EEG signals [125, 126, 127]. It is indicated that the tra-

ditional methods are not simply applicable to nonlinear and non-stationary signals in

the purpose of artifact removals [128].
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Recently the morphologically signal decomposition are highlighted due to the ap-

plicability of nonlinear and non-stationary signal properties [129, 59, 60].The blind

source separation [130] has been discussed widely to separate the signal components

of a linear mixture signal. The ICA and PCA are the representative methods that

to be used. These methods are frequently applied [131, 132] to the EEG signal de-

composition, especially in the offline analysis. The PCA is decomposed the EEG

components in space/time basis. While as disadvantages, it is difficult to reconstruct

overall signals by the linear combination of principal components (PCs) because of

the ignorance of signals with small amplitudes and irregular changes. Therefore, the

accurate reconstruction in those method are required the prior and detail knowledge

to identify PCs corresponding to artifacts [52, 66]. Due to the limitation in PCA,

the research trend is shifted from PCA to ICA with high order statics to specify

independence in the signal. On the other hand, since the ICA is restricted to the

basement on measure of statistical independence, ICA is face the difficulty to detect

signal components if Gaussian noise are contaminated in the manner of spreading

over the noise in an undesired way into the signal components [67, 68, 72, 73, 107].

The effectiveness in analyzation, enhancement and synthetization of signal prop-

erties include the nonlinear and non-stationary changes is the key role in a plausible

EEG decomposition [133]. The ICA methods are demonstrated the performance on

the decomposition of complex signals in blind source separation. But the analysis and

synthesis of signal in a systematic manner is an extended concept of sparsity [134]

and a methodology for separation based on redundant transforms can be introduced

[61]. MCA is one of the methods in that the sparsity plays a vital role to separates

different time/frequency properties or morphologies of individual signal components,

which are demonstrated in the past studies [129, 135, 136]. The effectiveness of MCA

noise removal is mostly clarified in image processing [59, 60, 61, 62]. However we hy-

pothesized that the MCA decomposition is effective in the EEG artifact removal and

it clarifies which kinds of signal morphologies are contaminated into the signal as true

biological signals, by using redundant transform or mixed over-complete dictionary in

the sense of MCA [137]. Yong et al. [138] preliminary is reported the effectiveness in
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the EEG artifact removal and is provided a less comprehensive analysis with MCA in

the framework of verification of how EEG true signal preserved after noise removals

even with various EOG fluctuations [139]. The different dictionaries based on the

mathematical basis function are used to represent the evoked potentials generated by

different electrophysiological mechanisms.

In this chapter, we proposed the best combination of dictionaries [61] for an EEG

decomposition method based on the sparsity and over-completeness dictionary in the

sense of EEG frequency properties. The reconstruction of the EEG signals have

highly different representation of time/frequency features that depends on the set of

dictionaries [137, 140, 141]. We used the block coordinate relaxation (BCR) algorithm

to minimize error in signal reconstruction and to obtain the sparsest representation

of desired features in the computer experiment. The goal of this study is to propose

the systematic way of the artifact removal in EEG signals with MCA and to specify

time/frequency properties to represent signal components by verifying the appropriate

combination of the dictionaries.

5.2 Decomposition Methods

A linear combination of 𝑘 EEG and artifacts sources in time domain, the source can

be denoted as 𝑠1(𝑡), 𝑠2(𝑡), ..., 𝑠𝑘(𝑡), with amplitudes and time index 𝑠1, 𝑠2, · · · , 𝑠𝑘 and

t respectively.

𝑠1(𝑡) = Φ11𝑥1 + Φ12𝑥2 · · · ,

𝑠2(𝑡) = Φ21𝑥1 + Φ22𝑥2 · · · ,
(5.1)

where, Φ11,Φ12,Φ21𝑎𝑛𝑑Φ22, are the mixing parameters. Numerous methods have been

used and formulated the linear combination according to the sources characteristics.

Here we are formulated as the linear combination to separate or remove the artifacts

from EEGs. If the EEG signal and other artifacts are statistically independent and

assumed that the EEG and artifacts independent signal must have nongaussian distri-

butions. Due the sparsity in the representation of EEG-EOG signal morphology.The
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artifacts can be removed by replacing coefficients representing the artifacts part with

zero when the whole signal is reconstructed. The blind source separation methods

like ICA and PCA commonly are used to decompose/separate the linear combination

of EEG source [67, 68, 72, 73, 107, 131, 133, 142, 143, 144] . The above equation 5.1

can be given as.

𝑆 = Φ×𝑋,

𝑌 = 𝑊 × 𝑆
(5.2)

The recorded EEGs from electrodes attached on the scalp (abbreviated as scalp

EEG) 𝑆 can be given by the Equation 5.2, where𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), ..., 𝑥𝑘(𝑡)] are the

coefficients in time series called signal components and Φ is the mixing matrix that

to be determine the mixing way to separate 𝑆 between the signal and artifacts. In

ICA separation/decomposition, the mutual independence of 𝑊 unmixing matrix is to

satisfy 𝑊 = Φ−1 and each row vector in 𝑌 is approximately equal to a scaled value of

one row vector in𝑋. Therefore the EEG signal are decomposed into the assumed EEG

signal and artifacts components. For the ICA decomposition methods conventionally

require the prior knowledge about the properties of the target components coupling

with the constraints [133],as discussed in section 5.1. A heuristic factor remains to

be obstacle for the full automation of the signal decomposition.

5.3 EEG-EOG Component Morphology

The cerebral cortex is located in the outer region of brain hemispheres just beneath

the skull bone and therefore these activities are accessible by electrical potentials from

the scalp. The cortical regions are locally separated depending on the functions such

as decision-making (frontal cortex), motor control (premotor cortex), body sensations

(somatosensory cortex), and processing of the sensory inputs in vision and audition

(primary visual and auditory cortex). Therefore, the potentials from different po-

sitions on the scalp are contain the information of neuronal activities in different
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cortices if signals are clearly separated each other and from artifacts. The electric po-

tentials from muscular, eyeball and eyelid movements are contaminated into the scalp

EEG in an evitable mainour of leak potentials in the electrophysiological mechanism

which connects the brain and muscular-skeletal mechanism. The electrophysiological

properties in different biological mechanisms are different and the nature of electro-

physiological mixing is the key to solve the complex decomposition problem. As the

traditional knowledge in the medical field [145], it is known that EEG signals have

specific characteristics on the shape of the waveform called morphology: “Monomor-

phic” is composed of one dominant activity, “Polymorphic” is composed of multiple

frequencies to form complex activity, “Sinusoidal” is components to resemble sine

waves, “Transient” has two types which are spikes in a duration of 20 – 70 msec

and sharp waves with a pointed peak and 70 – 200 msec duration. If it is possible to

decompose the recorded EEG with respect to those morphologies of interest, it brings

us a large benefit because it leads the way to “true” EEGs.
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Figure 5-1: A proposed scheme for separation of morphological component represen-
tation of EOG-EEG signal.

The myogenic potential evoked by ocular movements [55, 103] is coupled with

electrophysiological mechanism in the nervous system. The potential of an eyeball

rotation is generated with an amplitude depending on the degree of the rotation

[104], which is observed the staying potential is approximately 500 𝜇𝑉 as maximum

from the EOG recording in the 4-20 Hz range [106], known as the corneo-retinal
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dipole. The phenomena of saccade movements had been investigated in past studies

[71, 107, 108, 115]. As above mentioned the EEG and EOGs potential have specific

morphologies. Morphologies of eye movements and eye blinks can be considered as

slow change with respect to the EEG time scale and a bump shape with a large peak

amplitude [53, 54]. Since the presence of repetitive peaks frequently appear in the

diagnosis of epilepsy [146], we assumed the single bump to be the typical eye blinks

and multiple types of slow baseline changes to be eyeball rotations, as schematically

shown in Figure 5-1.

5.4 Decomposition using Morphological Compo-

nent Analysis

The component decomposing of a signals into their composing elements is a large

expectation in the application of data size minimization for transferring the data via

internet. Morphological component analysis based methods are fit for this purpose

and have the advantage in the accurate reconstruction of the original data after noise

removal, which relies on the sparsity and over-completeness of dictionary. The over-

complete dictionary is represented by Φ ∈ 𝑅𝑛×𝑘, where 𝑘 is the morphological

component of signal for {𝜑𝑘}𝑘∈Γ, where Γ is the index set of dictionaries. According

to the Chen et al. (2001) [140], the over-complete dictionary Φ is a set of redun-

dant transforms, which are defined by a set of mathematical functions to represent

the specific morphologies. Due to specific morphology representation by redundant

transform, the mixed EEG signal can be defined as a sparse linear combination of

component signal. Due to sparseness of signal coefficients, it is very crucial to ob-

tain the final set of coefficients for accurate reconstruction of the original signal. In

the theory, there exists a dictionary that can reproduce the specific features of the

signal if the appropriate iteration method is introduced to pursue the unique sparse

representation. The concept of sparsity and over-completeness dictionary has theo-

retically extended the traditional signal decomposition to feature extractions focusing
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on multiple types of morphologies simultaneously.

