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SOME COMMENTS ON EDELSTEIN’S FIXED POINT
THEOREMS IN yv-GENERALIZED METRIC SPACES

Tomonari SUZUKI

Abstract

We study deeply two fixed point theorems in v-generalized metric spaces. The two theorems are
generalizations of the famous, Edelstein’s fixed point theorem in compact metric spaces.

1. Introduction

In 1962, Edelstein proved the following, famous fixed point theorem in compact
metric spaces.

THeEOREM 1 (Edelstein [5]). Let (X,d) be a compact metric space and let T be a
mapping on X. Assume

(1) x#y = d(Tx,Ty) <d(x,y)

for any x,ye X. Then T has a unique fixed point z. Moreover {T"x} converges to z
for all xe X.

In 2000, Branciari introduced the following, very interesting concept.

DeriNiTION 2 (Branciari [2]). Let X be a nonempty set, let 4 be a function from
X x X into [0,00) and let ve N. Then (X,d) is said to be a v-generalized metric space
if the following hold:
(N1) d(x,y)=0&x=y.
(N2) d(x,y) = d(y,).
(N3) d(x,y) < D(x,u1,un,...,u,y) for any x,uy,us,...,u,, y € X such that x,u,
uy,...,u,, y are all different, where

D(x,up,uy ... iy, y) =d(xyuy) + d(up,un) + -+ d(uy, p).

It is obvious that (X,d) is a metric space iff (X,d) is a 1-generalized metric space.
We have studied the topological structure of this space. Indeed, recent studies tell the
following:
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e 1- and 3-generalized metric spaces have the compatible topology (see [16]).
* For any ve N\{l,3}, there exists a v-generalized metric space which does not
have the compatible topology (see [10, 16]).
* All v-generalized metric spaces have the strongly compatible topology (see [15]).
e All v-generalized metric spaces have the strongest sequentially compatible
topology (see [13]).
Several fixed point theorems in v-generalized metric spaces have been proved. See
[10, 12] and others. Theorem 1 is also extended to v-generalized metric spaces. It is
interesting that there are two generalizations of Theorem 1.

THEOREM 3 (Theorem 3.2 in [11]). Let (X,d) be a compact v-generalized metric
space. Let T be a mapping on X satisfying (1) for any x,y e X. Then T has a unique
fixed point z.  Moreover {T"x} converges to z for all x € X.

THEOREM 4 (Theorem 3.4 in [17]). Let (X,d) be a v-generalized metric space such
that X is compact in the strong sense. Let T be a mapping on X satisfying (1) for any
x,y€X. Then T has a unique fixed point z. Moreover for all x € X, {T"x} converges
to z in the strong sense.

In this paper, we study the above two theorems deeply.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers. For an
arbitrary set A, we also denote by #A4 the cardinal number of 4. We define a subset
A% of A% as follows: (x1,x2,...,x;) € AR iff (x1,x0,...,xx) € AX and x1,x2,...,x;
are all different. For a real number 7z, we denote by [f] the maximum integer not
exceeding .

In this section, we give some preliminaries.

DreFINITION 5. Let (X,d) be a v-generalized metric space and let {x,} be a
sequence in X and let x e X.
(1) {xn} is said to be Cauchy (2] if lim, sup,,., d(xy, xn) = 0.
(ii) {x,} is said to converge to x [2] if lim, d(x,,x) = 0.
(i) {x,} is said to converge only to x [1] if
lim d(x,,x) =0 and limsup d(x,,y) >0
n—oo n—oo
for any ye X\{x}.
(iv) {x,} is said to converge exclusively to x [17] if
lim d(x,,x)=0 and liminf d(x,, y) >0
n—o0

n— o0

for any ye X\{x}.
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(v) {x,} is said to converge to x in the strong sense [17] if {x,} is Cauchy and
{x,} converges to x.

RemArRk. We know the following.
e (v) = (iv) = (iii) = (ii) holds; see Proposition 2.3 (ii) in [17].

DEerFINITION 6. Let (X,d) be a v-generalized metric space.

* X is said to be compact [17] if for any sequence {x,} in X, there exists a
subsequence {x/(,} of {x,} converging to some ze X.

* X is said to be compact in the strong sense [17] if for any sequence {x,} in X,
there exists a subsequence {x;(, } of {x,} converging to some z € X in the strong
sense.

* d is said to be sequentially continuous if lim, d(x,, y,) = d(x, y) provided {x,}
and {y,} converge to x and y, respectively.

* X is said to be Hausdorff 9] if lim, d(x,, x) = lim, d(x,, y) = 0 implies x = y.

