
Paper: jc*-**-**-****

On Two Apriori-Based Rule Generators:
Apriori in Prolog and Apriori in SQL

Hiroshi Sakai†, Kao-Yi Shen††, Michinori Nakata†††

†Department of Basic Sciences, Graduate School of Engineering,
Kyushu Institute of Technology,

Tobata, Kitakyushu 804-8550, Japan
email: sakai@mns.kyutech.ac.jp

††Department of Banking and Finance,
Chinese Culture University (SCE), Taipei, Taiwan

email: kyshen@sce.ppcu.edu.tw
†††Faculty of Management and Information Science,

Josai International University,
Gumyo, Togane, Chiba 283-8555, Japan

email: nakatam@ieee.org

This paper focuses on two Apriori-based rule genera-
tors. The first is the rule generator in Prolog and C,
and the second is the one in SQL. They are named
Apriori in Prolog and Apriori in SQL, respectively.
Each rule generator is based on the Apriori algorithm.
However, each rule generator has its own properties.
Apriori in Prolog employs the equivalence classes de-
fined by table data sets and follows the framework of
rough sets. On the other hand, Apriori in SQL em-
ploys a search for rule generation and does not make
use of equivalence classes. This paper clarifies the
properties of these two rule generators and considers
effective applications of each to existing data sets.

Keywords: Rule generation, Apriori algorithm, Table
data analysis, Association rules, Prolog, SQL

1. Introduction

Under conditions of uncertainty, we have been inves-
tigating the Apriori algorithm [1], rough sets [10, 21],
non-deterministic information [9], incomplete informa-
tion databases [7], missing values [5], among others, for
rule generation, data mining, and decision support [19].

Our interest comprises three issues. The first is improv-
ing the theoretical framework of rule generation. The sec-
ond is implementing rule generators with proven proper-
ties. The third is applying the rule generators to exist-
ing data sets. Each obtained rule becomes fundamental
knowledge for decision support. In the theoretical frame-
work, we already proposed the framework of Rough Sets
Non-deterministic Information Analysis (RNIA), which

combines rough sets and non-deterministic information
for rule generation under uncertainty [8, 14, 17, 18]. In the
application of rule generators, the second author handled
existing data sets like credit card evaluation and banking
data sets [20].

This paper is closely related to the second issue: the
implementation of rule generators. Apriori in Prolog em-
ploys the concept of rough sets and makes use of equiva-
lence classes defined in tables. There are, of course, rule
generation systems based on rough sets [2, 12]. However,
Apriori in SQL follows the framework of relational data
bases and sequentially manipulates tables to obtain the fi-
nal table, including rules. We clarify the property of these
two rule generators and consider more effective uses of
them.

We are also coping with the Apriori algorithm for ta-
ble data sets with non-deterministic information. This
is an extension from the Apriori algorithm handling de-
terministic information to that handling non-deterministic
information. This paper is the foundation for NIS-Apriori
in Prolog [13] and NIS-Apriori in SQL [15]. Currently,
Apriori in SQL may be familiar, but NIS-Apriori in SQL
is a new framework for uncertain information.

This paper is organized as follows. Section 2 considers
the framework of Apriori-based rule generation. Section 3
investigates the properties of equivalence classes defined
by table data sets and describes Apriori in Prolog by using
the actual execution logs. Section 4 clarifies the function-
ality of SQL and investigates Apriori in SQL. Section 5
extends Apriori in SQL to NIS-Apriori in SQL for rule
generation from uncertain information. Section 6 com-
pares Apriori-based rule generation with rough set-based
rule generation. Section 7 concludes this paper.

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 1
and Intelligent Informatics

2. Apriori-Based Rule Generation in Table
Data Sets

This section describes some definitions for Apriori-
based rule generation. We follow the framework of rough
sets and handle each table data set as a Deterministic In-
formation System (DIS).