Due to freedom of the selection of dictionaries, the signal can be decomposed with

explicit dictionary [140] and it cannot be decomposed in other form of dictionaries.

A dictionary is defined as collection of waveform {𝜑𝑘}𝑘 ∈ Γ [58] in fact, and the input

signal 𝑆 is assumed to be reconstructed by a linear combination of a set of basis

elements 𝜑𝑘, and then the signal 𝑆 is expressed as a single vector of 𝑆 ∈ 𝑅𝑁 and

satisfies 𝑆 = 𝑠1 + 𝑠2, · · · , 𝑠𝐾 , where 𝑠1, 𝑠2, · · · , 𝑠𝑘 are subcomponent i.e. different

morphologies. We applied this system to recorded EEG signal 𝑆 as shown in Figure

5-1. The signal approximation decomposition 𝑆into its building components can be

expressed as

𝑆 =
∑︀𝑘

𝑖=1 𝛽𝑖𝜑𝑖 + 𝜁

= 𝛽1𝜑1 + 𝛽2𝜑2 · · ·+ 𝛽𝑘𝜑𝑘 + 𝜁

∼= 𝑠1 + 𝑠2 · · ·+ 𝑠𝑘 (𝜁 ≪ 1)

= 𝑆 ′

(5.3)

Therefore 𝛽 is the target coefficients for reconstruction of the original EEG signal

based on the assumption 𝜁 ≪ 1, which means that the remainder 𝜁 is negligibly

small. In the consideration that 𝜁 represent the noise part, the Equation 5.3 without

noise can be written as

𝑆 =
∑︀𝑘

𝑖=1 𝛽𝑖𝜑𝑖

= 𝛽Φ
(5.4)

The Equation 5.4 is consistent with the Equation 5.2. The problem to solve is

how optimized coefficients can be derived, and the equation is rewritten as follows

{𝛽𝑜𝑝𝑡
1 , 𝛽𝑜𝑝𝑡

2 , · · · , 𝛽𝑜𝑝𝑡
𝑘 } = argmin

𝛽1,··· ,𝛽𝑘

∑︀𝑘
𝑖=1‖𝛽𝑖‖0

subject to: 𝑆 =
∑︀𝑘

𝑖=1 𝛽𝑖𝜑𝑖.

(5.5)

The problem is that how the MCA concept can be embedded in the systems to

decompose biomedical signal especially for EEG signal. In this formulation is totally

consistent with traditional decomposition methods which applied to the biomedical
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signal decomposition such as PCA, wavelets and ICA, in the sense of the single set

of basis. What is an advancement of MCA is the availability of the combination

of multiple basis functions, including traditional basis like wavelet decomposition as

a part of the component, called redundant transforms. Thus, MCA is expected to

reveal what kind of the specificity exists in time-frequency properties of EEG data.

Concrete problems in this viewpoint can be addressed as

∙ what is the best combination of dictionaries of MCA for the EEG decomposition.

∙ what is the true EEG signal in the form of obtained sparsest representation

based on selected dictionaries 𝜑𝑘.
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Figure 5-2: A schematic diagram for EEG signal decomposition using explicit dictio-
nary.

The Figure 5-2 schematically illustrates the MCA scheme for an arbitrary EEG

signal that is assumed to be a linear combination of 𝑘 morphological component to

decompose using explicit dictionaries.

We assumed three types of dictionaries (𝑘 = 3), the following three cases are con-

siderable by focusing on individual dictionaries. Case 1: An over-complete dictionary

𝜑1 is representing the component 𝑠1, 𝜑1 ∈ 𝑀𝑁×𝐿1 , where 𝑁 ≫ 𝐿1, 𝑁 is the number

of samples i.e. the number of time points in the recorded data.

∙ For 𝑠1, 𝛽𝑜𝑝𝑡
1 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠1 = 𝜑1𝛽, while solving this equation leads the sparse solution(︂
𝛽𝑜𝑝𝑡
1

⃦⃦⃦
0
<
⃦⃦⃦
𝛽𝑜𝑝𝑡
12

⃦⃦⃦
0
,
⃦⃦⃦
𝛽𝑜𝑝𝑡
13

⃦⃦⃦
0

)︂
.
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∙ For 𝑠2, 𝛽𝑜𝑝𝑡
12 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠2 = 𝜑1𝛽, while solving this equation leads non sparse solution.

∙ For 𝑠3, 𝛽𝑜𝑝𝑡
13 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠3 = 𝜑1𝛽, while solving this equation also leads to non sparse solu-

tion.

Case 2: An over-complete dictionary 𝜑2 is representing the component 𝑠2, 𝜑2 ∈

𝑀𝑁×𝐿2 , where 𝑁 ≫ 𝐿2.

∙ For 𝑠2, 𝛽𝑜𝑝𝑡
2 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠2 = 𝜑2𝛽, while solving this equation leads the sparse solution(︂
𝛽𝑜𝑝𝑡
2

⃦⃦⃦
0
<
⃦⃦⃦
𝛽𝑜𝑝𝑡
23

⃦⃦⃦
0
,
⃦⃦⃦
𝛽𝑜𝑝𝑡
21

⃦⃦⃦
0

)︂
.

∙ For 𝑠3, 𝛽𝑜𝑝𝑡
23 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠3 = 𝜑2𝛽, while this equation also have non sparse solution.

∙ For 𝑠1, 𝛽𝑜𝑝𝑡
21 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠1 = 𝜑2𝛽, while this equation also have non sparse solution.

Case 3:

An over-complete dictionary 𝜑3 is representing the component 𝑠3, 𝜑3 ∈ 𝑀𝑁×𝐿3 ,

where 𝑁 ≫ 𝐿3.

∙ For 𝑠3, 𝛽𝑜𝑝𝑡
3 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠3 = 𝜑3𝛽, while solving this equation leads the sparse solution(︂
𝛽𝑜𝑝𝑡
3

⃦⃦⃦
0
<
⃦⃦⃦
𝛽𝑜𝑝𝑡
32

⃦⃦⃦
0
,
⃦⃦⃦
𝛽𝑜𝑝𝑡
31

⃦⃦⃦
0

)︂
.

∙ For 𝑠2, 𝛽𝑜𝑝𝑡
32 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠2 = 𝜑3𝛽, while solving this equation leads non sparse solution.

∙ For 𝑠1, 𝛽𝑜𝑝𝑡
31 = argmin

𝛽
‖𝛽‖0

subject to: 𝑠1 = 𝜑3𝛽, while solving this equation leads non sparse solution.
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Theoretically by using three dictionaries MCA can divide the signal into compo-

nents depending on each dictionary 𝜑1, 𝜑2 and 𝜑3 as a sparest representation of all

signals, and it is described mathematically as:

{𝛽𝑜𝑝𝑡
1 , 𝛽𝑜𝑝𝑡

2 , 𝛽𝑜𝑝𝑡
3 } = argmin

𝛽1,𝛽2,𝛽3

‖𝛽1‖0 +‖𝛽2‖0 +‖𝛽3‖0

subject to: 𝑆 = 𝛽1𝜑1 + 𝛽2𝜑2 + 𝛽3𝜑3

(5.6)

This formulation states a non-convex optimization problem for separate the com-

ponent of the signal; however each 𝜑𝑘 needs to be efficient in a specific component

yet non-effective in other signal components. It indicated that it is difficult to solve

Equation 5.6 in a simple manner and then the Basis Pursuit (BP) method [58] was

proposed based on the idea that the replacement of the 𝑙0 norm to 𝑙1 norm in the

error minimization. According to the improvement, the BP [58] was successfully for-

mulated to be an accurate method to represent the sparest of components, which are

described as:

{𝛽𝑜𝑝𝑡
1 , 𝛽𝑜𝑝𝑡

2 , 𝛽𝑜𝑝𝑡
3 } = argmin

𝛽1,𝛽2,𝛽3

3∑︁
𝑖=1

‖𝛽𝑖‖1 + 𝜆

⃦⃦⃦⃦
⃦⃦𝑆 −

3∑︁
𝑖=1

𝜑𝑖𝛽𝑖

⃦⃦⃦⃦
⃦⃦
2

2

(5.7)

In this system, 𝑙2 norm consider to be the error norm based on the assumption

that the residual act as a white zero-mean Gaussian noise and other important finding

is the representation of noise models 𝑙1 Laplacian noise with the consideration of 𝑙∞

uniformly distribution noise, in the form of the optimization problem. 𝜆 represent

the stopping criterion or threshold. By using the Block-Coordinate-Relaxation (BCR)

method [147] the optimization problem can be solved in finite computation time. The

procedure has given below:

1. Initialize = 𝐼𝑚𝑎𝑥, number of iteration = 𝐿, threshold : 𝛿 = 𝜆 * 𝐼𝑚𝑎𝑥.

2. Perform L times:

Part(1) update 𝑠1, assuming 𝑠2 and 𝑠3 has fixed.