Let (X,d) be a v-generalized metric space. In the case where #X > v+ 3 holds,
we define a function ¢ from X 3 into [0,c0) by

v+1
O(x;ury .y thyy2) = maX{d(Xa Ug(1)) + Zd(uo(‘/),ua(_m)) 1o€ Sv+2}
=

for (x,uy,...,u,42) € X" where S,., is the permutation group consisting of all
bijective mappings on {1,2,...,v+2}. Define a function  from X into [0, c0) by

n(x) = inf{o(x;uy, ... up) : (X, ur, ... uyen) € X0}

for xe X. In the other case, where #X < v+ 3 holds, we define n(x) = co for all
xelX.

ProposITION 7 (Proposition 4.1 in [11]). Let (X,d) be a v-generalized metric space
and let 2 € N such that A is divisible by v. Then (X,d) is a A-generalized metric space.

LemmA 8 (Proposition 2.7 in [17], Proposition 13 in [15]). Let (X,d) be a
v-generalized metric space. Let {x,} and {y,} be sequences in X converging to x
and y in the strong sense, respectively. Then

(2) d(xa .V) = l}g& d(xna Vn)

holds.

LemMA 9 (Lemma 5 in [15]). Let (X,d) be a v-generalized metric space. For any
(x,,z) e X3

d(x,z) <d(x,y) +d(y,2) + 21(x)
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and
d(x,z) <d(x,y) +d(y,z) + 2n(y)
hold.

REMARK. We assume #X > v+ 3 in Lemma 5 in [15]. However, in this paper,
we do not have to assume #X > v+ 3 because we have defined #(x) = co in the other
case.

Lemma 10. Let (X,d) be a v-generalized metric space. Let (uy,...,u,) € X",
where n > 3.  Assume n(ug) =0 for some ke{l,...,n}. Then

d(uy,uy) < D(uy,. .. uy)
holds.
Proor. The conclusion follows from Lemma 9. O

LemmA 11 (Lemma 8 in [15]). Let (X,d) be a v-generalized metric space. Let
{x, : € E} be a Cauchy net in X such that for any o € E, there exists f > o satisfying
X, # xp.  Then the following hold:

(i) lim, 7(x,) = 0.

(i) If lim, d(x,x,) =0 for some x € X, then n(x)=0.

REMARK. In Lemma 8 in [15], we assume #X > v+ 3. However, from its proof,
#X = oo holds. So we do not have to assume #X > v+ 3.

LemMa 12. Let (X,d) be a v-generalized metric space. Let {x,} be a Cauchy
sequence in X such that for any n e N, there exists m > n satisfying x,, # x,. Then the
following hold:

(i) tim, n(x,) = 0.

(i) If lim, d(x,,x) =0 for some xe€ X, then n(x)=0.

Proor. By Lemma 11, we obtain the desired result. OJ

3. Lemmas
In this section, we prove some lemmas.

LemmA 13. Let (X,d) be a v-generalized metric space. Let {x,} be a sequence in
X converging to z. Then the following hold:
(1) If {xn} is Cauchy, then {x,} converges exclusively to z.
(i1) If {x,} converges to z, lim, d(x,,x,+1) = 0 and x, # z for any n € N, then {x,}
is Cauchy, that is, {x,} converges to z in the strong sense.
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(i) If X is Hausdorff, then {x,} converges exclusively to :.

(iv) #{neN:x,=x}< 0 for any xe X\{z}.

(v) If lim, d(x,,w) =0 for some we X\{z}, then #{neN: x, = x} < oo for any
xelX.

ProoF. We have proved (i) and (ii); see Proposition 2.3 in [17].

Let us prove (iii). Let we X satisfy liminf, d(x,,w)=0. Then there exists
a subsequence {f(n)} of the sequence {n} in N satisfying lim, d(xs,,w)=0. Since
lim, d(x/(;),z) = 0 holds, {xs(,} converges to w and z. Since X is Hausdorff, we have
w=z.

We next show (iv). Arguing by contradiction, we assume that there exists
we X\{z} satisfying #{neN:x, =w} =oco. Then we have

li’rgiogf d(xp,z) = d(w,z) >0,

which implies a contradiction. Therefore we have shown (iv).
Noting (X\{z}) U (X\{w}) = X, we obtain (v) from (iv). O

LemmA 14. Let (X,d) be a v-generalized metric space and let T be a mapping
on X. Define a sequence {x,} in X by x1 € X and x,.1 = Tx,. Assume the following:

(1) {xn} converges to z.