2.1. Table Data Sets and Rules
DIS ψ is a quadruplet

ψ = (OB,AT,{VALA| A ∈ AT}, f), (1)

where OB is a finite set, whose elements are called ob-
jects; AT is a finite set whose elements are called at-
tributes; VALA is a finite set whose elements are called
attribute values, and f is such a mapping that f : OB×
AT →∪A∈ATVALA. An attribute Dec ∈ AT is usually pre-
defined and is called a decision attribute. A subset CON
of AT \{Dec} is called a set of condition attributes. In ψ ,
a pair [A,val] (A ∈ AT , val ∈VALA) is called a descriptor,
and a formula τ in the following is called an implication.

τ : ∧A∈CON [A,valA]⇒ [Dec,val],
valA ∈VALA,val ∈VALDec.

(2)

Definition 1. [10, 21] For DIS ψ , two given threshold
values 0 < α, β ≤ 1.0, an implication τ satisfying (1) and
(2) is called (a candidate of) a rule in ψ .

(1) support(τ) = |OBJ(∧A∈CON [A,valA]∧[Dec,val])|
|OB| ≥ α,

(2) accuracy(τ) = |OBJ(∧A∈CON [A,valA]∧[Dec,val])|
|OBJ(∧A∈CON [A,valA])|

≥ β .
(3)

Here, OBJ(∗) is a set of the objects satisfying the for-
mula ∗, and |M| (M is a set of objects) is the cardinal-
ity of the set M. If |OBJ(∧A∈CON [A,valA])|=0, we define
support(τ)=accuracy(τ)=0.

Table 1. An exemplary DIS ψ1.

OB color shape price
1 red square low
2 red triangle low
3 blue round high
4 blue square high
5 blue square low

Example 1. (1) For an exemplary DIS ψ1 in Table
1, we suppose two threshold values α=0.2 and β=0.7,
and an implication τ1 : [color,blue] ⇒ [price,high].
Since |OBJ([color,blue])|=|{3,4,5}|=3 and |OBJ(τ1)|=
|{3,4}|=2, support(τ1)=2/5 > 0.2 and accuracy(τ1)=
2/3 < 0.7 hold. Thus, we see τ1 is not a rule.
(2) For τ2 : [color,blue]∧ [shape,round] ⇒ [price,high],
we have |OBJ([color,blue] ∧ [shape,round])|=|{3}|=1
and |OBJ(τ2)|= |{3}|=1, and support(τ2)=1/5 ≥ 0.2 and
accuracy(τ2)=1/1 > 0.7 hold. Thus, we see τ2 is a rule.

The support(τ) value means the occurrence ratio of τ
in ψ , and the accuracy(τ) means the consistency ratio of
τ in ψ . The purpose of rule generation in ψ is to obtain
all rules specified in Definition 1.

2.2. The Adjusted Apriori Algorithm to Table Data
Sets

The Apriori algorithm was proposed by Agrawal, and it
is known as the representative algorithm in data mining [1,
3]. This algorithm originally handled transaction data sets
instead of table data sets. However, if we identify each
descriptor in a table data set with an item, we can consider
the Apriori algorithm in tables [13, 14]. For example, we
see the tuple of the object 1 in Table 1 implies an item set
{[color,red], [shape,square], [price, low]}. We name this
algorithm an adjusted Apriori algorithm.

The Apriori algorithm does not take such a method that
each implication τ is sequentially created and two values
support(τ) and accuracy(τ) are evaluated for examining
(1) and (2) in Definition 1. Instead of it, the Apriori algo-
rithm enumerates each implication τ , which may satisfies
(1) in Definition 1. This method reduces the number of
implications to be handled. In order to clarify the adjusted
Apriori algorithm, we consider the following proposition.
Proposition 1. In DIS ψ , let P be an attribute in (AT \
CON). For two implications below:

τ : ∧A∈CON [A,valA]⇒ [Dec,val],
η : ([P,valP]∧ (∧A∈CON [A,valA]))⇒ [Dec,val]. (4)

we have the following.
(1) support(η)≤ support(τ) always holds.
(2) Regarding accuracy(τ) and accuracy(η), we theoret-
ically do not have one unique inequality. The inequality
depends on each data set.
(Proof) (1) In η , we need to add another condition
[P,valP] to each object, so the number of objects satisfying
η is less than that of τ . This causes the unique inequality.
(2) In Table 1, accuracy(τ1)(= 2/5) ≤ accuracy(τ2)
(=1.0) holds. For τ3 : [color,blue] ∧ [shape,square] ⇒
[price,high], accuracy(τ3)=1/2 holds. So in this case,
accuracy(τ3) ≤ accuracy(τ1). This is an example, and
we cannot conclude one inequality.
Remark 1. For τ and η in Proposition 1, we say η is
redundant to τ . If τ is a rule, we say η is a redundant
rule.