(a) Calculate the residual 𝑅 = 𝑆 − 𝑠2 − 𝑠3
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(b) Calculate 𝛽1 = 𝜑𝑇
1𝑅

(c) Threshold the coefficient of 𝛽1 and obtain ̂︀𝛽1

(d) Reconstruct 𝑠1 by 𝑠1 = 𝜑1
̂︀𝛽1

Part(2) update 𝑠2, assuming 𝑠1 and 𝑠3 has fixed.

(a) Calculate the residual 𝑅 = 𝑆 − 𝑠1 − 𝑠3

(b) Calculate 𝛽2 = 𝜑𝑇
2𝑅

(c) Threshold the coefficient of 𝛽2 and obtain ̂︀𝛽2

(d) Reconstruct 𝑠2 by 𝑠2 = 𝜑2
̂︀𝛽2

Part(3) update 𝑠3, assuming 𝑠1 and 𝑠2 has fixed.

(a) Calculate the residual 𝑅 = 𝑆 − 𝑠1 − 𝑠2

(b) Calculate 𝛽3 = 𝜑𝑇
3𝑅

(c) Threshold the coefficient of 𝛽3 and obtain ̂︀𝛽3

(d) Reconstruct 𝑠3 by 𝑠3 = 𝜑3
̂︀𝛽3

3. Update the threshold by 𝛿 = 𝛿 − 𝜆.

4. If 𝛿 > 𝜆, return to Step 2. else finish.

5.5 Hypothesis

Here, we hypothesized that an appropriate combination of three dictionaries to form

an over-complete dictionary of MCA decomposition specifically for EEG recoding

data are undecimated Wavelet transform , discrete sine transform and DIRAC (aka

standard unit vector basis, or kronecker basis) [Fadili et al. (2009)]. The UDWT is

contributed to separate slow and bump morphologies for EOG and EEG transient

slow changes, DST is used for monomorphic and polymorphic EEG components (ma-

jor EEG parts) and DIRAC is used for spike type activities in transient EEGs. The

discrete cosine transform , discrete sine transform [148, 149], local discrete cosine
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transform dictionaries are used for major EEG parts in the simulated experiment for

comparison. For the verification of the hypothesis, the intracranial EEG data (iEEG)

to be “true EEG” signals, which was recorded from the real brain activity, and arti-

ficial EOGs including bump and slow changes were introduced and the performance

of the accurate reconstruction of the true EEGs are examined. As we discussed the

iEEG data in chapter 3, same types of the data is used as conditions of eye-closing and

eye-opening 5.6.2. According to the neuroscientific evidence, EEGs has a clear peak

in the low frequency range around 10Hz in the frequency spectrum in the eye-closing

condition 5.6.2.

5.6 Results

The computer simulation is used for verification of our hypothesis, three types of the

data are used, 1) all simulated data, 2) a combination of real iEEG and simulated

EOG and 3) recording of real EEG-EOG data and our proposed method is validated.

5.6.1 Simulated data

The two simulated sources signals are prepared for the simple test of the proposed

method in first place. Initially Yong et al. [138] had proposed a combination of

wavelet, DCT and DIRAC for EEG artifact removals, while their results are unclear

how much the method is effective in qualitative manner. In this experiment, the first

source signal is a cosine wave, which is assumed to be a monomorphic EEG signal, and

the second source is consider the blinks component with three bumps which designed

as usual EOG signals. The simulated signal as a mixture of the two sources and white

noise (𝜂 = 20%) are shown in the Figure 5-3(a). where, 𝜂 is defined as the percentage

of the maximum amplitude of the input signal. This proposed MCA method is applied

to separate the components from the simulated signal with the explicit dictionaries

UDWT, DCT and DIRAC as shown in the Figure 5-3(b), as an replication test. The

correlation coefficients between the simulated signal and the sum of all components

has more than 0.99 and the simulated result is proved the accuracy of decomposed
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components by MCA with UDWT, DCT and DIRAC explicit dictionaries (Figure

5-3(c)).
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Figure 5-3: An example of simulated signal for decomposition, a) the cosine with
bump and spikes signals; and combined signal with white noise (𝜂 = 20%), b) sep-
arated components with explicit dictionaries UDWT-DCT-DIRAC, c) comparison
between combined signal and sum of separated components (cc = 0.99).

5.6.2 Simulated EOG contaminated iEEG signal

The section 5.6.1 is a simple example of the simulated data. In this section, we are

introduced a new validation way to test the proposed method in qualitative manner.

The simulated EOG and real iEEG signal are obtained in the condition of closing eye,

and the linear combination of simulated EOG , iEEG signals are simulated for the

test. The iEEG signals are considered as an usual level of white noise and didn’t add

further noise additionally in this case. As mentioned the iEEG dataset was given by

Andrzejak et al. [122] with 100 trials, and the sampling rate was at 173.61 Hz (0.00576

s/sample) and 210(=1024) samples corresponding to about 6s (5.89824s). The linear

combination of simulated EOG and iEEG signals are applied for the validation.

We assumed that the different combination of simulated EOG : artificial eye move-

ments, which is as the step function, and eye blinks by bump signal. The flatness
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Figure 5-4: A systemic representation of different morphological signals a) intracranial
EEG signal, b) artificial block EOG signal, c) artificial blink EOG signal, d) combined
signal.

of signals with slow elevations in time scales with respect to the EEG time scale are

represented the gaze-type eyeball rotations. This signals can be reconstructed by

a mathematical function defined by the rate of change (𝑔)′ of 𝑔 which satisfy that

{𝑡 |(𝑔)′ > 0} should be 0. Thus, the definition of the EOG smoothness is described

as

(𝑔)′𝐼 =

⎧⎪⎨⎪⎩ (𝑔)′(𝑡) (𝑔)′(𝑡) = 0

0 (𝑔)′(𝑡) > 0
(5.8)

where 𝐼 = {𝑡 |(𝑔)′ = 0} leads (𝑔)′𝐼 ≡ 0 according to its definition as shown Figure

5-4 (b). In addition, the bumps signal is showed in the Figure 5-4(c) as assumed

the blink-type EOG signal. The Figure 5-4(d) showed the schematic example for

the semi-simulated signal. In same way, 100 datasets of semi-simulated signals with

random combination of components in time series are used for the validation.

A set of results as shown in the Figure 5-5(a, b, c) are demonstrated the decompo-

sition of semi-simulated signal by explicit dictionaries, depending on the combination
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Figure 5-5: Component separation by MCA : a) explicit dictionaries are UDWT,
DST and DIRAC. b) UDWT, DCT and DIRAC. c) UDWT, LDCT and DIRAC
respectively at 𝜆 = 4. The original signal for decomposition is shown in Figure 5-4
(bottom) as combined signal.
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of dictionaries. The stopping criterion is depend on 𝜆 * 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the parame-

ters are used of different combination of explicit dictionaries (UDWT-DCT-DIRAC,

UDWT-DST-DIRAC and UDWT-LDCT-DIRAC), threshold type either a hard and

soft and 𝜆 value varied from 3 to 5 in this comparative study as mentioned in section

5.4.
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a) Cc between iEEG and 2nd comp. (Hard) b) Cc between iEEG and 2nd comp. (Soft) 

c) Cc between EOG and UDWT (Hard)  d) Cc between EOG and UDWT (Soft)  

Figure 5-6: A comparison between cc of decomposed morphological component with
iEEG signal and Artificial EOG with hard and soft threshold. Mean value and stan-
dard deviation are calculated from all 100 decomposed data by explicit dictionaries.
a) second morphological component is decomposed by DST, DCT and LDCT with
hard and, b)soft threshold respectively. c) first morphological component is decom-
posed by UDWT with hard threshold and d) soft threshold respectively. 100 trials of
iEEG and artificial EOG are used.

The Figure 5-6 (a) and (b) are showed the averaged cc of decomposed component

by respective combination of explicit dictionaries with hard and soft thresholds. The

cc between iEEG and either DST, DCT or LDCT component is evaluated depending

on the three combination types as shown in (Figure 5-6 (a)) for the performance of the
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EEG signal decomposition. The cc between EOG and UDWT component is evaluated

shown in (Figure 5-6 (b)) for the performance of the EOG signal decomposition. In

comparison between hard and soft thresholds, the average value in the hard threshold

is around 0.6 which is larger than that in the soft threshold, while the average value

in the soft threshold is around 0.95 and less variances than that in the hard threshold.

It is indicated that UDWT dictionary with soft threshold is the stable performance

according to the fitness of the morphological property in this case.
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Figure 5-7: An averaged normalized FFT obtained from 100 of iEEG, combination of
two morphological components and single morphological component at 𝜆 varies from
3 to 5 with hard and soft threshold.