(i) lim, d(x,, x,41) = 0.

Then {x,} is Cauchy. That is, {x,} converges to z in the strong sense.

Proor. We consider the following two cases:
e There exist k,/ € N satisfying k </ and x; = x,.
* x, (neN) are all different.
In the first case, we have x; = x, = T/ ¥x; and hence
0= lim d(xn Xpi1) = W0 d( Xz k) ks Xme ) the1) = d(Xhes Xier).
So Tx; = x; holds. Therefore we have x,, = x; = z for any n e N with n > k. Thus,

{x,} is Cauchy. In the second case, we have x, # z for sufficiently large n e N. So by
Lemma 13 (ii), {x,} is Cauchy. O

Lemma 15. Let (X,d) be a v-generalized metric space. Let {x,} be a Cauchy
sequence in X. Put

(3) A={yeX :lim, d(x,,y) =0}.

Then the following hold:
(i) If liminf, d(x,,z) =0 holds for some z € X, then z € A.
(i) #4 <1
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Proor. We have proved (i). See Lemma 12 in [12].

Arguing by contradiction, we assume #A4 > 2. Since {x,} is Cauchy, by Lemma
13 (i), {x,} converges exclusively to more than one point. This is a contradiction.
Therefore we have shown #A4 < 1. |

LemMa 16. Let (X,d) be a v-generalized metric space, where v is odd. Let {x,}
be a sequence in X. Put A by (3). Then #A <max{l,(v—1)/2} holds.

Proor. In the case where v =1, the conclusion obviously holds. So we as-
sume v>3. Put x=(v—1)/2. Arguing by contradiction, we assume #A > k.
Let (y1,..., per1) € A¥TD. Then since #4 >2 holds, by Lemma 13 (v), we have
#{neN:x, =x} < co, which implies #{x,:neN}=o00. Fix ¢>0. Then there
exists u € N satisfying

Xn ¢ {yh X} yrc+1}7

max{d(y;,x,):j=1,....k+1} <e
for any n > u. Fix myne N with y <n <m and x,, # x,. Then we have

d(x"17xn) S D(xm’ylax/lvy27' . '3x/;;ayK+17xn) < (V+ 1)87

where min{/y,..., 4} = and (Xp, Xu, X715+, Xs05 V15 oo oy Ver1) € X2 This implies
that {x,} is Cauchy. By Lemma 15 (ii), we obtain #A4 < 1, which implies a contra-
diction. Therefore we have shown #A4 < k. O

LemMa 17. Let (X,d) be a v-generalized metric space. Assume ve {1,3}. Then
X is Hausdorff.

ProOF. Suppose that {x,} converges to x and y. We put 4 by (3). Then by
Lemma 16, we have #A4 < 1. Since x, y € 4 holds, we obtain x = y. O

LemMa 18. Let (X,d) be a v-generalized metric space, where v is even. Let {x,}
be a sequence in X. Put A by (3) and assume #A >v/2+ 1. Then d(x,y) =d(x,z)
holds for any (x,y,z)e A®.

ProorF. From the assumption, #A4 >2 holds. By Lemma 13 (v), #{neN:
X, = x} < oo holds for any xe X. Taking a subsequence, we may assume that x,
(neN) are all different. Fix (yo,..., ) € A?*D. Then we have

d(yo, yvy2) < HNE D(y0, Xy X1y V15 Xnt2, - o5 Xutu25 Voj2)

= liminf d(x,, X,+1)

< limsup d(x,, Xn11)

n— o0
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< limsup D(xy, Yo, V125 Xn+25 Y15 Xn+35 Y25 - - -5 Xnpv/25 Yv/j2-15 Xnt1)

n—oo
=d (0, yv)2)-
Since (yo, yv/2) € A@ is arbitrary, we obtain
d(x,y)=d(x,z) = nanolo d(Xp, Xpt1)

for any (x,y,z) e A, O

LemMmA 19. Let (X,d) be a v-generalized metric space. Let {x,} be a sequence
in X. Then the following are equivalent:

(1) {xn} is Cauchy.

(i1) lim, d(xXp(n), X)) = O for any subsequences {f(n)} and {g(n)} of {n} in N.

Proor. Obvious. OJ

4. Compactness
In this section, we study compactness and strong compactness.

ProposITION 20. Let (X,d) be a v-generalized metric space. Then the following
are equivalent:

(i) X is compact in the strong sense.

(i) X is compact and d is sequentially continuous.

