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WEAK SECOND ORDER EXPLICIT EXPONENTIAL
RUNGE–KUTTA METHODS FOR STOCHASTIC

DIFFERENTIAL EQUATIONS∗

YOSHIO KOMORI† , DAVID COHEN‡ , AND KEVIN BURRAGE§

Abstract. We propose new explicit exponential Runge–Kutta methods for the weak approx-
imation of solutions of stiff Itô stochastic differential equations (SDEs). We also consider the use
of exponential Runge–Kutta methods in combination with splitting methods. These methods have
weak order 2 for multidimensional, noncommutative SDEs with a semilinear drift term, whereas they
are of order 2 or 3 for semilinear ordinary differential equations. These methods are A-stable in the
mean square sense for a scalar linear test equation whose drift and diffusion terms have complex
coefficients. We carry out numerical experiments to compare the performance of these methods with
an existing explicit stabilized method of weak order 2.
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1. Introduction. For stiff ordinary differential equations (ODEs), there are
some classes of explicit methods that are well suited. One such class is the Runge–
Kutta–Chebyshev (RKC) methods. They are useful for stiff problems whose eigen-
values lie near the negative real axis. Van der Houwen and Sommeijer [38] have
constructed a family of first order RKC methods. Abdulle and Medovikov [3] have
modified this class and proposed a family of second order RKC methods. Another
suitable class of methods is the explicit exponential Runge–Kutta (RK) methods for
semilinear problems [12, 17, 18, 19, 26, 32]. Although these methods were proposed
many years ago, they have not been regarded as practical until recently because of the
cost of calculations for matrix exponentials, especially for large problems. In order to
overcome this problem, new methods have been proposed [15, 17, 18, 19]. In addition,
the class of splitting methods is also competitive with the classes of numerical meth-
ods mentioned above. Exponential RK methods can be used in combination with
splitting methods [19, 29].

Similarly, for stochastic differential equations (SDEs) explicit RK methods that
have excellent stability properties have been developed. Abdulle and Cirilli [1] have
proposed a family of explicit stochastic orthogonal Runge–Kutta–Chebyshev (SROCK)
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methods with extended mean square (MS) stability regions. Their methods have
strong order 1/2 and weak order 1 for noncommutative Stratonovich SDEs, whereas
they reduce to the first order RKC methods when applied to ODEs. Abdulle and Li
[2] have proposed SROCK methods of the same order for noncommutative Itô SDEs.
Komori and Burrage [23] have developed these ideas and have proposed weak sec-
ond order SROCK methods for noncommutative Stratonovich SDEs. If the methods
are applied to ODEs, they reduce to the second order RKC methods of Abdulle and
Medovikov [3]. Komori and Burrage [24] have also proposed strong first order SROCK
methods for noncommutative Itô and Stratonovich SDEs, which reduce to first or sec-
ond order RKC methods for ODEs. The weak second order SROCK methods given
by Komori and Burrage [23] have the advantage that the stability region is large along
the negative real axis, but they still have the drawback that their stability region is
not very wide. In order to overcome this, Abdulle, Vilmart, and Zygalakis [5] have
proposed a new family of weak second order SROCK methods for noncommutative
Itô SDEs, in which another family of second order RKC methods is embedded.

On the other hand, Shi, Xiao, and Zhang [34] have proposed an exponential Euler
method for the strong approximation of solutions of SDEs with multiplicative noise
driven by a scalar Wiener process. Cohen [9] and Tocino [36] have proposed exponen-
tial integrators for second order SDEs with a semilinear drift term and multiplicative
noise. Adamu [6], Geiger, Lord, and Tambue [14], and Lord and Tambue [27] have
proposed exponential integrators for stochastic partial differential equations with a
semilinear drift term and multiplicative noise. Komori and Burrage [25] have pro-
posed another explicit exponential Euler method for noncommutative Itô SDEs with
a semilinear drift term, which is of strong order 1/2 and A-stable in the MS.

In the present paper, we derive stochastic exponential Runge–Kutta (SERK)
methods and splitting methods for the weak approximation of solutions of noncom-
mutative Itô SDEs with a semilinear drift term. We will achieve this with the help
of the derivative-free Milstein–Talay (DFMT) method proposed by Abdulle, Vilmart,
and Zygalakis [4, 5] and explicit exponential RK methods for ODEs proposed by
Hochbruck and Ostermann [18]. In section 2 we will briefly introduce explicit ex-
ponential RK methods and a classical splitting method for ODEs. In section 3 we
will derive and analyze novel SERK and splitting methods for SDEs, and in section 4
we will give their stability and error analysis. In section 5 we will present numerical
results and in section 6 our conclusions.

2. Explicit exponential RK methods and the Strang splitting method
for ODEs. We consider autonomous semilinear ODEs given by

(2.1) y′(t) = Ay(t) + f(y(t)), t ≥ 0, y(0) = y0,

where y is an Rd-valued function on [0,∞), A is a d×d matrix, and f is an Rd-valued
nonlinear function on Rd. In order to introduce some exponential RK methods for
(2.1), we make the following assumptions [18].

Assumption 2.1. For a given time T > 0, (2.1) satisfies the conditions below.
(1) There exists a constant C such that∥∥etA

∥∥ ≤ C
for all t ∈ [0, T ].

(2) The nonlinear function f is (locally) Lipschitz continuous in a local region U
that contains the exact solution y on [0, T ], that is,

{y(t) | t ∈ [0, T ]} ⊂ U.
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(3) The solution y is a sufficiently smooth function on [0, T ] and f is sufficiently
differentiable in U . All derivatives of y and f are uniformly bounded in [0, T ]
and U , respectively.

Note that the global error estimation of all exponential RK methods introduced in
this section can be influenced by the constant C [18].

Let yn denote a discrete approximation to the solution y(tn) of (2.1) for an
equidistant grid point tn

def= nh (n = 1, 2, . . . ,M) with step size h = T/M < 1 (M is
a natural number). By the variation-of-constants formula, the solution of (2.1) is

y(tn+1) = eAhy(tn) +
∫ tn+1

tn

eA(tn+1−s)f(y(s))ds.

By replacing y(tn) with yn and interpolating f(y(s)) at f(yn) only, we obtain the
simplest exponential method for (2.1) [19]:

yn+1 = eAhyn + hϕ1(Ah)f(yn),

where ϕ1(Z) def= Z−1(eZ − I) and I stands for the d×d identity matrix. This is called
the explicit exponential Euler method.