The variances and average values are similar in the evaluation of EEG signal

decomposition using the time domain, and then we introduced a measure in the

frequency domain. The specific tendency of brain stage of brain can be represented

through the information carry by EEG signals in the frequency domain as mentioned
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Figure 5-8: A comparison of FFT correlation coefficient between iEEG data and mor-
phological component decomposed by explicit dictionaries. a) combined two morpho-
logical components, b) single morphological component. Mean value and standard
deviation calculated from all 100 decomposed data by explicit dictionaries with hard
and soft threshold.

in 5.3, such as having a synchronized neural activities by showing the existence of

a peak in the frequency spectrum. A peak around 10Hz and 50Hz in closing eye

condition are showed in the evaluation of the EEG data. Therefore in the frequency

analysis, a 10Hz peak will be an index of how much the reconstructed signal preserves

original information contained in the original iEEG data at closing eye condition. The

averaged normalized FFT is showed in the Figure 5-7 as the comparison among three

combinations of the dictionaries. Interestingly although DST, DCT and LDCT single

components are seemed to reconstruct the EEGs because of a high cc value in the

time domain. And the frequency spectrum analysis is clarified the fact that the single

component cannot reproduce the necessary tendency of EEG signals as the existence

of peaks. Therefore, the combination of 2nd and 3rd components which means the

oscillatory and spike components are successfully reproduced the EEG signal tendency

and suggesting the importance of the spike information that presumably synchronizes

background oscillatory behaviors. The 10Hz peak can be reproduced depending on

parameter conditions easily; however 50Hz peak is difficult especially for LDCT-
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DIRAC component in every case. In the viewpoint of the tolerance in change of

the threshold value, the soft threshold method showed the robust performance of

the signal information preservation, which is consistent with the result of EOGs in

Figure 5-6. As shown in Figure 5-8, the reconstruction accuracy of the frequency

profile by two dictionaries is proved by a significant difference between results of two

morphological and single morphological components (t test; p¡0.01 in both hard and

soft thresholds). This evidence suggests the importance of the DIRAC component for

EEG signals, which is not equivalent to the noise, or rather carrying some information.

5.6.3 Decomposition of EOG from real EEG data

EEG DATA

The real scalp EEG and EOG data are obtained from the data in the paper of Ai

et al. (2016) [115]. These data were recorded from 23 EEG channels (FP1, FP2,

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC4, T7, C3, Cz, C4, T8, CP1, CP2, P3, Pz,

P4, O1, O2) and 7 EOG channels (V1u, V1d, V2u and V2d vertical EOG (VEOG)

electrodes were placed on supraorbital and infraorbital rims of each eye; HL and HR

horizontal EOG (HEOG) electrodes were on the left and right outer canthi; Vz was

on the forehead approximately 25mm above the nasion) respectively, according to

10-20 international system (BrainAmp amplifier, Brain Products GmbH) from the 8

participants seated in a comfortable armchair, with the base adjusted according to a

participant height. The participants were fixed their eyes straightly to the fixation

cross in the center of the monitor screen. The stimulus was displayed by a CRT

monitor. A chin support frame was used to keep the participant’s head position and

fix their head to the supporting frame without laying their chins on the supporting

bar to avoid the jaw clenching artifact. The distance between eyes and monitor was

set to 70cm. The sampling rate was 500 Hz. The whole details of the experiment

protocols were given in Ai et al. (2016) [115].
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Results with real EEG-EOG

According to Ai et al. (2015), the real EEG-EOG data are divided into 4 sessions.

Each session has 12 tasks of eye movement. The two EOG signals are collected from

(𝑉 1𝑑 − 𝑉 1𝑢), (𝑉 2𝑑 − 𝑉 2𝑢) at right and left sides of eye as shown in Figure 5-9

and both signals showed the same kind of tendency because vertical EOG propagates

symmetrically in a anterior-posterior direction. The Figure 5-10 showed the real

EEG signals are taken from some electrodes e.g. Fp1, Fp2, Cz, O1, and O2, which

are represent the EOG influence depending on the frontal, central and occipital parts

of the brain.
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Figure 5-9: An example of EOG signal taken from right and left side of eyes.

The selected explicit dictionaries is used to represent the targeted component for

the EEG and EOG signal. EEG and EOG are distinguished based on the morphology

that are observed in the EEG and EOG. The lateral eye movements mostly affects

frontal electrodes [55]. Therefore, Fp1 electrode is used to decompose and demon-

strated the effectiveness of our proposed method with MCA as showed in Figure

5-11 and same applied to all the 23 electrodes. All EEG signals are morphologically

decomposed with redundant transform.

Figure 5-11(a) is demonstrated the decomposition of components by the first ex-

plicit dictionary, it is analyzed into three different morphology of the EEG signal.

Figure 5-11(b) and Figure 5-11(c) showed the second and third explicit dictionary

of redundant transform respectively. The over-complete dictionary is a combination

of redundant transform that characterized the component in a different morphol-
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Figure 5-10: An example of real EEG signal taken from Fp1, Fp2, Cz, O1 and O2
electrode channels.
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Figure 5-11: Component separated from EEG (Fp1 electrode) signal by explicit dictio-
naries a) UDWT-DCT-DIRAC, b) UDWT-DST-DIRAC, c) UDWT-LDCT-DIRAC
respectively.
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ogy. Accordingly, one can differentiate in decomposed components by over-complete

dictionaries. The first component is decomposed by ‘UDWT’ of each over-complete

dictionary was analyzed the slow and blink type morphology. The second component

was decomposed by ‘DCT’, ‘DST’ and ‘LDCT’ and are analyzed the background of

the signal which is similar to the EEG signal and third component was decomposed

by ‘DIRAC’ and is analyzed the unexpected spike. The first over-complete dictionary

is decomposed the EEG signal without changing the monomorphic, polymorphic and

transient properties. The cc between the original signal and the summation of all de-

composed component is close to one. Figure 5-12 showed the raw EOG signal taken

from the vertical and horizontal channel and first decomposed component taken from

Fp1, Fp2, Cz, O1, O2 respectively.

Table 5.1 showed individual cc of original signals and recomposed from the combina-

Table 5.1: cc of original signal and sum of the decomposed components.

EEG channel
Correlation Coefficient

UDWT-DST-DIRAC UDWT-DCT-DIRAC UDWT-LDCT-DIRAC

Fp1 0.9921 0.014 0.9921 0.014 0.9932 0.013

Fp2 0.992 .017 0.9919 .018 0.9932 .014

Cz 0.9898 .01 0.9899 .01 0.9908 .009

O1 0.9836 .015 0.9836 .016 0.9869 .012

O2 0.9855 .013 0.9856 .013 0.9849 .015

tion of components with respect to different channels and combinations of dictionaries.

Table 5.2 showed the cc between filter raw EOG signal taken from vertical and hor-

izontal channels and decomposed first component from Fp1, Fp2, Cz, O1 and O2

respectively.

5.7 Discussion

In neurobiological event diagnosis and neuroscientific research, the artifacts contami-

nation in the EEG signal is the important issue. Therefore, various methods has been
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Figure 5-12: UDWT component taken from Fp1, Fp2, Cz, O1, O2 separated by
UDWT-DCT-DIRAC, UDWT-DST-DIRAC, UDWT-LDCT-DIRAC respectively.
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Table 5.2: cc between filtered EOG and UDWT component decomposed by UDWT
dictionary.

EOG Channels
EEG Channels

Fp1 Fp2 Cz O1 O2

Correlation Coefficient

UDWT-DST-DIRAC

V1d 0.6777 0.657 0.7267 0.9223 0.6445

V1u 0.6814 0.646 0.6606 0.9419 0.6354

V2d 0.916 0.906 0.9402 0.882 0.5402

V2u 0.2332 0.2268 0.2353 0.6388 0.8494

H1 0.8582 0.847 0.8444 0.6902 0.5839

H2 0.9419 0.9468 0.9559 0.7476 0.4752

UDWT-DCT-DIRAC

V1d 0.6792 0.6595 0.68 0.9213 0.6352

V1u 0.6835 0.6396 0.6424 0.9581 0.6585

V2d 0.9193 0.902 0.9362 0.8764 0.5145

V2u 0.2331 0.2183 0.2316 0.6639 0.8919

H1 0.8593 0.8507 0.8626 0.6759 0.5376

H2 0.9442 0.9465 0.9662 0.7266 0.4346

UDWT-LDCT-DIRAC

V1d 0.6794 0.6403 0.7219 0.8892 0.65

V1u 0.6443 0.6279 0.6459 0.8196 0.5381

V2d 0.9142 0.9072 0.9395 0.9592 0.6506

V2u 0.2351 0.2235 0.2383 0.3747 0.6804

H1 0.8637 0.8449 0.8471 0.7638 0.5734

H2 0.9586 0.9558 0.9577 0.8826 0.5598
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used for removal of the artifacts [54, 63, 66, 67, 68, 70, 72, 73, 107, 131, 132]. Sim-

ilarly, the decomposition based methods are also used to remove the EOG artifacts

in EEG signals [68, 107, 130, 134, 142, 144]. However these methods have lack of the

elucidation what the nature of EEG signals in the viewpoint of the signal analysis,

and a systematic approach is required by treating the sparsity and non-linearity of

the signal in the time domain.

This study is revealed the morphological nature contain in the original EEG sig-

nals in a sense, by using MCA. The UDWT is used to decompose the slow and bump

morphology; The DCT, DST and LDCT transform is used to decompose the EEG

signal; Spike type morphology is decomposed by DIRAC. The morphology of oscil-

latory activities are represented by the redundant transform of DCT and DST both

has similar tendency. Therefore, we used the DCT, LDCT and DST dictionaries for

validations of EEG signal. The significant difference of detail in morphology of DCT

and DST are given in past studies [148, 149], while in this analysis there are no signifi-

cant difference. The right combination of redundant transform to form over-complete

dictionary is revealed the desired decomposition in principle.