Proor. We first prove (i) = (ii). It is obvious that X is compact. In order to
prove the sequential continuity of d, suppose that {x,} and {y,} converge to x and y,
respectively. We consider the following two cases:

o #{neN:x,#x} <o and #{neN:y, # y} < 0.

o #neN:x,#x} =00 or #{neN: y, # y} = 0.

In the first case, we have x, =x and y, =y for sufficiently large neN. So (2)
obviously holds. In the second case, without loss of generality, we may assume
#{neN:x, #x} =o. Using Lemma 13 (iv), we can choose a subsequence {f(n)}
of {n} in N such that xs(,) (n € N) are all different. From (i), without loss of generality,
we may assume {x;(} is Cauchy. By Lemma 12, we have 7(x) =0. We have by
Lemma 10

lim sup d(x,, y,) < limsup D(x,,x, y, ¥n)

n—oo n— o0

= d(x7 y)

< liminf D(x,x,, yn, y) = liminf d(x,, y,).
n—oo n— o0

Hence (2) holds. We have shown (ii).
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Let us prove (ii) = (i). Let {x,} be a sequence in X. Then there exists a sub-
sequence {Xs(,} of {x,} converging to some ze X. Let {g(n)} and {h(n)} be arbitrary
subsequences of {n} in N. Then we have by (ii)

Jim d(Xpog(n)s Xpon(m) = d(x,x) = 0.

We have obtained Lemma 19 (ii). By Lemma 19, {x/(,} is Cauchy. O

LemMmA 21. Let (X,d) be a v-generalized metric space. If X is compact, then X is
complete.

Proor. Let {x,} be a Cauchy sequence. Since X is compact, there exists a sub-
sequence {f(n)} of {n} in N such that {x/,} converges to some z. By Lemma 15 (i),
{x,} converges to :z. O

5. Contractive conditions
In this section, we state known results concerning contractive conditions.

DEerINITION 22. Let X be a nonempty set and let d be a function from X x X into
[0,00). Let T be a mapping on X.
(1) T is said to be an Edelstein contraction (5] if d(Tx,Ty) < d(x,y) for any
x,y e X with d(Tx,Ty) > 0.
(2) T is said to be a CJM contraction [4, 7, 8] if the following hold:
(2-1) For any &> 0, there exists J >0 such that d(x,y) <e-+J implies
d(Tx,Ty) <e.
(2-i1) T is an Edelstein contraction.
(3) T is said to be a Browder contraction [3] if there exists a function ¢ from [0, o0)
into itself satisfying the following:
(3-1) ¢ is nondecreasing and right continuous.
(3-i1) ¢@(¢) <t for any t e (0, 0).
(3-ii) d(Tx,Ty) <pod(x,y) for all x,yeX.

In order to study the Browder and Boyd-Wong contractive conditions, Hegediis and

Szilagyi in [6] considered subsets of [0, o0)?.

DEFINITION 23 (see [14]). Let Q be a subset of [0, 00)”.

(1) Q is said to be Edelstein if u > 0 implies u < ¢ for any (t,u) € Q.

(2) Q is said to be CJM if the following hold:
(2-1) For any ¢ > 0, there exists 0 > 0 such that u < ¢ holds for any (¢,u) € Q

with ¢ < &+0.

(2-ii) Q is Edelstein.

(3) O is said to be a Browder if there exists a function ¢ from [0, c0) into itself
satisfying the following:
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(3-1) ¢ is nondecreasing and right continuous.
(3-i1) ¢@(¢) <t for any t e (0, 0).
(3-ii) u < ¢(¢) for any (t,u) e Q.
(4) Q is said to satisty Condition C(0,0,0) if the following hold:
(4-1) Q is Edelstein.
(4-i)) There does not exist 7 >0 and a sequence {(,,u,)} in Q satisfying
T<t,, T<u, and lim, ¢, = lim, u, = 7.
(5) Q is said to satisty Condition C(1,1,2) if the following hold:
(5-1) Q is Edelstein.
(5-i)) There does not exist 7 >0 and a sequence {(f,,u,)} in Q satisfying
lim, ¢, = lim,, u, = 7.

We know the following:

PROPOSITION 24 (see [14]). Let X be a nonempty set and let d be a function from
X x X into [0,0). Let T be a mapping on X. Define a subset Q of [0,0)* by

(4) Q0 ={(d(x,y),d(Tx,Ty)) : x,y € X}.

Then the following hold:
(i) T is an Edelstein contraction < Q is Edelstein.
(i) T is a CIM contraction < Q is CJIM < Q satisfies Condition C(0,0,0).
(i) T is a Browder contraction < Q is Browder < Q satisfies Condition C(1,1,2).