Higher order exponential RK methods have been proposed in [18, 19]. For exam-
ple, the following is a one-parameter family of second order exponential RK methods:

(2.2)
Y 1 = echAyn + chϕ1(chA)f(yn),

yn+1 = ehAyn + h

{
ϕ1(hA)− 1

c
ϕ2(hA)

}
f(yn) +

1
c
hϕ2(hA)f(Y 1),

where c is a parameter and ϕ2(Z) def= Z−2(eZ − I − Z). In addition to Assumption
2.1, let us assume that there exists a constant C such that∥∥∥∥∥hA

n−1∑
k=1

ekhA
∥∥∥∥∥ ≤ C

for n = 2, 3, . . . ,M . (Note that the global error estimation of the following family of
exponential RK methods can also be influenced by the above constant C [18].) Then,
a two-parameter family of third order exponential RK methods is given by

(2.3)

Y 1 = ec1hAyn + c1hϕ1(c1hA)f(yn),

Y 2 = ec2hAyn + h {c2ϕ1(c2hA)− ψ(hA)}f(yn) + hψ(hA)f(Y 1),

yn+1 = ehAyn + h

{
ϕ1(hA)− γ + 1

γc1 + c2
ϕ2(hA)

}
f(yn)

+
h

γc1 + c2
ϕ2(hA) {γf(Y 1) + f(Y 2)} ,

where c1, c2, and γ are parameters satisfying

(2.4) 2(γc1 + c2) = 3
(
γc21 + c22

)
and ψ(Z) def= γc1ϕ2(c1Z) + c22

c1
ϕ2(c2Z).
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On the other hand, as a second order splitting method for (2.1), the following
Strang splitting method is well known [29, 35]:

yn+1 = e
h
2AΦh

(
e

h
2Ayn

)
,

where Φh is an integrator of at least order 2 for ODEs given by replacing A with the
zero matrix in (2.1).

3. Weak second order SERK methods and splitting methods. We shall
now derive SERK methods and splitting methods of weak order 2 by utilizing some
results for a well-designed existing stochastic Runge–Kutta (SRK) method. We give
a brief introduction to the SRK method in subsection 3.1. We then present SERK
methods in subsection 3.2 and splitting methods in subsection 3.3.

3.1. The DFMT method. Similarly to the case of ODEs, we are concerned
with autonomous SDEs with a semilinear drift term given by

(3.1) dy(t) = (Ay(t) + f(y(t)))dt+
m∑
j=1

gj(y(t))dWj(t), y(0) = y0,

where t ∈ [0, T ] and where gj , j = 1, 2, . . . ,m, are Rd-valued functions on Rd, the
Wj(t), j = 1, 2, . . . ,m, are independent Wiener processes, and y0 is independent of
Wj(t)−Wj(0) [7, p. 100].

In order to deal with weak approximations for (3.1), let g0(y) denote Ay + f(y)
and let us consider the following DFMT method [4, 5]:

(3.2)

K1 = yn + hg0(yn), K2 = K1 +
√
h

m∑
j=1

gj(yn)ξj ,

yn+1 = yn +
h

2
{g0 (yn) + g0 (K2)}+H (yn) + H̃

(
yn +K1

2
,yn

)
,

where

H(y) def=
1
2

m∑
j=1

{
gj

(
y + h

m∑
k=1

gk (y) ζkj

)

− gj

(
y − h

m∑
k=1

gk (y) ζkj

)}
,

H̃(y, z) def=

√
h

2

m∑
j=1

{
gj

(
y +

√
h

2

m∑
k=1

gk (z)χk

)

+ gj

(
y −

√
h

2

m∑
k=1

gk (z)χk

)}
ξj ,

and where the χj and ξj , j = 1, 2, . . . ,m, are discrete random variables satisfying
P (χj = ±1) = 1/2, P (ξj = ±

√
3) = 1/6, and P (ξj = 0) = 2/3, and the ζkj ,

j, k = 1, 2, . . . ,m, are given by

ζkj
def=

 (ξjξj − 1)/2 (j = k),
(ξkξj − χk)/2 (j < k),
(ξkξj + χj)/2 (j > k).
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Let CLP (Rd,R) denote the family of L times continuously differentiable real-valued
functions on Rd, whose partial derivatives of order less than or equal to L have
polynomial growth. Whenever we deal with weak convergence of order q, we will
make the following assumption [21, p. 474].

Assumption 3.1. All moments of the initial value y0 exist and gj , j = 0, 1, . . . ,m,

are Lipschitz continuous with all their components belonging to C2(q+1)
P (Rd,R).

Then, we can give the definition of weak convergence of order q [21, p. 327].

Definition 3.2. When discrete approximations yn are given by a numerical
method, we say that the method is of weak (global) order q if, for all G ∈ C

2(q+1)
P

(Rd,R), constants C > 0 (independent of h) and δ0 > 0 exist such that

|E[G(y(T )]− E[G(yM )]| ≤ Chq, h ∈ (0, δ0).

In order to consider numerical methods of weak order q, the following theorem
proposed by Milstein [30] (see [31, p. 100]) is very useful [4, 5, 33].

Theorem 3.3. In addition to Assumption 3.1, suppose that the following condi-
tions hold:

(1) for a sufficiently large r ∈ N, the moments E[‖yn‖2r] exist and are uniformly
bounded with respect to M and n = 0, 1, . . . ,M ;

(2) for all G ∈ C2(q+1)
P (Rd,R), the local error estimation∣∣E[G(y(tn+1))]− E[G(yn+1)]

∣∣ ≤ |K(yn)|hq+1

holds if y(tn) = yn, where K ∈ C0
P (Rd,R).

Then, the method that gives yn, n = 0, 1, . . . ,M , is of weak (global) order q.

The second condition concerning the local error in the theorem provides us with
order conditions for an SRK method to be of weak order q [33]. In addition, the
DFMT method is of weak order 2 [4]. These facts give us a way of deriving new
SRK methods of weak order 2 [4, 5]. For this, we propose a useful lemma to give a
sufficient condition for SRK methods based on the DFMT method in order to satisfy
the second condition in Theorem 3.3.

Lemma 3.4. For an approximate solution yn, let yn+1 be given by (3.2) and let
ŷn+1 be defined by

ŷn+1 = ỹn+1 +
h

2
g0

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
+H (Y 3) + H̃ (Y 4,Y 5) .

Here, we assume that the intermediate values ỹn+1 and Y i, i = 1, 2, . . . , 5, have no
random variable and satisfy

ỹn+1 +
h

2
g0 (Y 1) = yn + hg0 (yn) +

h2

2
g′0 (yn) g0 (yn) +O

(
h3) ,(3.3)

Y i = yn +O(h) (i = 1, 2, 3, 5), Y 4 = yn +
h

2
g0 (yn) +O

(
h2) .

(Note that the symbol O(hp) represents terms x such that ‖x‖ ≤ |K(yn)|hp for
K ∈ C0

P (Rd,R) and small h > 0.) Then, for all G ∈ CrP (Rd,R) (r ≥ 3),

E
[
G
(
ŷn+1

)]
− E

[
G
(
yn+1

)]
= O

(
h3) .

For the proof of this lemma, we refer the reader to Appendix A.
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3.2. SERK methods. We shall propose weak second order SERK methods for
(3.1). As a simple case, let us begin with

(3.4)
yn+1 = Y 1 + hϕ2(hA)

{
f

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f(yn)

}
+ e

h
2A
(
H(Y 2) + H̃(Y 2,Y 2)

)
.

Here and in what follows, we set Y 1 and Y 2 by

(3.5) Y 1
def= ehAyn + hϕ1(hA)f(yn), Y 2

def= e
h
2Ayn +

h

2
ϕ1

(
h

2
A

)
f(yn).