(A∧B ⇒ Dec) = (¬(A∧B)∨Dec) =
(¬A∨¬B∨Dec) = ((¬A∨Dec)∨ (¬B∨Dec)) =
((A ⇒ Dec)∨ (B ⇒ Dec)).

(5)
Due to the above formula (5), we can conclude A∧B ⇒
Dec from A ⇒ Dec. For simplicity, we do not consider
any redundant rule. We only handle each rule whose con-
dition part is minimum, which may be called a prime im-
plicant.
Definition 2. For DIS ψ , a threshold value α , and each
implication τ : ∧A∈CON [A,valA] ⇒ [Dec,val], we define
IMPi={τ | |CON| = i and support(τ) ≥ α}. The sub-
script i in IMPi means the number of descriptors in the
condition part.

For example,
IMP1={τ : [A,valA]⇒ [Dec,val], support(τ)≥ α},
IMP2={τ : [A,valA]∧ [B,valB]⇒ [Dec,val],

support(τ)≥ α},

2 Journal of Advanced Computational Intelligence Vol.0 No.0, 200x
and Intelligent Informatics

IMP3={τ : [A,valA]∧ [B,valB]∧ [C,valC]⇒ [Dec,val],
support(τ)≥ α}.

Since every implication τ is an element in IMP|CON|, we
do no miss any τ if we sequentially examine IMP1, IMP2,
IMP3, · · · . On the other hand, we need to handle a large
number of meaningless implication, if we consider each
IMP1, IMP2, IMP3, · · · , independently. However, it is
enough to consider implications related to IMP1 based on
the next Proposition 2. This is an effective property for
handling IMP1, IMP2, IMP3, · · · .
Proposition 2 For each implication τ : [P,valP] ∧
[Q,valQ] ⇒ [Dec,val] ∈ IMP2, [P,valP] ⇒ [Dec,val] ∈
IMP1 and [Q,valQ]⇒ [Dec,val] ∈ IMP1 must hold.
(Proof) If [P,valP]⇒ [Dec,val] ̸∈ IMP1, this implication
does not satisfy the condition of support. Due to (1) in
Proposition 1, we have support(τ)≤ α .

Since Proposition 2 is recursively applicable, we can
reduce the elements of IMPi by using Proposition 2. It
is enough for us to consider IMP1, IMP2, · · · , whose ele-
ments are the combination of implications in IMP1.

Algorithm 1 is the adjusted Apriori algorithm to table
data sets and employs Propositions 1 and 2.
Algorithm 1. The adjusted Apriori algorithm.
Input: DIS ψ , the decision attribute Dec, the threshold
values α and β .
Output: A set Rule(ψ) consisting of all rules.
begin
Rule(ψ):={}; i:=1; generate IMPi;
while (|IMPi| ≥ 1)
{ Rest:={};
for each τ ∈ IMPi, if accuracy(τ) ≥ β then add τ to
Rule(ψ) else add τ to Rest;
i:=i+1;
generate IMPi by using Rest and Propositions 1 and 2,
where τ(∈ IMPi) is not any redundant implication to rules
in Rule(ψ) }
end.

Regarding the adjusted Apriori algorithm, we have the
following theorem. Thus, Algorithm 1 is necessary and
sufficient for obtaining rules (excepting the redundant
rules) in Definition 1.
Theorem 1. [14] The adjusted Apriori algorithm is sound
and complete for a set of rules (excepting the redundant
rules) defined by support(τ)≥α and accuracy(τ)≥ β in
DIS ψ . Namely, each τ ∈ Rule(ψ) is a rule (soundness)
and any rule τ belongs to Rule(ψ) (completeness).