THEOREM 25 (Theorem 13 in [10]). Let (X,d) be a complete v-generalized metric
space and let T be a CJM contraction on X. Then T has a unique fixed point z.
Moreover for all x e X, {T"x} converges to z in the strong sense.

6. Theorem 4

In order to clarify the mathematical structure of Theorem 4, we give two proofs of
Theorem 4. We first give a proof by using Theorem 25.

ProoF OF THEOREM 4 BY THEOREM 25. Using (1), we first note that 7 is non-
expansive. That is,

() d(Tx,Ty) < d(x,y)

hold for all x,ye X. By Proposition 20, we next note that X is compact and d
is sequentially continuous. So by Lemma 21, X is complete. Define a subset Q of
0,0)° by (4)

We will show that Q satisfies Condition C(1,1,2). By Proposition 24, Q is
Edelstein. Arguing by contradiction, we suppose that {(z,,u,)} is a sequence in Q
converging to (z,7) for some 7€ (0,0). We can choose (x,,y,) € X? satisfying , =
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d(xy, yn) and u, = d(Tx,, Ty,). Since X is compact in the strong sense, there exists a
subsequence {f(n)} of {n} in N such that {x/,} and {y;} converge to some x and y,
respectively. We have by (5)

lim d(Tx,, Tx) < lim d(x,,x) =0.

n— oo n—oo
So, {Tx,} converges to Tx. Similarly {7y,} converges to Ty. Since d is sequentially
continuous, we have

d(x,y)=lim d(x,, y,) = lim t,=7t>0

n— o0 n— o0
and

d(Tx,Ty) = lim d(Tx,,Ty,) = lim u, =17 > 0.
n— oo n—oo
This contradicts (1). Thus, we have shown that Q satisfies Condition C(1,1,2).
In particular, Q satisfies Condition C(0,0,0). By Proposition 24, T is a CIM
contraction. So by Theorem 25, we obtain the desired result. O

We next give another proof of Theorem 4, by using Theorem 3. Before proving it,
we need some preliminaries.

LemMMmA 26. Let (X,d) be a v-generalized metric space. Let T be a mapping
on X. Assume the following:

(1) There exists ze€ X such that {T"x} converges to z for all xe X.

(i) There exists ue X satisfying T"u # z for ne N and lim, d(T"u, T"'u) = 0.
Then {T"x} converges to z in the strong sense for all x € X.

PrOOF. Arguing by contradiction, we assume that there exist k,/ € N satisfying
k< ¢ and T*u= T’u. As in the proof of Lemma 14, we can prove T"u = T u =z
for any ne N with n > k. This contradicts (ii). Therefore we have shown that 7"u
(neN) are all different.

By Lemma 14, {T"u} is Cauchy. So by Lemma 12, we obtain n(z) =0. Fix
x€ X. Then we have by Lemma 9

lim sup d(7T"x, T"x) < lim sup(d(T"x,z) +d(T"x,z) +#5(z)) = 0.

=% m>n =% m>n

Therefore we have shown that {7"x} is Cauchy. O

ProposITION 27. Let (X,d) be a compact v-generalized metric space. Let T be
a mapping on X satisfying (1) for any x,ye€ X. Let z be a unique fixed point of T.
Assume that there exists ue X satisfying T"u # z for any ne N and lim, d(T"u, T""'u)
=0. Then for all xe X, {T"x} converges to z in the strong sense.
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ProoF. By Theorem 3, we obtain Lemma 26 (i). From the assumption, Lemma
26 (ii) holds. So by Lemma 26, we obtain the desired result. O

PrOOF OF THEOREM 4 BY THEOREM 3. Since X is compact in the strong sense, X is
compact. Therefore all the assumptions of Theorem 3 hold. By Theorem 3, T has a
unique fixed point z. Moreover {T"x} converges to z for all x € X. We consider the
following two cases:

o #{T"x:neN} < oo for all xeX.

o #{T"u:neN} = oo for some uelX.

In the first case, the conclusion obviously holds. In the second case, we note T"u # z
for all n e N. Since X is compact in the strong sense, there exists a subsequence { f(n)}
of {n} in N such that {7/"u} and {T/"+y} converge to some v and w in the strong
sense, respectively. By Lemma 13 (i), {7/™u} and {T/"*1u} converges exclusively to
v and w, respectively. Since {77/"u} and {T/"*u} converges to z, we obtain v = w =
z. By Lemma 8§, we have

lim d(T/™Wu, T/" ) = d(z,z) = 0.

n—oo

Since {d(T"u, T"*'u)} is nonincreasing, we have lim, d(7"u, T"*'u) = 0. By Proposi-
tion 27, we obtain the desired result. O

7. Theorem 3

In this section, we study Theorem 3. Indeed we prove finer results than Theorem
3, depending on v.