Observe that if the diffusion terms vanish, (3.4) is equivalent to (2.2) with c = 1.

Theorem 3.5. Let g0(y) denote Ay + f(y) and suppose that (3.1) satisfies As-
sumption 3.1 for q = 2. Then (3.4) is of weak order 2 for (3.1).

Proof. Due to Lemma 3.4, it is clear that the local error of the method

ŷn+1 = ỹn+1 +
h

2
g0

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
+H(Y 2) + H̃(Y 2,Y 2)

is weak order 3, where Y 1,Y 2 are given in (3.5), ỹn+1 = yn + (h/2)g0(yn), and
K1 = yn + hg0(yn). Using g0(y) = Ay + f(y), we can rewrite this as follows:

(3.6)

ŷn+1 = yn +
h

2
(Ayn + f (yn)) +

h

2
AK1

+
h

2
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
+
h3/2

2
A

m∑
j=1

gj (Y 2) ξj

+ H(Y 2) + H̃(Y 2,Y 2).

Since we can rewrite H(Y ) as H(Y ) = h
∑m
j,k=1 g

′
j(Y )gk(Y )ζkj +O(h3), we have

e
h
2AH(Y 2) = H(Y 2) + h2r1 +O

(
h3) ,

where r1 = (1/2)A
∑m
j,k=1 g

′
j(Y 2)gk(Y 2)ζkj . In addition, since we can rewrite

H̃(Y ,Y ) as

H̃(Y ,Y ) =
m∑
j=1

{
√
hgj (Y ) +

h3/2

4

m∑
k,l=1

g′′j (Y ) [gk (Y ) , gl (Y )]χkχl

}
ξj

+O
(
h5/2

)
,

we have

e
h
2AH̃(Y 2,Y 2) =

h3/2

2
A

m∑
j=1

gj (Y 2) ξj + H̃(Y 2,Y 2) + h5/2r2 +O
(
h3) ,

where

r2 =
1
8
A

m∑
j=1

{
m∑

k,l=1

g′′j (Y 2) [gk (Y 2) , gl (Y 2)]χkχl +Agj (Y 2)

}
ξj .



WEAK SECOND ORDER EXPONENTIAL RUNGE–KUTTA METHODS A2863

If gj ≡ 0 for j = 1, 2, . . . ,m, then yn+1 − ŷn+1 = O
(
h3
)

as (3.4) and (3.6) are of
order 2 for semilinear ODEs. Hence, all that remains concerning the local error is to
check the difference between u and û given by

u = hϕ2(hA)

{
f

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 1)

}
and

(3.7) û =
h

2

{
f

(
K1 +

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (K1)

}
.

As Y 1 = K1 +O
(
h2
)
, we have

u− û = h5/2r3 +O
(
h3) ,

where r3 = (1/6)
∑m
j=1Af

′ (K1) gj (Y 2) ξj . Since E[r1] = E[r2] = E[r3] = E[ξjr1] =
0 (j = 1, 2, . . . ,m), the local error of (3.4) is also weak order 3.

As a sufficient condition for (1) in Theorem 3.3, it is known that the following
two inequalities hold for all sufficiently small h > 0:∥∥E [yn+1 − yn | yn

]∥∥ ≤ C (1 + ‖yn‖)h,
∥∥yn+1 − yn

∥∥ ≤ Xn (1 + ‖yn‖)
√
h,

where C is a positive constant and Xn is a random variable which has moments of all
orders [31, p. 102]. From the definition of Y 2 in (3.4) and Assumption 3.1,

1
2

∥∥∥∥∥gj
(
Y 2 + h

m∑
k=1

gk (Y 2) ζkj

)
− gj

(
Y 2 − h

m∑
k=1

gk (Y 2) ζkj

)∥∥∥∥∥
≤ C1

∥∥∥∥∥g′j (yn)h
m∑
k=1

gk (yn) ζkj

∥∥∥∥∥ ≤ C2 (1 + ‖yn‖)h

for constants C1, C2 > 0. Here, note that the smoothness and global Lipschitzness of
gj , j = 1, 2, . . . ,m, imply ‖g′j(y)gk(y)‖ ≤ C(1 + ‖y‖) for a constant C > 0, whereas
the global Lipschitzness implies ‖gj(y)‖ ≤ C(1 + ‖y‖). From these facts, we can
see that the two inequalities requested above hold for (3.4). Consequently, (3.4) is of
weak order 2 by Theorem 3.3.

If an SRK method is of higher deterministic order, it can be expected to have a
better approximation to the expectation of a solution for SDEs with small noise [22].
For this, as a slightly complicated case, let us consider the SERK methods given by

yn+1 = Y 1 +
h

γc1 + c2
ϕ2(hA)

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)

+ f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− (γ + 1)f(yn)

}
(3.8)

+ e
h
2A
(
H(Y 2) + H̃(Y 2,Y 2)

)
,

where Y 1,Y 2 are given in (3.5),

Y 3 = ec1hAyn + c1hϕ1(c1hA)f(yn),
Y 4 = ec2hAyn + h {c2ϕ1(c2hA)− ψ(hA)}f(yn) + hψ(hA)f(Y 3),
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and b1 and b2 are parameters along with c1, c2, and γ satisfying (2.4). Observe also
that if the diffusion terms vanish, (3.8) is equivalent to (2.3).

Theorem 3.6. Let g0(y) denote Ay + f(y) and suppose that (3.1) satisfies As-
sumption 3.1 for q = 2. Then, (3.8) is of weak order 2 for (3.1) if the parameters
satisfy

(3.9)
γb1 + b2
γc1 + c2

= 1,
γb21 + b22
γc1 + c2

= 1

as well as (2.4).

For the proof of this theorem, we refer the reader to Appendix B.

Remark 3.7. As a simple solution of (2.4) and (3.9), we can find

c1 =
1
2
, c2 = 1, γ = 4, b1 =

6±
√

6
10

, b2 =
3∓ 2

√
6

5

(double sign in order). For this solution, the intermediate values Y 3 and Y 4 satisfy

Y 3 = Y 2, Y 4 = Y 1 + hψ(hA) {f (Y 2)− f (yn)} ,

where Y 1,Y 2 are given in (3.5).

3.3. Splitting methods. In the previous subsection we derived our SERK
methods by setting terms including exponentials in the intermediate values and by
utilizing Lemma 3.4. Taking this into account, let us consider the following Strang
splitting method for the weak second order approximation to the solution of (3.1):

(3.10) yn+1 = e
h
2AΦh

(
e

h
2Ayn

)
,

where Φh is the DFMT method for SDEs given by replacing A with the zero matrix
in (3.1). We name (3.10) the Strang splitting method based on the DFMT method,
and call it the SSDFMT method.

Theorem 3.8. Let g0(y) denote Ay + f(y) and suppose that (3.1) satisfies As-
sumption 3.1 for q = 2. Then, (3.10) is of weak order 2 for (3.1).

In order to prove this theorem, we can utilize parts of the proof of Lemma 3.4. For
details, refer to Appendix C.