The simulated EOG signal like ‘Blocks’, ‘Bumps’ are defined in past studies

[102, 90, 91] as shown in Figure 5-4 and EEG data [122] are used for validation of the

purposed method. The horizontal and vertical eye movements with abrupt changes

are similar to the ‘Blocks’ that is described by past studies [52, 53]. The ‘Bumps’ are

used to a representative signal form as eye blinks that happens in unexpected tim-

ings as illustrated in Figure 5-5 for the sake of simplicity in the present study. The

separation of component by given dictionary is worked well in this evaluation but

the further analysis is necessary in the evaluation of the signal decomposition with

complex eye movements, which requires presumably various redundant dictionaries.

In the verification of the component discrimination as shown in Figure 5-6 and 5-7,

the accuracy of the averaged EOG component decomposition is above 90%, which

suggests a plausible performance even in the complex eye movements. The combined

DST and DIRAC dictionaries have better decomposition performance rather than

others, while DST and DCT has theoretically no meaningful difference. The usage
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of iEEG to be the true EEG signal have a large benefit, which can be used for the

performance test for past proposed method like ICA and PCA consistently. The pro-

posed method is successfully demonstrated the performance in cc and the frequency

profile especially, while in the serious discussion of the real EEG and EOG signals,

the DST or DCT component exhibited a baseline fluctuation of the signal which are

denote the persisting of the EOG component or other slow frequency artifacts noise,

and the factor will be improved by the fine-tuned design of the DST or DCT dictio-

nary with a band pass filter function. In addition, the threshold problem exits in the

optimization algorithm and number of iteration [139].

The EEG decomposition have not up to mark with combination of second and

third component of EEG signal decomposed by (DST, DCT, and LDCT) and DIRAC

respectively based on the morphology. Therefore, the accurate combination in the

further perspective will be considerable. Even the combination of all components and

the mixed signal or real EEG signal have cc above 97% for all redundant transforms,

as is analyzed in the frequency spectrum, the signal morphology has further meaning

in the viewpoint of the signal transmission. The MCA method has such an extended

and flexible availability for signal analyses.
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Chapter 6

Bereitschaftspotential for Rise to

Stand-Up Behavior

Around millions of people in the world are affected from some kind of central ner-

vous system disorder (stoke, rapid loss due to blood circulation, multiple sclerosis

or Parkinson’s disease) or disable due to some form of accident(road traffic, sport

practice). These disabilities are affected the daily work routine that leads the isola-

tion from the social life. In this chapter, a very important gait rise to stand-up is

consider for investigation. We are exploiting brain computer interface systems that

assist neurocognitive disorder and motor-disabled persons. The electroencephalogra-

phy (Bereitschaftspotential (BP)/readiness potential (RP), evoked before the onset

of the rise) and electromyography are recorded for the rise to stand behaviour. In

that the negative-going BP (RP) is associated with the preparation and execution

of dynamic movement. This study revealed that the negative-going BP is evoked

around 2 to 3 seconds before the onset of the rise in response to start cue. The BP

has a negative peak before the onset of the movement. The potential is followed by

premotor positivity, motor-related potential, and reafferent potential. BP negative

peak values are correlated with the latency from the onset of the BP to the onset of

the upper body, lower body movement and to the max amplitude of the quadriceps &

hamstring electromyogram (EMG). BP for the rise to standing up is started around

-3 seconds consisted of steeper negative slope (-.8 to -.001 seconds) before the onset
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of movement and steeper slope correlate with the hamstring EMG. The steepness

of the late BP did not change in the trials. This chapter is comprised all above in

details and the measured electroencephalography activities are widely used as input

for non-invasive BCI systems for an example. It explains an experimental protocol

for rise to stand-up and recorded signal from EEG, EOG and EMG.

6.1 Introduction

The human brain is a rich source of information associated with volition, actions,

emotion and various aspects of the internal state. The capacity for any voluntary

action is estimated from the performance of the task execution. The exploration is

still going on to collect the scientific approach mechanism for the voluntary movement;

how the brain is controlled the complex voluntary movement and adjust the posture

through feedback by a visual, audio and sensory signal. The identification of cognitive

behavior for voluntary movement is a new investigation therefore we discuss the brain

state against the voluntary movement.

In our daily lives, we have been experiencing the unexpected event and most of the

event is essential for survival; influencing the behavior. The complex voluntary move-

ment is consist of several segments movement that influences the voluntary movement

of a body segment is directly or indirectly accompanied with several other body seg-

ments and these expected or unexpected movements behavior are reflected by brain’s

response. The repeated occurrence of contingent’s events are occurred with distinct

brain responses. These events are time locked to specific external or internal event.

They have been massive, physical stimuli, behavioral responses thoughts, and even

emotional processes.

EEG signals are associated with movement-related cortical potentials (MRCPs)

have been evaluated during the periods both preceding and following the voluntary

movement [150, 151]. The type, sequence of movement [152], by eccentric / concen-

tric of muscles contraction [153] and voluntary muscles activation [154] are affect the

MRCPs in the voluntary movement. The movement related potential as general term
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that reflects the cortical activity for voluntary movement described as slowly rising

negative potential. The BP or RP is a negative-going potential starting 1-2 seconds

before the movement onset [155]. Pre-motion positivity (PMP) and negative motor

potential (MP) are observed just before the movement [156]. A large positive poten-

tial (reafferent potential, RAP) [155] is following the movement onset and positive

potential is associated to the type of movement [153] BP is maximal at the midline

centro-parietal area, is symmetric, and is widely distributed over the scalp. A large

positive potential (reafferent potential, RAP) [155] is associated to the type of move-

ment [153] that follows the movement onset and positive potential. BP is maximal

at the midline centro-parietal area, symmetric and widely distributed over the scalp.

BP is divided in two components “BP1 (early BP)” and “BP2 (late BP)” [157]. The

early BP is started in the SMA and includes pre-SMA and then progresses shortly to

the lateral premotor cortices bilaterally has investigated in the past studies.

The early BP is involved in a slowly accumulative negative potential beginning

between 1 and 2 seconds prior to the movement onset [150, 158]. The late BP is

started in the M1 and the premotor cortex [159, 160] and has a steeper negative

slope. It maximizes the negativity at the vertex, which lies over the supplementary

motor area (SMA) [159, 160, 161, 162]. It is certain that both components are related

to preparation and/or execution of voluntary movement. It provides the information

for voluntary movement associated with several body segments and allows the evalu-

ation of the cortical efferent process and other higher processes controlling voluntary

movement [150, 163, 164]. The early BP is involved in the preparation of the vol-

untary movement. The type of movement and complexity of movement cannot be

determined by the early BP [157]. Even it is not essential for simple movement. Early

BP is similar to finger; elbow movements began between 1 and 2 seconds [157]. It is

reflect the rising activity predominantly and associated with pre-movement prepara-

tory process [165]. Late BP is very important for the type, complexity of muscle

movement. It is associated with the time between SMA and motor cortex for select-

ing the muscle activation [157]. A number of studies revealed that the muscles forces

are directly to proportional the MRCPs.
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BP is observed during upper and lower extremity movements [150, 164] and have

different morphology in terms of shape and magnitude during simple vs. complex

movements [166]. So far, BPs have been recorded during mouth opening, finger,

hand and foot movements [150, 151, 152, 156, 159, 160, 158, 161, 162, 163, 164, 167,

168, 169, 170]. The BP has been carried differential information for several type of

movements that use upper and lower body extremities separately and BP for complex

voluntary movements using both the upper and the lower body is not described in the

past studies. The complex movements of the whole body is associated with several

body segments in time [171]. The rise to stand is involved the upper and the lower

body. The standing movement is a dynamic movement [172]. In this movement,

the whole body, including the upper and the lower body, is used for the behavior

[172]. Four phases are involved in the rise to standing. In the first phase, the flexion

momentum is used to generate the initial momentum for rising. The second phase

begins as the individual leaves the stool seat and ends at maximal dorsiflexion. In the

third phase, the body rises to its full upright position. In the last, the whole body

is stabilized. These phases are differentiated in terms of momentum and stability

characteristics.

The preparatory process for the onset of the movement is modulated by temporal

predictability and resolution of the imperative cue [152, 173]. The sequential move-

ment is very crucial because it involved the sequencing of motor task in different

order [174]. It has necessary to select order of movement trajectory and prior to

movement the pre-SMA and SMA are involved [174] for rise to stand-up. The various

cortical areas are associated for complex sequential finger movement than the simple

movement [175]. Therefore, in this chapter we focused on the rise to stand behavior

and studied BP during the movement. It is necessary to establish the BP dynamics

of functional activities, such as rising to a stand position, in healthy individuals in

order to improve abnormalities in individuals who have impairments [172, 176, 177].

Factors such as latency between the BP and surface EMG are seen in individuals

with impairments. With start time the BP is gradually decreases and steepness of

the late BP that suggests the behavior of movement (cue based and self-initiated).
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This reflects the preparation for rising to stand and the construction of voluntary

movement.