3. Apriori-Based Rule Generator in Prolog and
Its Property

This section considers Apriori in Prolog and its imple-
mentation by using rough set-based concepts.

3.1. Equivalence Classes in Tables
In DIS ψ , we see there is a relation between two ob-

jects x and y for AT R, if f (x,A)= f (y,A) holds for every
A ∈ AT R ⊆ AT . This relation is known as an equiva-

lence relation over OB [10]. Let eq(ATR) denote a set
of the equivalence classes with respect to AT R, and let
[x]AT R ∈ eq(AT R) denote an equivalence class below:

{y ∈ OB | f (y,A) = f (x,A) for every A ∈ AT R}. (6)

We connect the calculation of support(τ) and
accuracy(τ) with the equivalence classes. For an object
x, CON and Dec, we automatically have an implication
τx : ∧A∈CON [A, f (x,A)] ⇒ [Dec, f (x,Dec)]. (We employ
the notation τx, if we need to specify the object x.) Since
OBJ(∧A∈CON [A, f (x,A)]) is a set of objects with attribute
values f (x,A) for A ∈ CON, it is the same set of [x]CON .
Similarly, OBJ(τx) is an equivalence class [x]CON∪{Dec}.
Proposition 3. [10] For A, B ∈ AT , let [x]{A} and [x]{B}
be two equivalence classes with an object x, then we have
[x]{A,B}=[x]{A}∩ [x]{B}.

Proposition 3 shows us that any equivalence class
[x]AT R is equal to ∩A∈AT R[x]{A}, and we have the formulas
in the following:

support(τx) = |[x]CON∪{Dec}| / |OB|
= |(∩A∈CON [x]{A})∩ [x]{Dec}| / |OB|,

accuracy(τx) = |[x]CON∪{Dec}| / |[x]CON |
= |(∩A∈CON [x]{A})∩ [x]{Dec}| / |∩A∈CON [x]{A}|.

(7)
Remark 2. One of the original property in Prolog is the
manipulation of lists. Prolog has the good performance
for the list processing. Here, we express each equivalence
class [x]{A} by a list and make use of the list processing
functionality in Prolog.

3.2. Apriori in Prolog with Equivalence Classes
This subsection considers the calculation of support(τ)

and accuracy(τ) in Algorithm 1. We employ the list pro-
cessing functionality in Prolog. For simplicity, we use
Table 1 below, which is expressed in Prolog.

support(0.2). accuracy(0.7).

decision(3). condition([1,2]).

data(1,[red,square,low]).

data(2,[red,triangle,low]).

data(3,[blue,round,high]).

data(4,[blue,square,high]).

data(5,[blue,square,low]).

The following is the execution logs. The step1 command
generates rules from IMP1, and three rules are generated.
There is no rule from IMP2 nor IMP3.

?- step1.

File Name for Read Open:jaciii.rs.

SUPPORT:0.2,ACCURACY:0.7

[1] MINSUPP=0.0,MINACC=0.0

[2] MINSUPP=0.4,MINACC=1.0

[color,red] => [price,low][1,2]

: : : :

[8] MINSUPP=0.2,MINACC=1.0

[shape,triangle] => [price,low][2]

[9] MINSUPP=0.2,MINACC=1.0

[shape,round] => [price,high][3]

[10] MINSUPP=0.0,MINACC=0.0

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 3
and Intelligent Informatics

(Next Candidates are Remained)

[[[1,2],[3,1]],[[1,2],[3,2]],[[2,1],[3,1]],

[[2,1],[3,2]]]

EXEC_TIME=0.0(sec)

yes

?- step2.

[1] MINSUPP=0.2,MINACC=0.5

[2] MINSUPP=0.2,MINACC=0.5

(Next Candidates are Remained)

[[[1,2],[2,1],[3,1]],[[1,2],[2,1],[3,2]]]

EXEC_TIME=0.0(sec)

yes

?- step3.