The SSDFMT method is of order 2 for semilinear ODEs. In order to make it
possible for splitting methods to have a higher deterministic order, let us consider
splitting methods given by the following formulation:

(3.11) yn+1 = Ψ h
2

(
Φ̂h
(

Ψ h
2
(yn)

))
,

where Φ̂h is the DFMT method for SDEs given by making the drift term zero and
where Ψh denotes an exponential integrator which at least satisfies

Ψh(yn) = yn + hg0(yn) +
h2

2
g′0(yn)g0(yn) +O

(
h3) .

Theorem 3.9. Let g0(y) denote Ay + f(y) and suppose that (3.1) satisfies As-
sumption 3.1 for q = 2. Then, (3.11) is of weak order 2 for (3.1).
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Proof. Due to Lemma 3.4, it is clear that the local error of the method

(3.12) ŷn+1 = ỹn+1 +
h

2
g0

(
Ỹ +

√
h

m∑
j=1

gj

(
Ỹ
)
ξj

)
+H

(
Ỹ
)

+ H̃
(
Ỹ , Ỹ

)
is weak order 3, where ỹn+1 = yn + (h/2)g0(yn) + (h2/4)g′0(yn)g0(yn) and Ỹ =
Ψh/2(yn). Incidentally, (3.11) can be rewritten as follows:

(3.13)
yn+1 = Ỹ +

h

2
g0

(
Ψ̂h

(
Ỹ
))

+
h2

8
g′0

(
Ψ̂h

(
Ỹ
))
g0

(
Ψ̂h

(
Ỹ
))

+ H
(
Ỹ
)

+ H̃
(
Ỹ , Ỹ

)
+O

(
h3) .

The last two terms in the right-hand side of (3.12) are the same as the fourth and fifth
terms in the right-hand side of (3.13), respectively. In addition, as yn+1 − ŷn+1 =
O(h3) if gj ≡ 0 for j = 1, 2, . . . ,m, then all that remains concerning the local error is
to check the difference between u and û given by

u =
h

2

{
g0

(
Ψ̂h

(
Ỹ
))
− g0

(
Ỹ
)}

+
h2

8

{
g′0

(
Ψ̂h

(
Ỹ
))
g0

(
Ψ̂h

(
Ỹ
))

− g′0
(
Ỹ
)
g0

(
Ỹ
)}

and û = (h/2){g0(Ỹ +
√
h
∑m
j=1 gj(Ỹ )ξj)− g0(Ỹ )}. By seeking a Taylor expansion

of Φ̂h(Ỹ ) centered at Ỹ and by utilizing this, we obtain u − û = h2r̃1 + h5/2r̃2 +
h5/2r̃3 +O(h3), where r̃1 = 1

2

∑m
j,k=1 g

′
0(Ỹ )g′j(Ỹ )gk(Ỹ )ζkj ,

r̃2 =
1
8

m∑
j=1

{
m∑

k,l=1

g′0

(
Ỹ
)
g′′j

(
Ỹ
) [
gk

(
Ỹ
)
, gl

(
Ỹ
)]
χkχl

+ g′0
(
Ỹ
)
g′0

(
Ỹ
)
gj

(
Ỹ
)}

ξj ,

and

r̃3 =
1
2

m∑
j=1

{
1
4
g′′0

(
Ỹ
) [
g0

(
Ỹ
)
, gj

(
Ỹ
)]

+
m∑

k,l=1

g′′0

(
Ỹ
) [
gj

(
Ỹ
)
, g′k

(
Ỹ
)
gl

(
Ỹ
)]
ζlk

}
ξj .

Since E[r̃1] = E[r̃2] = E[r̃3] = E[ξj r̃1] = 0 (j = 1, 2, . . . ,m), the local error of (3.11)
is also weak order 3. Thus we conclude this proof similarly to the end of the proof of
Theorem 3.5.

Remark 3.10. As Φ̂h(y) = y if gj ≡ 0 for j = 1, 2, . . . ,m, (3.11) can have the
same deterministic order as Ψh.

4. MS stability analysis and error analysis. We investigate the stability
properties of our SERK and splitting methods. In addition, we analyze their error in
a small interval for a linear scalar SDE.
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4.1. MS stability analysis for SERK methods and splitting methods.
Let us consider the following scalar test SDE [16]:

(4.1) dy(t) = λy(t)dt+
m∑
j=1

σjy(t)dWj(t), t ≥ 0, y(0) = y0,

where y0 6= 0 with probability 1 (w.p.1) and where λ, σj ∈ C, 1 ≤ j ≤ m, satisfy

(4.2) 2<(λ) +
m∑
j=1

∣∣σj∣∣2 < 0.

Due to (4.2), the solution of (4.1) is MS-stable (limt→∞E[|y(t)|2] = 0).
When an SRK method is applied to (4.1), it is generally expressed by

yn+1 = R
(
h, λ, {σj}mj=1 ,η

)
yn,

where η is a vector whose components are random variables appearing in the method.
The method is said to be MS-stable for particular h, λ, σj , j = 1, 2, . . . ,m, if

E

[∣∣∣R(h, λ, {σj}mj=1 ,η
)∣∣∣2] < 1,

which means that E[|yn|2] → 0 (n → ∞) for the given h, λ, σj . Further, the method
is said to be A-stable in the MS if it is MS-stable for any h > 0 when (4.2) holds [16].

Theorem 4.1. The SERK method (3.4) is A-stable in the MS for (4.1).

Proof. If we apply (3.4) to (4.1), then we have

yn+1 = R
(
h, λ, {σj}mj=1, {ξj}

m
j=1, {ζjk}

m
j,k=1

)
yn,

where

R
(
h, λ, {σj}mj=1, {ξj}

m
j=1, {ζjk}

m
j,k=1

)
= ehλ

{
1 +
√
h

m∑
j=1

σjξj + h

m∑
j,k=1

σjσkζkj

}
.

From this, the MS stability function R̂ of (3.4) is given by

R̂(pr, q)
def= E

[
|R|2

]
= e2pr

(
1 + q +

q2

2

)
,

where pr
def= <(λ)h and q

def=
∑m
j=1 |σj |2h. As we can rewrite (4.2) by 2pr + q < 0,

R̂(pr, q) < e2pr (1− 2pr + 2p2
r).

The function in the right-hand side is less than 1 for any pr < 0. Thus, R̂(pr, q) < 1
whenever 2pr + q < 0. Consequently, (3.4) is A-stable in the MS.

As a comparison, let us look at stability properties of the SROCK2 method [5].
When m = 1, its MS stability function is given by

R̂(p, q) = |A(p)|2 + |B(p)|2q + |C(p)|2 q
2

2
,
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Fig. 1. MS stability domain (left) and its profile (right) for the SROCK2 method with six stages.

where p def= λh and A(p), B(p), and C(p) are polynomial functions of p. For details,
see [5]. Now, we can plot the MS stability domain, that is, {(p, q) | R̂(p, q) < 1}.
For the SROCK2 method with six stages, the MS stability domain and its profile are
given in Figure 1. The MS stability domain is indicated by the colored part in the
left-hand plot, and pi denotes =(λ)h. The other part enclosed by the mesh indicates
the domain in which the solution of the test SDE is MS-stable. In the right-hand
plot, the colored area indicates the profile of the MS stability domain when pi = 0.
We can see that the MS stability domain is large along the negative axis of pr, but it
is thin in the axis of pi. This stems from the fact that the SROCK2 method has been
designed to achieve a large stability domain when the eigenvalues of the drift term lie
near the negative real axis.