The decoding of the preparatory activity for voluntary movement may be helpful in

various regards. As a result, brain computer interfaces (BCIs) have been incorporated

into the motor cortex used to perform sitting and standing intention movements

[178]. This helps during rehabilitation and expedites adaptation to BCI algorithms

and robotic devices. The EEG signals were recorded from healthy participants while

they were stand-up from a stool. The experimental paradigm was conventional and

designed to record the scalp surface EEG during the preparation and execution of the

rise to stand movement. We also recorded the gyro sensor signal at the participant’s

back and obtained quadriceps and hamstring EMGs to record the onsets of upper

and lower body movements.

6.2 Materials

6.2.1 Participants

This study has included 10 unpaid healthy volunteers with no motor impairments in

the experiment (10 males; age, 26.8 ± 3 [mean ± standard deviation [SD]] years) who

provided written informed consent; the study is approved by the ethical committee

of Kyushu Institute of Technology. The volunteers are highly motivated to perform

the task. None have prior knowledge of the purpose of the study. The objective of

the study and the procedure of the experiment are explained to all the participants

just before the experiment.

6.2.2 Experimental procedure

The participants are requested to relax and sit on an armless, backless stool, which is

adjusted according the participant’s knee height. They are instructed to rise without

moving their hands. The back of the participant is moved forward at first. Then

their buttocks are leaved the stool.
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Figure 6-1: Schematic illustration of experiment postures.

Fixation for

Standing-Up(+) or 

Seated(*)

Beep

Standing-Up / Seated  

3 sec > 1 sec < 28 sec

..............................................................................................
One Trial

1sec

Figure 6-2: Experiment timing protocol.
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Finally, the body is rise to its full upright position and the whole body is sta-

bilized, as shown in the Figure 6-1. The participants are also requested to open

their eyes and gaze toward the front during the rising movement.The pattern of the

stand-up movement is complex and dynamic [172]. The schematic paradigm for the

experimental procedure is shown in the Figure 6-2.

Each trial is lasted for 33 seconds and started with a visual fixation cue shown

on the computer screen in front of the participants around 150 cm from their faces.

There are two types of cues, “+” and “X”. The “+” indicated that the participants

are to stand up and the “X” indicated that is to be seated. After 3 seconds the visual

cue, an auditory cue beep of 2 kHz stimulus is given to the participants for 1 second.

After the beep, the participants are required to either stand up or to be seated.

The participants have to wait more than 1 second after the beep, and then they are

stand-up. The participants are seated until 30 seconds after the beep for the seated

trial. A new trial Thirty seconds after the previous beep, a new cue appeared, and a

new trial began. The participants are practiced before the actual recording started.

They are asked to be ‘attentive’ to avoid their movements becoming automatic. Each

participant performed a session of 50 trials. In each session, 30 trials for rising and 20

trials for being seated are administered to each participant randomly. The visual and

auditory cues are presented by the Matlab (Mathworks Co., USA) program. In this

session, 30 trials for rising without any external interference, subjects are performed

the task according to their will.

6.2.3 EEG and EMG recordings

EEG signals are recorded from 6 Ag/AgCl electrodes; placed at F3, Fz, F4, C3, Cz,

and C4 according to the international 10/20 system. All electrodes are referenced to

mastoid electrodes, and the common ground signal is obtained at Fpz. A bandpass

filter of 0.05-30 Hz is used for filtering the EEG signals and magnitude is amplified

by an order of 1,000 (BIOamplifier, DIGITEX Lab. Co. Ltd., Japan). Electrode

impedance does not exceed to 5 kΩ. EOGs are recorded using electrodes placed

at the sides and the lower canthi of the left eye and used to remove blink and eye
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movement artifacts from the EEG. The surface EMGs are recorded from the lower

body, as shown in Figure 6-3 during rise to stand movement.

F3
Fz

F4

C3
Cz

C4

EEG Electrodes Position

Gyro Sensor

QUAD

HAM

Figure 6-3: Electrode placements for EEG, EMG, the Gyro sensor, and the EOG
recorded during the rise to stand movement. To detect the movement onset at the
back of the upper body, a Gyro motion sensor was attached near the latissimus dorsi
muscle on the back. QUAD and HAM stand for the quadriceps and hamstring.

A pair of electrodes are fixed approximately 3 cm apart over the quadriceps and

the hamstring muscles of the left lower limb through an INTERCROSS-410 amplifier

(Intercross Co. Ltd., Japan) for the surface EMGs. The EMG signals are recorded

to detect the onset of lower body movement. EMG signals are are amplified by a

magnitude of 1,000 and filtered using a bandpass filter of 5.3-250 Hz. A gyro sensor

is placed near the latissimus dorsi to record the onset of upper body movement and
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the onset of the rise to stand movement. The signal is amplified by a magnitude of

380 and is DC-filtered (INTERCROSS-410 amplifier, Intercross Co. Ltd., Japan). All

of the EEG, EMG, EOG, and gyro sensor signals are converged onto a PC through

an A/D converter unit (AIO-16320FX-USB; CONTEC Co., Ltd., Japan) using the

signal recording software LabDAQ (Matsuyama Advance Ltd., Japan). The signals

are sampled at 1,000 Hz.

6.3 Data Analysis

6.3.1 Raw data

The EOG artifacts are identified by visual inspection and trials with artifacts are

excluded. 4 participants EEG data have noise among 10 participants, so they are

discarded and EEG data from 6 participants are remained. After the exclusions, 18

± 5 trials remained (mean± standard deviation [SD]) per participant. In the analysis,

EEGs are high-cut filtered at 4 Hz using EEGLAB [179]. The onset of the activation

of the quadriceps and hamstring EMGs (EMG onsets) or the onset of the gyro signal

change (Gyro onset) is defined as time zero in the Figure 6-4. EEG data are extracted

for 7 seconds in each trial. The time-frame of data is ranged from -4 to 3 seconds

based on Gyro onset and from -5 to 2 seconds based on EMG onset. EEG signals are

obtained between -4 to -3 seconds are used for baseline correction of the EEGs based

on Gyro and between -5 to -4 seconds are used for baseline correction of the EEGs

based EMG onsets. The EEG signals are averaged for the 30 standing up trials and

the 20 seating trials. The Gyro onset is determined based on local estimation of noise

spectra [180, 181]. In this method, mean and variance are computed from the energy

of Gyro signal. Gyro onset satisfies the condition is given as:

|𝐺𝑒(𝑇 + 𝑡)−𝑁(𝑇 + 𝑡− 1)| > 𝑘, 0 ≤ 𝑡 < 0.2𝑠𝑒𝑐

where 𝐺𝑒(𝑡) is the energy, 𝑁(𝑡− 1) is estimated of initial energy of baseline signal

just before the time window. 𝑘 is a tunable threshold parameter, it’s value is 1. 𝜎 is
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the variance of the Gyro signal 𝐺𝑒(𝑡) in the window. 𝑇 is the value increased by 0.2

second.
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Figure 6-4: Schematic representation of the time course of the gyro, the quadriceps
and hamstring EMGs, and the energy signals. An arrow indicates the negative peak
of gyro signal.

The Teager-Kaiser energy (TKE) operator [182, 183] is used to determined the

EMG onset. This nonlinear method can detect the surface EMG onset time of muscle

activity. It is defined in the time domain as:

Ψ[𝑥(𝑡)] = 𝑥2(𝑡)− 𝑥(𝑡− 1)𝑥(𝑡+ 1),

where 𝑡 is time. The TKE operator is proportional to the instantaneous amplitude

and frequency of the EMG signal 𝑥(𝑡). Thus it has the advantage that it can consider

the amplitude and frequency of the EMG simultaneously. The threshold used in the
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TKE operator is determined by

𝑇 = 𝜇+ ℎ𝜎,

where 𝜇 and 𝜎 are the mean and standard deviation of the 2 seconds EMG signal

before the onset of the EMG and ℎ is a preset variable. ℎ = 15 value is used in the

present experiment. The operator is detected the EMG onset time accurately. Maxi-

mum EMG energies of the quadriceps and the hamstrings are calculated for 2 seconds

after the EMG onset. BP is started between -3 and -2 second; Late BP (steeper neg-

ativity) is started between -1 and -.8 seconds before the onset of movement. A linear

regression is used for the robust signal extraction [184]. It is given as

𝑦(𝑡) = 𝜇+ 𝛽𝑥(𝑡) + 𝜀,

Here 𝜇, 𝜀 are 0. BP is divided by 0.1 seconds for detection of the starting BP

and late BP. A slope of BP in the time of 0.1 seconds is calculated by least squares

approximation. Early BP start time is determined by

−0.01 < 𝛽 < −0.005,

Late BP start time is determined by

𝛽 < −0.01,

6.4 Results

To decompose the scalp EEG signal into different component in schematic manner

by MCA procedure as shown in Figure 6-5. The Figure 6-6 shows the single trial

raw EEG signal at Cz electrode position. The MCA method is applied to decompose

the raw EEG signal with the explicit dictionaries such as UDWT, DST and DIRAC.