(System Terminated)

EXEC_TIME=0.0(sec)

Internally, the following lists (In Prolog, they are called
predicates) are generated at first. Each descriptor satisfies
the condition |OBJ(∗)| ≥ 0.2. The pair of the first and the
second arguments is the index of each descriptor, and the
fourth argument is the equivalence class. We name each
predicate eq with four arguments a primitive predicate of
a descriptor.

eq(1,1,[color,red],[1,2]).

eq(1,2,[color,blue],[3,4,5]).

eq(2,1,[shape,square],[1,4,5]).

eq(2,2,[shape,triangle],[2]).

eq(2,3,[shape,round],[3]).

eq(3,1,[price,high],[3,4]).

eq(3,2,[price,low],[1,2,5]).

By Proposition 2, In step1, the following list (the Carte-
sian products) is internally generated.

conjunction([[[1,1],[3,1]],[[1,1],[3,2]],

[[1,2],[3,1]],[[1,2],[3,2]],[[2,1],[3,1]],

[[2,1],[3,2]],[[2,2],[3,1]],[[2,2],[3,2]],

[[2,3],[3,1]],[[2,3],[3,2]]]).

The first list [[1,1], [3,1]] means an implication
[color,red] ⇒ [price,high] by the index of each de-
scriptor. Each implication is expressed by such list.
After step2, we see [[1,2],[2,1],[3,1]] in the next candi-
dates. This means τ : [color,blue] ∧ [shape,square] ⇒
[price,high], and this is an element of Rest in Algorithm
1. By Proposition 3, OBJ([color,blue]∧ [shape,square])
is equal to OBJ([color,blue]) ∩ OBJ([shape,square]),
so {3,4,5} ∩ {1,4,5}={4,5} is derived, and OBJ(τ)=
{4,5} ∩ OBJ([price,high])={4}. In this way, we have
support(τ)=2/5>0.2 and accuracy(τ)=1/2<0.7. Like
this, we can calculate support(τ) and accuracy(τ) in
Algorithm 1.

3.3. Implementation and Some Properties of Apri-
ori in Prolog

Apriori in Prolog is coded by K-Prolog, and each pred-
icate is compiled by using C. This work is extended to the
system getRNIA [24] in Python. We also extended Apriori
in Prolog to NIS-Apriori in Prolog for handling not only
DISs ψ but also Non-deterministic Information Systems
(NISs) [13].

Now, we enumerate some advantages and disadvan-

tages of Apriori in Prolog.
(Advantage AP (Apriori in Prolog) 1) In the execution,
Apriori in Prolog generates a set of primitive predicates
of a descriptor below:

eq(index1, index2,descriptor,OBJ(descriptor)). (8)

Furthermore, it is possible to remove such descriptors that
|OBJ(descriptor)| / |OB|<α by using Proposition 1. By
using Propositions 2 and 3, it is possible to have IMP1,
IMP2, · · · and to calculate support(τ) and accuracy(τ).
Namely, it is enough for us to consider the set of primi-
tive predicates of a descriptor for rule generation.
(Advantage AP2) Prolog has the good performance for
the list processing, so Prolog will be suitable for handling
the equivalence classes. For small size data sets, Apriori
in Prolog will be effective.
(Disadvantage AP1) The description of the original data
must follow the syntax of Prolog. It is not easy to prepare
this description.
(Disadvantage AP2) For large size data sets, the length
of the list expressing OBJ(descriptor) may become large.
In the Mammographic data set [4] in UCI machine learn-
ing repository, we have below: (In [18], we opened the
execution logs by Apriori in Prolog.)

?- eq(5,3,P,Q),length(Q,T).

P=[density,3],

Q=[2,3,5,6,7,8,10,11,12,15,16,17,18,23,24,25,27,

: : : :

951,952,953,954,955,956,957,958,959,960],

T=797

The list Q consists of 797 objects for totally 960 objects.
Even though there is no restriction on the length of each
list, we sometimes had stack overflow in the execution.
Actually, we could handle lists which consist of less than
1000 objects, but we had the execution errors for lists con-
sisting of more than 2000 objects. We increased the local
stack and the global stack for execution in such case. Fur-
thermore, Apriori in Prolog handles such plural lists at
the same time. Due to this constraint for the execution
environment, Disadvantage AP2 seems a very important
problem, and we figure out that Apriori in Prolog may not
be suitable for large size data set.