Remark 4.2. Let us consider d-dimensional SDEs of the following form:

(4.3) dy(t) = Ay(t)dt+
m∑
j=1

Bjy(t)dWj(t), t ≥ 0, y(0) = y0,

where y0 6= 0 (w.p.1) and where A,Bj (j = 1, 2, . . . ,m) ∈ Rd×d. When applied to
this, the methods (3.4), (3.8), (3.10), and (3.11) with (2.2) or (2.3) as Ψh lead to

yn+1 =

{
ehA +

√
he

h
2A

m∑
j=1

Bjξje
h
2A + he

h
2A

m∑
j,k=1

BjBkζkje
h
2A

}
yn.

For this, they have the same stability properties not only for (4.1), but also for (4.3).
Thus, for example, the stability properties of these methods are equivalent for all the
two-dimensional test SDEs in [8, 37].

4.2. Error analysis in a small interval. Let us consider the linear scalar SDE
given by

(4.4) dy(t) = λy(t)dt+ σy(t)dW (t), 0 ≤ t ≤ T0 < 1, y(0) = y0,

where y0 6= 0 (w.p.1) and λ, σ ∈ R. For the solution of this SDE, we have

E [y(T0)] = E[y0]eλT0 , E
[
(y(T0))2

]
= E[(y0)2]e(2λ+σ2)T0 .
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Fig. 2. Error versus λT0 for the expectation and the second moment of the amplification factor
of methods with h = T0/2k. Solid lines: SERK, splitting methods (k = 0); thick lines: SERK,
splitting methods (k = 1); dashed lines: SROCK2 (k = 3); thick dashed lines: SROCK2 (k = 4).

On the other hand, if we set h = T0 and apply our methods or the SROCK2 method
to (4.4), then for an approximation to y(T0) we have

E[y1] = E[y0]R̄(λT0), E
[
(y1)2

]
= E

[
(y0)2

]
R̂(λT0, σ

2T0),

where R̄(λT0) def= E[R] = eλT0 for our methods or A(λT0) for the SROCK2 method.
Thus, as errors of an amplification factor R of a method we can consider

R̄(λT0)− eλT0 , R̂(λT0, σ
2T0)− e(2λ+σ2)T0 .

In general, for h = T0/2k (k is a positive integer) we have

Err1(k) def=
{
R̄(λT0/2k)

}2k

− eλT0 ,

Err2(k) def=
{
R̂(λT0/2k, σ2T0/2k)

}2k

− e(2λ+σ2)T0 .

In Figure 2, these errors are indicated for our methods and for the SROCK2 method
with six stages. The solid and thick lines denote our methods for k = 0 and k = 1,
whereas the dashed and thick dashed lines denote the SROCK2 method with six
stages for k = 3 and k = 4. In the right-hand plot, we deal with a case in which
σ2/λ = −3/10. In this case, our methods with step size h can be expected to have
similar precision to the SROCK2 method with h/8 in the approximation to the second
moment of the solution. This will be numerically checked later.

Incidentally, although there are no differences between our methods in the linear
case as we have seen, the situation is quite different for nonlinear cases. For example,
when diffusion terms vanish, our SERK methods lead to the exponential RK method
(2.2) or (2.3) with step size h. On the other hand, our splitting methods with h lead
to methods that twice apply (2.2) or (2.3) with h/2 if Ψh is (2.2) or (2.3) in (3.11).
Taking these facts into account, we will use one of our SERK methods with hmin/4
to obtain a reference solution in a numerical experiment, where hmin is the minimum
step size used for our methods in the numerical experiment.

5. Numerical experiments. In section 3, we derived our SERK and splitting
methods. For example, (3.4) is an SERK method of weak order 2 and deterministic
order 2. In what follows, let us call this the SERKW2D2 method. As we have
seen in Remark 3.7, (3.8) with c1 = 1/2, c2 = 1, γ = 4, b1 = (6 +

√
6)/10, and

b2 = (3−2
√

6)/5 is an SERK method of weak order 2 and deterministic order 3. Let us
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call this the SERKW2D3 method. If Ψh is (2.2) with c = 1, then (3.11) is a splitting
method of weak order 2 and deterministic order 2. We call this the SPLITW2D2
method. Similarly, we call (3.11) the SPLITW2D3 method if Ψh is (2.3) with the
parameter values mentioned above. As an implementation of the SROCK2 method,
we do not directly use the Fortran codes from http://anmc.epfl.ch/Pdf/srock2.zip,
but have implemented C codes by including rectp.f from the Fortran codes. Thus,
the SROCK2 method in our C codes has the same parameter values as in the Fortran
codes.

In order to confirm the performance of the methods, we investigate the expecta-
tion and/or the second moment of the solution of SDEs in our numerical experiments.
As a first example, let us consider the stochastic Verhulst equation

(5.1) dy(t) =
{
αy(t)− γ(y(t))2

}
dt+ βy(t)dW (t), y(0) = y0 (w.p.1),

where t ∈ [0, 1/2] and α, β, γ, y0 ∈ R. The solution is given as [21, p. 125]

y(t) =
y0 exp

((
α− β2

2

)
t+ βW (t)

)
1 + y0γ

∫ t
0 exp

((
α− β2

2

)
s+ βW (s)

)
ds
,

but we do not know the exact value of its expectation and second moment. For this,
we seek approximations to them by the SERKW2D3 method with h = 2−7 and refer
to these approximations instead of the exact expectation and second moment. We
use the Mersenne twister algorithm [28] to generate pseudorandom numbers.

Let us set y0 = 1, α = −3, β = 3/
√

10, and γ = 1/25. In this example, we
simulate 16384 × 106 independent trajectories for a given h, and seek a numerical
approximation to the expectation or the second moment of y(1/2). The results are
indicated in Figure 3. The solid, dash-dotted, long-dashed, thick, thick long-dashed,
thick dashed, and dashed lines denote the SERKW2D2 method, the SERKW2D3
method, the DFMT method, the SSDFMT method, the SPLITW2D2 method, the
SPLITW2D3 method, and the SROCK2 method with six stages, respectively. Here
and in what follows, the dotted line is a reference line with slope 2. All the methods
show the theoretical order of convergence. In the linear case (4.4), our exponential
methods have the same error in the approximation to the second moment, but the
existence of a nonlinear term in (5.1) makes a difference. The SSDFMT method is

Fig. 3. Log-log plots of the relative error versus h for the expectation and the second moment
in (5.1). Solid lines: SERKW2D2; dash-dotted lines: SERKW2D3; long-dashed lines: DFMT; thick
lines: SSDFMT; thick long-dashed lines: SPLITW2D2; thick dashed lines: SPLITW2D3; dashed
lines: SROCK2; dotted lines: reference line with slope 2.

http://anmc.epfl.ch/Pdf/srock2.zip
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Fig. 4. Log-log plots of the relative error versus h for the expectation and the second moment
in (5.2). Solid lines: SERKW2D2; dash-dotted lines: SERKW2D3; thick lines: SSDFMT; thick
long-dashed lines: SPLITW2D2; thick dashed lines: SPLITW2D3; dashed lines: SROCK2; dotted
lines: reference line with slope 2.

the best. In addition, as we saw in subsection 4.2, we can observe that the SROCK2
method needs a small step size h/8 to achieve a similar precision to our exponential
methods with h.