THEOREM 28. Let (X,d) be a compact v-generalized metric space, where v € {1,3}.
Let T be a mapping on X satisfying (1) for any x,y e X. Then the following hold:

(i) T has a unique fixed point z.

(i) {T"x} converges exclusively to z for all x € X.

Proor. By Theorem 3, 7' has a unique fixed point z. Thus, (i) holds.
By Theorem 3 again, for any x € X, {7T"x} converges to z. By Lemma 17, we
note that X is Hausdorff. So by Lemma 13 (iii), {7"x} converges exclusively to z.

O

THEOREM 29. Let (X,d) be a compact 2-generalized metric space. Let T be a
mapping on X satisfying (1) for any x,ye€ X. Then the following hold:

(1) T has a unique fixed point z.

(it) {T"x} converges to z for all x € X.

(iii) If {T"x} converges to y, then Ty =z holds.
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ProoF. By Theorem 3, (i) and (ii) hold.
We put

(6) A={ueX :lim, d(T"x,u) = 0}.

In order to prove (iii), suppose lim, d(7"x,y) =0. We consider the following two
cases:

* y=r=.

* y#cZ
In the first case, we have Ty = Tz = z. In the second case, arguing by contradiction,
we assume 7y # z. Then we note Ty # y because z is a unique fixed point of 7 and
y # z holds. Using (5), we have

lim d(T"x,Ty) < lim d(T" 'x,y) = 0.

n—o0 n—oo
Thus, Ty € A holds. Therefore we have (z,p, Ty) e A®). By Lemma 18, we have
d(z,Ty) = d(z, ).
On the other hand, we have by (1)
d(z,Ty) =d(Tz, Ty) < d(z,y),
which implies a contradiction. Therefore we obtain Ty = z. O

THEOREM 30. Let (X,d) be a compact v-generalized metric space, where v >4
holds. Let T be a mapping on X satisfying (1) for any x,ye X. Then the following
hold:

(1) T has a unique fixed point z.

(it) {T"x} converges to z for all x e X.

(iii) If {T"x} converges to y, then TV~1y =z holds.

ProOF. By Theorem 3, (i) and (ii) hold.
Fix xe X and put 4 by (6). We will show that 4 is T-invariant. Indeed, let
yeA. Then we have by (5)
lim d(T"x, Ty) < lim d(T" 'x,y) = 0.
n—oo n—oo
So Ty € A holds. Therefore we have shown that A is T-invariant. We consider the
following three cases:
* v is odd.
e vis even and #A4 < v/2 holds.
e vis even and #4 >v/2+ 1 holds.
In the first case, by Lemma 16, we note

#A<(v—1)/2=[/2 = (/2 -1)+1.
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So we obtain T01/2-1y =z for any ye A. In the second case, we note
#A4 <v/2=[v/2 = (/2 1) +1.

We also obtain 71"/2-1y = z for any y € 4. In the third case, arguing by contradiction,
we assume Ty # z for some ye A. It is obvious that y # z holds. Thus, (z,y,Ty) €
A®) holds. By Lemma 18, we have

d(z,Ty) = d(z, ).
On the other hand, we have
d(z,Ty) =d(Tz,Ty) < d(z, ),
which implies a contradiction. Therefore 7y =z for any y € A. We obtain
T[V/z]—ly — b2, _ .
for all ye A, where T° is the identity mapping on X. |

We prove the following lemma, which is useful when we show that we cannot prove
Theorem 3 by Theorem 25. See also Section 8.

LemMA 31. Let (X,d) be a v-generalized metric space. Let T be a mapping on X
satisfying (1) for any x,y € X. Assume that there exists ue X satisfying

lim d(T"u, T" 'u) > 0.

n—oo
Then T is not a CJM contraction.

Proor. We first note that {d(T"u, T""'u)} is strictly decreasing. Put 7:=
lim, d(T"u, T""'u) > 0. Define a subset Q of [0,00)* by (4). Define a sequence

{(ta,un)} by
th=d(T"u, T""'v)  and  w, =d(T" 'u, T" ).
We have

T<u, <t, and lim ¢, = lim u, = 7.
n—oo n— o0

Therefore Q does not satisfy Condition C(0,0,0). By Proposition 24, T is not a CIM
contraction. O

8. Examples

We finally give examples which are strongly connected with the results in
Section 7.
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LemMa 32. Let ve N be an even positive integer. Let X be a nonempty set and
let A and B be subsets of X with AUB=X, ANB= and #A4 <v/2. Let S be a
mapping from X into a metric space (Y,p). Let M be a positive real number and let f
be a function from X x X into [0,3M)| satisfying the following:

(7) f(x,x)=0.