4. Apriori-Based Rule Generator in SQL and
Its Property

This section considers Apriori in SQL and its imple-
mentation. Some execution logs are in the web page [18].

4.1. The Functionality of SQL and a Data Format
SQL was originally developed for information re-

trieval, and SQL easily manipulates table data. Even
though rule generation is different from information re-
trieval, the functionality of SQL is useful for rule gener-
ation. Some frameworks of rule generation depending on
SQL are proposed [6, 22, 23].

4 Journal of Advanced Computational Intelligence Vol.0 No.0, 200x
and Intelligent Informatics

In data sets, we usually have the csv format. This is
very familiar, however the number of all attributes and
the name of each attribute are different. So, if the rule
generation program is depending upon each data set, we
need to have one program for one data set. In order to
escape from this situation, we need another unified format
handling various types of data sets uniformly.

4.2. RDF Format for Apriori in SQL
This subsection considers the RDF (or EAV) format

[22, 23] as the unified format handling various types of
data sets, and we consider some procedures in SQL.

Each program is implemented by using the procedures
in SQL. Therefore, it is easy to execute Apriori in SQL in
any PC. Figure 1 shows the rdf table generated from Table
1. This rdf table stores each tuple as a set of descriptors.
After this translation from table data set to rdf table, there

Fig. 1. Some parts of the rdf table for Table 1.

Fig. 2. Rule generation by Apriori in SQL.

are only three attributes ob ject, attrib, value. Each at-
tribute in a data set is stored as a value of attribute. All
procedures in SQL handle this translated rdf table for rule
generation. By using this rdf table, it is possible to handle
any data set.

Figure 2 is the actual execution log for rule generation
from Table 1. The procedure apriv2(′price′,5,0.2,0.7)
means that the decision attribute is ’price’, 5 objects,
support(τ) ≥ 0.2 and accuracy(τ) ≥ 0.7. This is the
same condition in Section 3. In Figure 2, the table
rule1 stores rules in IMP1 and the table rest1 stores im-
plication in Rest in Algorithm 1. Figure 3 shows ta-
bles rule1 and rest1. From the table rest1, Apriori in
SQL generates the table con2 consisting of one conjunc-
tion [color,blue]∧ [shape,square], then two implications
τ : [color,blue] ∧ [shape,square] ⇒ [Dec,high] and η :
[color,blue]∧ [shape,square]⇒ [Dec, low] are examined.
Two implications mutually do not satisfy the condition,
so we have the table rest2 consisting τ and η . Since it is
impossible to have any implication with three descriptors
in the condition part, IMP3 is an empty set, and Apriori in
SQL ends.

The procedure apriv2 below simulates the adjusted
Apriori algorithm. The following is the overview of the
series (for IMP1, IMP2, and IMP3) of the SQL procedures.
Especially, we describe the SQL code for rule generation
in Figure 3. This part seems to be comprehensible, and
the most complicated part is to manage the redundant im-
plications and to generate the condition part by Rest in
Algorithm1 .

delimiter //

create procedure apriv2

begin

create table condi(); /* a table of

Dec, |OB|, α, β */

create table deci(); /* a table of Dec */

create table con1(); /* a table of CON */

create table rule1(); /* a table of the rules */

create table rest1(); /* a table of the rest */

create table con20(), con21(), con2();

/* a table of p1 ∧ p2 from rest1 */

create table con2_eq0(), con2_eq();

/* a table of eq information by search */

create table rule21(), rule2();

/* a table of rule2 */

create table rest2(); /* a table of rest */

create table con30(), con31(), con3();

/* a table of p1 ∧ p2 ∧ p3 from rest2 */

create table con3_eq0(), con3_eq();

/* a table of eq information by search */

create table rule31(), rule3();

/* a table of rule3 */

end //

4.3. Properties of Apriori in SQL
Now, we refer to the properties of Apriori in SQL. Apri-

ori in Prolog makes use of the equivalence classes, but
Apriori in SQL uses search for calculating support(τ)