As a second example, let us consider the following mildly stiff noncommutative
SDE, which is obtained by adding a nonlinear term to (36) in [11] and by making
small changes:

dy(t) =
{[
− 273

1024 0
− 1

160 − 785
4 +

√
2

8

]
y(t)−

[ 1
10ey1(t)
1
10ey2(t)

]}
dt

+
[ 1

4 0
0 1−2

√
2

4

]
y(t)dW1(t) +

[ 1
16 0
1
10

1
16

]
y(t)dW2(t),(5.2)

y(0) = [1 1]> (w.p.1),

where t ∈ [0, 1]. We seek an approximation to the expectation of y(1) or to the sec-
ond moment of each element of y(1), that is, [E[(y1(1))2] E[(y2(1))2]]>. As we do
not know the exact solution of this SDE, we seek numerical approximations by the
SERKW2D3 method with h = 2−7 and use them instead of the exact expectation
and second moment. In this example, we simulate 4096 × 106 independent trajecto-
ries for a given h. The results are indicated in Figure 4. As the solution is a vector,
the Euclidean norm is used. Similarly to the first example, the solid, dash-dotted,
thick, thick long-dashed, thick dashed, and dashed lines denote the SERKW2D2
method, the SERKW2D3 method, the SSDFMT method, the SPLITW2D2 method,
the SPLITW2D3 method, and the SROCK2 method with 15 stages, respectively.
Incidentally, the DFMT method needs a smaller step size than 2−5 to solve (5.2)
numerically stably. The SPLITW2D3 method shows the best accuracy in approxima-
tions to the expectation. On the other hand, the SSDFMT method suffers from order
reduction in approximations to the expectation, and the SROCK2 method shows large
relative errors in approximations to the second moment.

In order to deal with the stiff case, let us consider the following SDE:

(5.3)
dy(t) =

[
α 1
−ω2 α

]
y(t)dt+

[
β 0
0 β

]
y(t)dW (t), t ≥ 0,

y(0) = [1 1]> (w.p.1)
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Table 1
Step size for numerical stability in (5.3).

Method Step size Absolute errors

Case 1 SROCK2 (10 stages) h = 2−1 9.1× 10−5 (stable)
SERKW2D2 h = 2−1 9.1× 10−5 (stable)

Case 2 SROCK2 (3 stages) h = 2−9 1.9 (stable)
SROCK2 (all stages) h = 2−8 ∞ (unstable)

SERKW2D2 h = 2−1 4.1× 10−5 (stable)
Case 3 SROCK2 (3 stages) h = 2−7 9.1× 10−5 (stable)

SROCK2 (5 stages) h = 2−6 9.1× 10−5 (stable)
SROCK2 (all stages) h = 2−5 ∞ (unstable)

SERKW2D2 h = 2−1 9.1× 10−5 (stable)

for α, ω, β ∈ R. Since the eigenvalues of the matrix in the drift term are α ± iω,
limt→∞E[‖y(t)‖2] = 0 holds if 2α+ β2 < 0. We investigate three cases:

Case 1: α = −100, ω = 1, β =
√

199, Case 2: α = − 1
4 , ω = 30π, β = 1

4 ,

Case 3: α = −100, ω = 30π, β =
√

199.

In this example, we simulate 1×106 independent trajectories for a given h until t = 10
and we seek numerical solutions to E[‖y(10)‖2] by the SROCK2 and SERKW2D2
methods. Note that the SERKW2D2 method and our other methods are equivalent
for (5.3) due to Remark 4.2. For the solution y(t) in each case, we have

Case 1: E
[
(y1(10))2

]
= {1 + sin(20)}e−20, E

[
(y2(10))2

]
= {1− sin(20)}e−20,

Case 2: E
[
(y1(10))2

]
= E

[
(y2(10))2

]
= e−35/8,

Case 3: E
[
(y1(10))2

]
= E

[
(y2(10))2

]
= e−10.

Table 1 gives numerical results, which indicate how the small step size is necessary
for each method to solve (5.3) numerically stably. In Case 1, the SROCK2 method
with 10 stages can solve it for h = 2−1, but with fewer than 10 stages it cannot. In
Case 2, the SROCK2 method cannot solve the SDE for h = 2−8 even if we make the
stage number large. This is understandable, since increasing the stage number does
not result in a large enough MS stability domain in the axis of pi. In Case 3, the
SROCK2 method with three stages cannot solve the SDE for h = 2−6, but with five
stages it can. However, for h = 2−5 the SROCK2 method cannot solve it by making
the stage number large. The results of the SROCK2 method in Cases 2 and 3 can be
explained by the argument we presented before Remark 4.2. On the other hand, the
SERKW2D2 method can solve for h = 2−1 in all cases.

The fourth example comes from a stochastic Burgers equation with white noise
in time only. Da Prato and Gatarek [10] have proved the existence and uniqueness of
the global solution of a scalar Burgers equation with multiplicative noise driven by a
scalar Wiener process. Now, we consider

du(t, x) =
(
∂2u

∂x2 (t, x) + u(t, x)
∂u

∂x
(t, x)

)
dt+ ku(t, x)dW (t), (t, x) ∈ [0, 1/2]× [0, 1],

(5.4)

u(t, 0) = u(t, 1) = α (w.p.1), t ∈ [0, 1/2],
u(0, x) = 2 sin(πx) + α (w.p.1), x ∈ [0, 1],
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where k, α ∈ R. If we discretize the space interval by N + 2 equidistant points xi
(0 ≤ i ≤ N + 1) and define a vector-valued function by y(t) def= [u(t, x1) u(t, x2), . . . ,
u(t, xN )]>, then we obtain the SDE

(5.5)
dy(t) =

(
Ay(t) + f(y(t))

)
dt+ ky(t)dW (t),

y(0) = [2 sin(πx1) + α 2 sin(πx2) + α, . . . , 2 sin(πxN ) + α]> (w.p.1)

by applying the central difference scheme to (5.4), where

A
def= (N + 1)2 tridiag(1,−2, 1),

f(y) def=
N + 1

2


y1(y2 − α)
y2(y3 − y1)

...
yN−1(yN − yN−2)
yN (α− yN−1)

+ (N + 1)2


α
0
...
0
α

 .
In this example, we set N = 127 and k = 1/10, and simulate 256 × 106 independent
trajectories for a given h. For α = 1/10 we seek an approximation to the expectation
or the second moment of y(1/2). As we do not know the exact solution of the SDE,
we seek numerical approximations by the SERKW2D3 method with h = 2−8 and use
them instead of the exact expectation and second moment. In order to solve the SDE
numerically stably with reasonable cost by the SROCK2 method, we set the stage
numbers of the method as 200, 150, 104, 74, 49, 35, 24, 17, and 12 corresponding
to the step sizes 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9, and 2−10, respectively. The re-
sults are indicated in Figure 5. The solid, dash-dotted, thick, thick long-dashed, thick
dashed, and dashed lines denote the SERKW2D2 method, the SERKW2D3 method,
the SSDFMT method, the SPLITW2D2 method, the SPLITW2D3 method, and the
SROCK2 method, respectively. The figure indicates that the SSDFMT method suf-
fers from order reduction [13], and the SROCK2 method has large relative errors
especially in approximations to the second moment. The SERKW2D3 method and
the SPLITW2D3 method show higher convergence rates in approximations to the
expectation.