The raw EEG data as shown in the Figure 6-6 are decomposed in three components
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Sclap EEG Record
MCA
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EOG & slow 

Components
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........

Figure 6-5: MCA method is applied to decompose the BP signal.

based on explicit dictionaries as mentioned above. The Figure 6-7 shows three differ-

ent components separated by explicit dictionaries. The slow and EOG components

are decomposed by UDWT redundant transform. The DST redundant transform is

separated the raw EEG signal in a sense. The DIRAC transform is used to separate

the unwanted spike artifacts is generated by different unknown sources. This results

show that the MCA procedure can be work for single trial to decompose the BP

component from the raw EEG signal for rise to stand-up behavior.
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Figure 6-6: Single trial raw EEG signal at Cz electrode position based on gyro onset.

Even though EEG signals are high-cut filtered at 4 Hz using EEGLAB [179] for

further analysis. The averaged EEG data results are shown in Figure 6-8 based on the

Gyro onsets. Gyro onset is reflect the onset of upper body movement, while the EMG
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onset is reflect the onset of lower body limb movement. The grand averaged EEGs

obtained at 6 locations among all of the subjects are shown in Figure 6-8 and 6-9

for cue based stand-up. Figure 6-9 shows the grand averaged EEGs based on EMG

onset. A similar tendency to that in Figure 6-8 is observed, while the EEG signals

are seem to be shifted to the left along the time axis. The gradual negative change is

started around -4 seconds, which is earlier than -3 seconds, and the steeper change is

started earlier than -1 second. The potential is reached the maximum negative peak

at around -1 second. The time difference between the maximum negative peak time

of the BP based on the Gyro and EMG onsets (Δ𝑁𝑃𝑇 ) varied from 0.75 to 0.84

seconds. The EOG signal did not have a negative component from -4 to 3 seconds,

as shown in Figure 6-8. The averaged value of BP start time are 2.95± .54 based on

gyro onset from the entire subjects.

The potential is gradually decrease and reach the maximum negative peak around

-.001 seconds as shown in Figure 6-8, around 3 seconds before the Gyro onset. The

start time of the decrease (𝐷𝑇𝑔𝑦𝑟𝑜) and the negative peak time (𝑁𝑃𝑇𝑔𝑦𝑟𝑜) are shown

in Table 1. After that the potential is increased and reached a positive peak around

1.2 seconds after the Gyro onset. The potential changes at Fz and Cz are a little larger

than those at the other electrode positions. BP has started around -3 second consist

of two components: the initial slow component (early BP), and the late component,

which has a steeper negative slope (late BP, also referred to as NS). The maximum

negativity is determined the kind of complexity in movement. The potential at Cz

has a steeper negative slope than before (gray arrow in Figure 6-8).

The decrease of start time is based on the Gyro and EMG onsets (𝐷𝑇𝐸𝑀𝐺) and

the time of the negative peak of the BP (𝑁𝑃𝑇𝑔𝑦𝑟𝑜 and 𝑁𝑃𝑇𝐸𝑀𝐺) are defined in Figure

6-10, and the values are shown in Table 6.1. The time differences between BP based

on Gyro onset and based on EMG onset (Δ𝐷𝑇 = 𝐷𝑇𝑔𝑦𝑟𝑜 − 𝐷𝑇𝐸𝑀𝐺 or Δ𝑁𝑃𝑇 =

𝑁𝑃𝑇𝑔𝑦𝑟𝑜 − 𝑁𝑃𝑇𝐸𝑀𝐺) are also shown in Table 1. There is no significant difference

between Δ𝐷𝑇 and Δ𝑁𝑃𝑇 (unpaired t-test). Δ𝐷𝑇 and Δ𝑁𝑃𝑇 are significantly

correlated at all electrodes (r = 0.66, 0.71, 0.71, 0.69, 0.63, and 0.57 at F3, Fz, F4,

C3, Cz, and C4, respectively; Spearman rank correlation test, 𝑝 < 0.001).
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Figure 6-8: The averaged EEG extracted during standing up for all subjects based
on Gyro onset. Time 0 indicates the Gyro onset. The gray and black arrows indicate
the slope and the negative peak of the BP, respectively.
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Figure 6-9: The averaged EEG extracted during standing up for all subjects based
on the quadriceps EMG onset. Time 0 indicates the EMG onset. A similar tendency
is observed to that in (Figure 6-8). The data are shifted to the left on the time axis,
and the negative steeper slope starts earlier compared to (Figure 6-8) and reaches the
maximum negative peak between -1 and -0.5 seconds. The onset of the upper body
movement is much earlier than that of the lower body movement. The gray and black
arrows indicate the slope and the negative peak of the BP, respectively.
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Figure 6-10: The definitions of the schematic representations: (↓) is the start of the
decrement time (DT) and (↑) represents the negative peak time (NPT) based on Gyro
onset and EMG onset.
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Figure 6-11: The averaged EEG during seating in all trials for all participants. Time
zero indicates the onset of the visual fixation cue.
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Table 6.1: 𝐷𝑇𝑔𝑦𝑟𝑜, 𝐷𝑇𝐸𝑀𝐺, 𝑁𝑃𝑇𝑔𝑦𝑟𝑜 and 𝑁𝑃𝑇𝐸𝑀𝐺, and the time difference between
𝐷𝑇𝑔𝑦𝑟𝑜 and 𝐷𝑇𝐸𝑀𝐺, and the time difference between 𝑁𝑃𝑇𝑔𝑦𝑟𝑜 and 𝑁𝑃𝑇𝐸𝑀𝐺 of the
BP based on Gyro and EMG onsets.

BP BASED ON GYRO ONSET BP BASED ON EMG ONSET TIME DIFFERENCE
BP 𝐷𝑇𝑔𝑦𝑟𝑜 (sec) 𝑁𝑃𝑇𝑔𝑦𝑟𝑜 𝐷𝑇𝐸𝑀𝐺 (sec) 𝑁𝑃𝑇𝐸𝑀𝐺 (sec) Δ DT (sec) Δ NPT (sec)
F3 -2.95 ± .53 -.31 ± .2 -3.84 ± .66 -1.06 ± .56 .89 ± .31 .75 ± .48
FZ -2.87 ±.82 -.26 ± .19 -3.83 ± .66 -1.09 ± .45 .96 ± .67 .83 ± .37
F4 -2.95 ± .56 -.28 ± .26 -3.84 ± .69 -1.1 ± .41 .89 ± .29 .82 ± .36
C3 -2.92 ± .53 -.26 ± .25 -3.78 ± .65 -1.09 ± .42 .86 ± .27 .83 ± .36
Cz -2.91 ± .55 -.26 ± .2 -3.77 ± .65 -1.07 ± .45 .86 ± .27 .82 ± .37
C4 -2.94 ± .59 -.23 ± .17 -3.79 ± .69 -1.07 ± .4 .85 ± .28 .84 ± .33

Figure 6-11 shows the grand average of seated EEGs among all participants. The

zero indicates the onset time of the fixation cue. Negative and positive deflections are

not observed in the averages. The previous studies has showed that the amplitude of

BP was correlated with response speed and muscle force [185, 186]. Negative slope

was changed according to participants will [187]; the start time and small or large

value of negative slope was also depending upon the sequential and simultaneous

[188]. Late BP may be related to the execution of the movement [151]. The slope of

the BP was calculated between -0.8 and -.001 seconds of the BP based on Gyro and

EMG onsets (gray arrows in Figure 6-8 and 6-9).

6.5 Discussion

The motor-related cortical potential is associated with the preparation for rising to

stand up. To observe the patterns of the brain activity(mainly BP) is associated

with the complex dynamic movement of rising to stand from a seated position in this

investigation. The cortical potentials is associated with the voluntary movements

of various body segments are known as MRCPs. The potentials is indicated the

preparation and execution of controlled voluntary movement [155, 164]. The early

and late BPs [151], PMP, MP, and RAP are the components of the potentials. A

slow negative-going potential (BP) that one of the MRCPs is started before the

preparation for the movement. BP is started 2 seconds before the onset of movement

and suddenly increases its slope about 0.4 seconds before movement onset [151]. In

126



past studies, the MRCPs have been based on mouth, finger, hand, and foot movements

[150, 151, 152, 160, 156, 159, 158, 161, 162, 163, 164, 167, 168, 169, 170].

BP for the sequence of movement has also been recorded [188, 189]. BP for the

sequential movements that includes both the upper and lower body have not yet been

studied therefore this chapter included the rise to stand behavior. The whole body is

divided into four phases for rise to stand-up behavior [172]. The flexion momentum

is used in the first phase to generate the initial momentum for rising. The individual

leaves the stool seat and ends at maximal dorsiflexion in the second phase. In the

third phase, the body rises to its full upright position. The whole body is stabilized

in the last phase. These phases occur automatically without the subject’s realization.

BP is started between 2 to 3 seconds and steepness in BP increased around 0.8 second

before the onset of movement. This is the first study to describe the BP related to the

rise to stand voluntary movement using both upper and lower body segments. The

initial components and late components with steeper slopes are observed slow negative

potential. These components correspond to the early BP and late BP, respectively,

which are reported in previous studies [150, 151, 159, 160, 158, 161, 162, 163, 164, 167].