(8) X# yASx=Sy= f(x,y) > 0.

) S 9) =1 (%)

(10) (x,y) € BY = f(x,y) = M.

(11) (x,)e(AxB)U(BxA)= f(x,y) <M.

Define a function d from X x X into [0,00) by

(12) d(x, y) = p(Sx, Sy) + f(x, ).
Then (X,d) is a v-generalized metric space.

Proor. We can prove (N1) and (N2) by (7)—(9). In order to prove (N3), we fix
(uo, ..., uy11) € X0, We consider the following two cases:

d (uo,uv+1) € A(2>.

* Otherwise.
In the first case, since 2 < #A4 < v/2 holds, we note v >4. We have

£ €0, v} () € (4 x X) U (X x A)}
<1+2v2-2)41=v-2
and hence
#{je{0,....v}: (uui1) e BP}y = (v+1) - (v—2) =3.
So we have by (10)
d(uo, uy1) < 3M + p(Sug, Stuy1)

< 3M + p(Suy, Suy) + - - - + p(Suy, Stty11)

< D(ug, ..., uy1).
In the second case, since #A4 < v/2 holds, we have

#{je{0,... v} (uup1) e(AXxX)U(X xA)} <2v/2=v
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and hence
#{je{0,....v}: (u,u) e By > (v+1)—v=1.
So we have by (10) and (11)

d(uo, uyr1) < M + p(Sug, Suyi1)
< M + p(Sug, Suy) + - - - + p(Suy, Sty41)
< D(ug, ..., up1).
Thus (N3) holds in all cases. O

Similarly we can prove the following lemma.

LEMMA 33. Let ve N be an odd positive integer. Let X be a nonempty set and let
A and B be subsets of X with AUB=X, ANB= and #4 < (v—1)/2. Let S be a
mapping from X into a metric space (Y,p). Let M be a positive real number and let f
be a function from X x X into [0,4M] satisfying (7)—(10) and the following:

(13) (x,9)e(AXB)U(Bx A)= f(x,y) <2M.

Define a function d from X x X into [0,00) by (12). Then (X,d) is a v-generalized
metric space.

ProoF. We can prove (N1) and (N2) by (7)—(9). In order to prove (N3), we fix
(ug, ..., uy11) € XU, We consider the following two cases:

° (uo,uv+1) € A(2>

e Otherwise.
In the first case, since 2 < #A4 < (v—1)/2 holds, we note v>5. We have

#{j€{0,...,v}: (u,u1) € (A x X)U (X x 4)}
<14+2((v=-1)/2-2)+1=v-3
and hence
#{je{0,...v}: (uui1) e By = (v+1) - (v—-3) =4
So we have by (10)
d(uo,uyy1) < 4M + p(Suo, Sty11)
< 4M + p(Sug, Suy) + - - - + p(Suty, Sty 1)

< D(uo, e 7uv+1).



38 Tomonari SUZUKI

In the second case, since #A4 < (v—1)/2 holds, we have
#{je{0,....v}: (uy1)e(AxX)U(X xA)} <2(v—1)/2=v-1
and hence
#{je{0,... v} : (uui) e By > (v+1) - (v—1)=2.
So we have by (10) and (13)
d(ug, uyy1) < 2M + p(Suo, Stiy11)

< 2M + p(Suy, Suy) + - - - + p(Suy, Stty11)

< D(ug, ..., up1).
Thus (N3) holds in all cases. O

LEMMA 34. Let veN. Let X be a nonempty set and let A and B be subsets of
X with ANB= . Assume that A consists of at most (v —1)/2 elements in the case
where v is odd. Let S be a mapping from X into a metric space (Y,p) satisfying
S(A)NS(B) = . Let M be a positive real number. Define a function d from X x X
into [0, 00) by

d(x,x)=0
d(x,y) =d(y,x) = p(Sx, Sy) if (x,y)eAxB
d(x,y) = M + p(Sx, Sy) otherwise.

Then (X,d) is a v-generalized metric space.

ReEMARK. See Lemma 4 in [10], Lemmas 4.2 and 4.3 in [11] and Lemma 27 in
[12].

Proor. (N1) and (N2) are obvious. Divide the following three cases:

(a) v=2.
(b) v is even.
() v is odd.