In order to avoid the order reduction of the SSDFMT method, we can use the
change of variable in this example. When we define v(t, x) def= u(t, x) − α and solve

Fig. 5. Log-log plots of the relative error versus h for the expectation and the second moment
in (5.5) when α = 1/10. Solid lines: SERKW2D2; dash-dotted lines: SERKW2D3; thick lines:
SSDFMT; thick long-dashed lines: SPLITW2D2; thick dashed lines: SPLITW2D3; dashed lines:
SROCK2; dotted lines: reference line with slope 2; white circles: modified SSDFMT.
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Table 2
Comparisons of computational cost in one step and one trajectory.

Method ne nr nm
SROCK2 with s stages s+ 5m+ 2 2m 0

SERKW2D2 5m+ 2 2m 6
SERKW2D3 5m+ 4 2m 7

SSDFMT 5m+ 2 2m 2
SPLITW2D2 5m+ 4 2m 6
SPLITW2D3 5m+ 6 2m 12

another SDE by the SSDFMT method, the order reduction does not occur. The results
are indicated by white circles in the figure. However, such a remedy is not always
available if the SDE comes from a multidimensional stochastic partial differential
equation instead of a scalar equation such as (5.4) [13].

Finally, Table 2 indicates comparisons of computational cost for each method in
one step and one trajectory. In the table, ne, nr, and nm stand for the number of
evaluations on the drift or diffusion terms, the number of generated pseudorandom
numbers, and the number of products of a matrix exponential function with a vector,
respectively. For stiff problems whose drift term has eigenvalues lying near the nega-
tive real axis such as the fourth experiment, the computational cost of the SROCK2
method increases as the stage number s needs to increase for a large step size. On
the other hand, in high dimensional problems, the computational cost of our SERK
and splitting methods increases due to the products of matrix exponential functions
with vectors. Their computational cost for the products can be significant if SDEs
come from multidimensional stochastic partial differential equations. The column for
nm in the table indicates how much each method owes the computational cost for
the products of matrix exponential functions with vectors. Note especially that the
SROCK2 method has no cost assigned. We will mention this again in the final section.

6. Concluding remarks. We have derived explicit SERK methods and split-
ting methods that achieve weak order 2 for noncommutative Itô SDEs with a semilin-
ear drift term, and simultaneously achieve order 2 or 3 for ODEs. Using a scalar test
SDE with complex coefficients, we have investigated the stability properties of the
methods. As a result, we have proved that they are A-stable in the MS for the test
SDE. To the best of our knowledge, there seems to be no weak second order method
for which the A-stability in the MS is proven using the test SDE with complex coef-
ficients, except for a drift-implicit method of weak order 2 and deterministic order 2
in [4]. In addition, as an example of an explicit stabilized method, we have selected
the SROCK2 method and plotted its MS stability domain.

In order to check the numerical performance of the methods as well as their sta-
bility properties, we performed four numerical experiments. In the first experiment,
the stochastic Verhulst equation was considered. The experiment confirmed the theo-
retical convergence of weak order 2 for our methods as well as for the DFMT method
and the SROCK2 method. In the second experiment, a mildly stiff noncommutative
SDE was considered. The experiment showed the superiority of our SERK methods
and our splitting methods, combined with exponential RK methods, over the SS-
DFMT method and the SROCK2 method in approximations to the expectation and
the second moment, respectively. In the third experiment, we dealt with three types
of the stiff case. The experiment indicates that if the imaginary part of the eigen-
values in the drift term is large, then the SROCK2 method needs a very small step
size for stability, whereas the SERK and splitting methods do not need such a step
size restriction. In the final experiment, we considered a stochastic Burgers equation
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with white noise, and compared our methods with the SROCK2 method with several
stages. This experiment showed the superiority of our SERK and splitting methods
over the SROCK2 method in terms of computational accuracy for relatively large
step size. It also indicated that the SSDFMT method suffers from order reduction for
nonhomogeneous boundary value problems. In this example, the order reduction was
successfully removed by a change of variable, but such a remedy is not always available
if the SDE comes from a multidimensional stochastic partial differential equation. In
the deterministic case, some techniques have been proposed to avoid order reduction
[13]. In the stochastic case, a new analysis may be necessary, but it is outside the
scope of the present paper.

Finally, we should make the following remarks. As we have seen, we can apply our
methods to SDEs with a semilinear drift term and they have very good performance if
the stiffness of the problem is in the matrix A as opposed to the nonlinear function f .
The SROCK2 method is applicable to more general SDEs without such a restriction
and it can also cope with stiff problems by increasing the stage number. When the
dimension of a system of SDEs is not large and the stiffness is very strong, our methods
have a significant advantage over the SROCK2 method. This is because the method
has to increase the stage number significantly, which leads to high computational
cost. On the other hand, when the dimension of the SDEs is very large, the SROCK2
method can still cope with high-dimensional stiff SDEs by just increasing the stage
number, but our methods need techniques in order to calculate matrix exponentials
efficiently, such as Krylov methods and other methods for their computation (see [20]
and the references therein). Although we have not used such approaches for matrix
exponentials in this paper, the application of these techniques will have a considerable
impact on our methods to challenge very high-dimensional SDEs with a semilinear
drift term.

Appendix A. Proof of Lemma 3.4. From the assumption, we can write
Y i, i = 1, 2, . . . , 5, as Y i = yn + hai + O

(
h2
)
, i = 1, 2, 3, 5, and Y 4 = yn +

(h/2)g0 (yn) + h2a4 + O
(
h3
)
, where ai, i = 1, 2, . . . , 5, are vectors independent of

h. As

g0

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)

= g0 (Y 1) +
√
h

m∑
j=1

g′0 (yn) gj (yn) ξj +
h

2

m∑
j,k=1

g′′0 (yn)
[
gj(yn), gk(yn)

]
ξjξk

+
h3/2

6

m∑
j,k,l=1

g′′′0 (yn)
[
gj(yn), gk(yn), gl(yn)

]
ξjξkξl

+ h3/2
m∑
j=1

g′0 (yn) g′j (yn)a2ξj + h3/2
m∑
j=1

g′′0 (yn)
[
a1, gj(yn)

]
ξj +O

(
h2) ,

we have, from (3.3),

(A.1)

ỹn+1 +
h

2
g0

(
Y 1 +

√
h

m∑
j=1

gj (Y 2) ξj

)