The sequence of the movement for rise to stand determined during the preparatory

process (early BP) and for the successful execution of the movement, both the timing

and the patterns of activation of all involved muscles need to be well-coordinated.

The sequential movement that involved the many muscles forces is directly related to

the late BP [153, 190]. The negative slope starts earlier and larger for the sequential

movement [188], it also related to participants muscles contraction in the movement

[153]. The negative slope is constant because the numbers of muscles involved are

the same for the given task. The late BP negative slope is varied from sequential to

simple movement, from fast to slow. The negative potential is not observed during

seated behavior.

The amplitude of the BP is correlated with response speed and muscle force [190,

185, 186]. The increase in the negative peak value indicates that the larger number of

cortical cell is involved in the sequential movement [154, 174]. These results suggest

that the observed BP is related to the execution of the rise to stand. BP is generated

127



in several cortical and subcortical structures that are linked with the motor area

[159]. It is widely distributed on the scalp above the vertex, and central, prefrontal

and parietal areas [151, 156, 158, 168]. It is thought that the potential may be related

to the preparation and execution of voluntary movement. Our results indicate that

the negative-going BP preceding the rise to stand is similar to the wave-form seen

during voluntary movements in previous reports [150, 151, 152, 156, 159, 160, 158,

161, 162, 163, 164, 167, 168].

The negative peak of BP was significantly correlated with the max amplitude

of the hamstrings EMG. The max amplitude of the quadriceps is greater than the

hamstring EMG. Thus, the BP is correlated with the max amplitude of the hamstrings

EMG. The negative slope of BP is correlated with the maximum energy of hamstring

EMG. The time difference between quadriceps and hamstring EMG was around .05

second. The peak BP time is not significantly between peak time of max energy of

quadriceps and hamstring EMG. The negative steepness determines the activation of

muscles and it helps to define the behavior movement.

We found that BP for the rise to stand movement could be induced before the

onset of the movement. We propose that it may be used for a stand-up support tool

[176, 177]. It may take some time to detect and process the BP and to control the

machines. BP can be induced about 3 seconds before the onset of the rise. Using the

BP, we could then control the support tool for the person using the device to stand

up. Thus, BP can be used as a support tool for standing up. In a previous study, it

was argued that elderly persons may require different strategies for standing up than

younger people [191]. Thus, in the future, we will study whether we can record BPs

from elderly persons such as in the present study.
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6.6 Summary

A realistic signal contamination procedure is consider for newly designed the EEG-

EOG signal contamination model and proposed the two-stage wavelet shrinkage method

with UDWT for quantitative validations to remove the EEGs artifacts. A hundred

dataset of open-source clinical intracranial EEGs in each behavioral condition is used

for the validation to be the ‘true EEG’ before the contamination of artificial EOGs.

The EEG signal reconstruction is evaluated in the frequency spectrum to justify the

quality, by how much the original specific brain-state profile is reproduced in the to-

tal manner. Numerical analyses demonstrated that the first stage is pursued abrupt

changes with high amplitudes provided by assumed EOGs, and in the second stage

the EEG spectrum is clearly reconstructed, which is exceeded the performance of

the conventional shrinkage. And suggested that the threshold values are properly

set depending on individual amplitudes of multiple signal sources in our proposed

method. The present results are focused on actual amplitude-frequency structure in

the polygenetic signal and provides the decomposition performance, simultaneously

reveals the mixed procedure in the viewpoint of a new standard model for robust

validations in the EEG-EOG signal contamination.

Secondly, MCA is applied on the simulated, semi-simulated and real EOG and

EEG signal. It demonstrates the EOG and EEG signal decomposition into its mor-

phological component successfully. It seems to be that the EEG signals and artifacts

in EEG has represented by different explicit dictionaries. We analyzed the EEG sig-

nals involved with the EOG artifacts, which are influenced by task conditions. The

DIRAC explicit dictionary was decomposed the EEG signal into spike-like activities,

which may be related to transient property of EEG. UDWT explicit dictionary repre-

sents slow movement or bumps. DCT, DST and LDCT explicit dictionary represents

dominant signal that represent EEGs signals as monomorphic and polymorphic activ-

ities. The results are suggested that the effective in removal of artifacts from the raw

signal and EOG contains slow and smooth change in time as a main component. In

the further analysis, the MCA is required to compare with other competing methods
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for the EEG and EOG signal decomposition.

The BP for the rise to stand-up movement is induced before the onset of the

movement. We proposed that it may be used for a stand-up support tool that process

the BP and to control the machines. BP may be induced about 3 seconds before the

onset of the rise. Using the BP, we could then control the support tool for the person

using the device to stand up. Thus, BP can be used as a support tool for standing

up.
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[71] Michael Plöchl, José Pablo Ossandón, and Peter König. Combining eeg and

eye tracking: identification, characterization, and correction of eye movement

artifacts in electroencephalographic data. Frontiers in human neuroscience,

6:278, 2012.

[72] Weidong Zhou and Jean Gotman. Automatic removal of eye movement artifacts

from the eeg using ica and the dipole model. Progress in Natural Science,

19(9):1165–1170, 2009.

[73] Reza Sameni and Cédric Gouy-Pailler. An iterative subspace denoising algo-

rithm for removing electroencephalogram ocular artifacts. Journal of neuro-

science methods, 225:97–105, 2014.

[74] Ping He, G Wilson, and C Russell. Removal of ocular artifacts from electro-

encephalogram by adaptive filtering. Medical and biological engineering and

computing, 42(3):407–412, 2004.

[75] Hong Zeng, Aiguo Song, Ruqiang Yan, and Hongyun Qin. Eog artifact correc-

tion from eeg recording using stationary subspace analysis and empirical mode

decomposition. Sensors, 13(11):14839–14859, 2013.

[76] Patrick Flandrin, Gabriel Rilling, and Paulo Goncalves. Empirical mode de-

composition as a filter bank. IEEE signal processing letters, 11(2):112–114,

2004.

[77] Md Khademul Islam Molla, Rabiul Islam, Toshihisa Tanaka, Tomasz M

Rutkowski, et al. Artifact suppression from eeg signals using data adaptive

time domain filtering. Neurocomputing, 97:297–308, 2012.

[78] Fay S. Tyner, John Russell Knott, and W. Brem Mayer Jr. Fundamentals of

EEG Technology: Vol. 1: Basic Concepts and Methods. Raven Press: New

York, 1983.

[79] S Noachtar, C Binnie, J Ebersole, F Mauguiere, A Sakamoto, and B Westmore-

land. A glossary of terms most commonly used by clinical electroencephalog-

139



raphers and proposal for the report form for the eeg findings. the international

federation of clinical neurophysiology. Electroencephalography and clinical neu-

rophysiology. Supplement, 52:21, 1999.

[80] SJM Smith. Eeg in neurological conditions other than epilepsy: when does it

help, what does it add? Journal of Neurology, Neurosurgery & Psychiatry,

76(suppl 2):ii8–ii12, 2005.

[81] Ling Zou, Hui Pu, Qi Sun, and Wenjin Su. Analysis of attention deficit hyperac-

tivity disorder and control participants in eeg using ica and pca. In International

Symposium on Neural Networks, pages 403–410. Springer, 2012.

[82] Rong-Chi Chen, Song-Yen Tsai, Yang-Chyuan Chang, and Horng-Huei Liou.

Seizure frequency affects event-related potentials (p300) in epilepsy. Journal of

clinical neuroscience, 8(5):442–446, 2001.

[83] Guohun Zhu, Yan Li, and Peng Paul Wen. Epileptic seizure detection in eegs

signals using a fast weighted horizontal visibility algorithm. Computer methods

and programs in biomedicine, 115(2):64–75, 2014.

[84] Sandra K Loo and Scott Makeig. Clinical utility of eeg in attention-

deficit/hyperactivity disorder: a research update. Neurotherapeutics, 9(3):569–

587, 2012.

[85] Wu Ting, Yan Guo-zheng, Yang Bang-hua, and Sun Hong. Eeg feature ex-

traction based on wavelet packet decomposition for brain computer interface.

Measurement, 41(6):618–625, 2008.
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Neural discharge and local field potential oscillations in primate motor cortex

during voluntary movements. Journal of neurophysiology, 79(1):159–173, 1998.

[125] M Breakspear and JR Terry. Detection and description of non-linear interde-

pendence in normal multichannel human eeg data. Clinical neurophysiology,

113(5):735–753, 2002.

[126] Rajendra Acharya, Oliver Faust, N Kannathal, TjiLeng Chua, and Swamy

Laxminarayan. Non-linear analysis of eeg signals at various sleep stages. Com-

puter methods and programs in biomedicine, 80(1):37–45, 2005.

[127] LI Aftanas and SA Golocheikine. Non-linear dynamic complexity of the human

eeg during meditation. Neuroscience letters, 330(2):143–146, 2002.

[128] M Jalal Fadili, Jean-Luc Starck, Jérôme Bobin, and Yassir Moudden. Image
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