In the case of (a), we fix (x,y,u,v) e X, We further consider the following three
cases:

(a-1) x,ve A4 and y,ue B.

(a-2) y,ue A and x,ve B.

(a-3) Otherwise.
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In the case of (a-1), we have
d(x, y) = p(Sx, Sy)
< p(Sx, Su) + p(Su, Sv) + p(Sv, Sy)
d(x,u) +d(u,v) +d(v, ).

Similarly we can prove (N3) in the case of (a-2). In the case of (a-3), noting

{(x,u), (u,0), (v, )} N (X*\(4 x BUB x A)) # &,
we have
d(x,y) < M+ p(Sx, Sy)
< M + p(Sx, Su) + p(Su, Sv) + p(Sv, Sy)
<d(x,u) +d(u,v) +d(v,y).

Thus we obtain (N3) in the case of (a). Therefore (X,d) is a 2-generalized metric
space. By Proposition 7, (X,d) is a v-generalized metric space for all even positive
integers v. In the case of (c), using Lemma 33, we can prove that (X,d) is a
v-generalized metric space for all odd positive integers v. O

Now we give two examples. In Section 6, we give a proof of Theorem 4 by
Theorem 25. On the other hand, Theorem 3 cannot be proved by Theorem 25 because
of the following examples.

ExampLE 35. Let pueN and M ={0,...,u}. Put A4={0p,...,0,}, B=
{I/n:neN} and X = AUB. Define a mapping S from X into [0,1] by S0, =0
and S(1/n) =1/n. Define a function d from X x X into [0,00) by

d(x,x)=0
d(x,y) =d(y,x) =|Sx — Sy if (x,y)eAxB
d(x,y)=1+|Sx - Sy otherwise.

Define a mapping 7 on X by 70; =0y and 7T(1/n) =1/(n+1). Then the following
hold:
i) (X,d) is a v-generalized metric space for all even positive integers v.
ii) X is compact.

iii) 7 is an Edelstein contraction.

T is not a CJM contraction.

{T"1} converges to 0; for any je M.

0; is not a fixed point of 7 for any je M\{0}.

)
)
)
)

<
—
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Proor. (i) follows from Lemma 34. (i), (v) and (vi) are obvious. Since
lim, d(T"1, T"*'1) = 1 holds, we obtain (iv) by Lemma 31.
Let us prove (iii). We have

m—n
d(T(1/n), T(1/m)) =d(1/(n+1),1/(m+1)) =1 +m
m—n
d(T(1/n),T0) = 1/(n+ 1) < 1/n=d(1/n,0)),
d(TOk, TO/) = d(Oo,Oo) =0<1= d(Ok,()/)
for any m,neN and j, k,/ e M with n <m and k </. Thus (iii) holds. O

ExaMpLE 36. Let ve N with v>4. Put u:=[v/2]—1eN and M ={0,...,u}.
Put 4 ={0p,...,0,}, B={1/n:neN} and X = 4UB. Define a mapping S from X
into [0,1] by S0, =0 and S(1/n) =1/n. Define a function d from X x X into [0, c0)
by

d(x,x)=0
d(x,y) =d(y,x) =|Sx—Sy| if (x,y)edxB

L i (i @)
d(0]70k)7‘]_~_2 k+2 lf (]7k)eM
d(x,y)=1+|Sx - Sy otherwise.

Define a mapping 7" on X by T0; = Opaxo,j—1y and T(1/n) =1/(n+1). Then the
following hold:
(i) (X,d) is a v-generalized metric space.
(ii) X is compact.
(i) 7T is an Edelstein contraction.
(iv) T is not a CJM contraction.
(v) {T"1} converges to 0; for any je M.
(vi) TW/2720, is not a fixed point.

Proor. (i) follows from Lemmas 32 and 33. (ii), (v) and (vi) are obvious. Since
lim, d(T"1,T"'1) = 1 holds, we obtain (iv) by Lemma 31.
Let us prove (iii). As in the proof of Example 35, we can prove
d(T(1/n), T(1/m)) < d(1/n,1/m),
d(T(1/n),T0;) < d(1/n,0;).
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for any m,ne N and je M with n <m. We have

1 J

T0y, TO;) = i) < -4+ ——

d(T0o, 70;) = d(0o,0; 1)_2+j+1
141

for any je M\{0}. We also have

j k
d(T0;, T0;) =d(0;_1,0;_1) = ——+-——
( ] k) (./17k1) ]+1+k+1
JH1 k+1
T2 T 4000
for any (j,k) e (M\{0})®. Thus (iii) holds. O
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