= yn +
h

2
(g0 (yn) + g0 (K2)) + h5/2r1 +O

(
h3) ,
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where r1 = (1/2)
∑m
j=1

{
g′0 (yn) g′j (yn)a2 + g′′0 (yn)

[
a1 − g0(yn), gj(yn)

]}
ξj . Sim-

ilarly, we have

(A.2) H (Y 3)−H (yn) = h2r2 +O
(
h3),

where r2 =
∑m
j,k=1

{
g′′j (yn) [a3, gk (yn)] + g′j (yn) g′k (yn)a3

}
ζkj . As

m∑
j=1

{
gj

(
Y 4 +

√
h

2

m∑
k=1

gk (Y 5)χk

)
+ gj

(
Y 4 −

√
h

2

m∑
k=1

gk (Y 5)χk

)}
ξj

=
m∑
j=1

{
gj

(
yn +

h

2
g0 (yn) +

√
h

2

m∑
k=1

gk (yn)χk

)

+ gj

(
yn +

h

2
g0 (yn)−

√
h

2

m∑
k=1

gk (yn)χk

)}
ξj + 2h2r3 +O

(
h5/2

)
where

r3 =
m∑
j=1

{
g′j (yn)a4 +

1
2

m∑
k,l=1

g′′j (yn) [gk (yn), g′l (yn)a5]χkχl

}
ξj ,

we have

(A.3) H̃ (Y 4,Y 5)− H̃
(
yn +K1

2
,yn

)
= h5/2r3 +O

(
h3) .

Thus, from (3.2) and ŷn+1 − yn+1 = h2r2 + h5/2r1 + h5/2r3 +O
(
h3
)
, we have

G
(
ŷn+1

)
−G

(
yn+1

)
= G′ (yn)

(
ŷn+1 − yn+1

)
+ h5/2G′′ (yn)

[
m∑
j=1

gj (yn) ξj , r2

]
+O

(
h3) .

Consequently, we obtain E
[
G
(
ŷn+1

)]
− E[G(yn+1)] = O(h3) since E[r1] = E[r2] =

E[r3] = E[ξjr2] = 0 (j = 1, 2, . . . ,m).

Appendix B. Proof of Theorem 3.6. As methods (3.4) and (3.8) are the
same except for the second term in the right-hand side, all that remains concerning
the local error is to check the difference between u and û given by

u =
h

γc1 + c2
ϕ2(hA)

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)
− γf (Y 3)

+ f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 4)

}

and (3.7). As Y 3 = K1 +(c1−1)hg0 (yn)+O
(
h2
)

and Y 4 = K1 +(c2−1)hg0 (yn)+
O
(
h2
)

where K1 = yn + hg0(yn), using (3.9) we have
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1
γc1 + c2

{
γf

(
Y 3 + b1

√
h

m∑
j=1

gj (Y 2) ξj

)
− γf (Y 3)

+ f

(
Y 4 + b2

√
h

m∑
j=1

gj (Y 2) ξj

)
− f (Y 4)

}

=
√
h

m∑
j=1

f ′ (K1) gj (Y 2) ξj +
h

2

m∑
j,k=1

f ′′ (K1)
[
gj (Y 2) , gk (Y 2)

]
ξjξk + h3/2r̃1

+
γb31 + b32

6(γc1 + c2)
h3/2

m∑
j,k,l=1

f ′′′ (K1)
[
gj (Y 2) , gk (Y 2) , gl (Y 2)

]
ξjξkξl +O

(
h2) ,

where

r̃1 =
(
γb1c1 + b2c2
γc1 + c2

− 1
) m∑
j=1

f ′′ (K1)
[
g0 (yn) , gj (Y 2)

]
ξj .

By seeking a similar Taylor expansion of f(K1+
√
h
∑m
j=1 gj(Y 2)ξj)−f(K1) centered

at K1, and by utilizing these results and hϕ2(hA) = (h/2)I + (h2/6)A+O
(
h3
)
, we

obtain u− û = (h5/2/2)r̃1 + h5/2r̃2 + h5/2r3 +O(h3), where r3 is given in the proof
of Theorem 3.5 and

r̃2 =
1
12

(
γb31 + b32
γc1 + c2

− 1
) m∑
j,k,l=1

f ′′′ (K1)
[
gj (Y 2) , gk (Y 2) , gl (Y 2)

]
ξjξkξl.

Since E[r̃1] = E[r̃2] = E[r3] = 0, the local error of (3.8) is weak order 3. Thus we
conclude this proof similarly to the end of the proof of Theorem 3.5.

Appendix C. Proof of Theorem 3.8. If we denote ehA/2yn + hf(ehA/2yn)
by K̃1, similarly to (A.1), we have

(C.1)

e
h
2A

{
e

h
2Ayn +

h

2
f
(

e
h
2Ayn

)
+
h

2
f

(
K̃1 +

√
h

m∑
j=1

gj

(
e

h
2Ayn

)
ξj

)}

= yn +
h

2
(g0 (yn) + g0 (K2))− h3/2

2
A

m∑
j=1

gj (yn) ξj + h5/2r̃1 +O
(
h3) ,

where ã1 = (A/2)yn + f (yn), ã2 = (A/2)yn, and

r̃1 =
1
2

m∑
j=1

{
f ′ (yn) g′j (yn) ã2 + g′′0 (yn)

[
ã1 − g0(yn), gj(yn)

]
+

1
2
Af ′ (yn) gj (yn)

}
ξj .

Similarly to (A.2),

(C.2) e
h
2AH

(
e

h
2Ayn

)
−H(yn) = h2r̃2 +O

(
h3) ,

where ã3 = (A/2)yn and

r̃2 =
m∑

j,k=1

{
g′′j (yn) [ã3, gk (yn)] + g′j (yn) g′k (yn) ã3 +

1
2
Ag′j (yn) gk (yn)

}
ζkj .
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Finally, similarly to (A.3), we have

(C.3)

e
h
2AH̃

(
e

h
2Ayn + K̃1

2
, e

h
2Ayn

)
− H̃

(
yn +K1

2
,yn

)
=
h3/2

2
A

m∑
j=1

gj (yn) ξj + h5/2r̃3 +O
(
h3) ,

where ã4 = (A2/8)yn + f ′(yn)(A/4)yn, ã5 = (A/2)yn, and

r̃3 =
m∑
j=1

{
g′j (yn) ã4 +

1
2

m∑
k,l=1

g′′j (yn) [gk (yn) , g′l (yn) ã5]χkχl

+
A

4
g′j (yn) g0 (yn) +

A

8

m∑
k,l=1

g′′j [gk (yn) , gl (yn)]χkχl +
A2

8
gj (yn)

}
ξj .

From (C.1), (C.2), and (C.3), the difference between (3.2) and (3.10) is h2r̃2+h5/2r̃1+
h5/2r̃3 + O

(
h3
)
. Since E[r̃1] = E[r̃2] = E[r̃3] = E[ξj r̃2] = 0 (j = 1, 2, . . . ,m), the

local error of (3.10) is weak order 3. Thus we conclude this proof similarly to the end
of the proof of Theorem 3.5.
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