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 5
and Intelligent Informatics

The following is the SQL code for generating table rule1.
create table rule1 (att1 varchar(15),val1 varchar(15),deci varchar(15),

deci_value varchar(15),support decimal(15,3),accuracy decimal(15,3))
select att1,val1,deci,deci_value,count(*)/ob as support,

count(*)/(con1.support) as accuracy
from con1,deci,rdf t1,rdf t2
where att1 <> decision and t1.attrib=att1 and t1.value=val1 and

t2.attrib=decision and t2.value=deci_value and t1.object=t2.object
group by att1,val1,deci,deci_value
having support>=alpha and accuracy>=beta;
insert into rule1 (att1) values (’end_attrib’);

The following is the SQL code for generating table rule2. The procedure rule2 removes redundant rules from
the table rule21 (IMP2) and generates the table rule2.
create table rule2 (att1 varchar(15),val1 varchar(15),att2 varchar(15),

val2 varchar(15),deci varchar(15),deci_value varchar(15),
support decimal(15,3),accuracy decimal(15,3))

select att1,val1,att2,val2,deci,deci_value,support,accuracy
from rule21
where not exists (

select ∗
from rule1 t
where

(t.att1 <> ’end_attrib’ and rule21.att1=t.att1 and rule21.val1=t.val1
and rule21.deci=t.deci and rule21.deci_value=t.deci_value)

or
(t.att1 <> ’end_attrib’ and rule21.att2=t.att1 and rule21.val2=t.val1
and rule21.deci=t.deci and rule21.deci_value=t.deci_value)
)

group by att1,val1,att2,val2,deci,deci_value;
insert into rule2 (att1) values (’end_attrib’);

Fig. 3. Three rules and four implications in the list Rest, and the SQL codes for tables rule1 and rule 2.

and accuracy(τ). This is the most different point between
two generators, and we have the following with respect to
Apriori in SQL.
(Advantage AQ (Apriori in SQL) 1) The environment
of SQL is familiar in PC, and it is easy to execute the im-
plemented procedures. The system Xampp [11] with the

user interface is effective for execution. After the trans-
lation from a csv data set to a rdf table, it is possible to
handle any data set uniformly. This seems much better
than that of Apriori in Prolog.
(Advantage AQ2) Apriori in SQL employs search in-
stead of the equivalence classes. Therefore, we can es-

6 Journal of Advanced Computational Intelligence Vol.0 No.0, 200x
and Intelligent Informatics

cape from (Disadvantage AP2), and it will be possible to
handle large size data sets. Actually, we could easily have
rule generation for some data sets [18].
(Disadvantage AQ1) For a small size data sets, Apriori
in Prolog seems much faster than Apriori in SQL. In the
execution of Table 1 by Apriori in Prolog, step1, step2,
and step3 took 0.0 seconds, respectively. However, Apri-
ori in SQL took about 2 seconds. In Mammographic data
set [18], NIS-Apriori in Prolog took about 5 seconds for
step1, step2, and step 3. However NIS-Apriori in SQL
took about 200 seconds. Even though it is necessary to
brush up the code of NIS-Apriori in SQL, NIS-Apriori in
Prolog seems better than NIS-Apriori in SQL with respect
to the Mammographic data set [18].

5. From Table Data Analysis to Table Data
Analysis with Uncertainty

This paper focuses on rule generators handling DIS ψ ,
however we have lots of tables with missing values like
the Mammographic data set, the Congressional Voting
data set, the Hepatitis data set, etc. We see such a table
as a Non-deterministic Information System (NIS).

In NIS Φ, we usually apply the discretization proce-
dure and handle a finite number of possible values. By
replacing each ? symbol with a possible value, we have a
standard table, which we name a derived DIS. Let DD(Φ)
denote the set of all derived DISs from NIS Φ. In rule
generation, we employ the usual definition of a rule in
DIS [10] and extend it to a certain rule and a possible rule
in NIS below [14, 17]:
(A certain rule in NIS) An implication τ is a certain rule,
if τ is a rule in each derived DIS for given α and β .
(A possible rule in NIS) An implication τ is a possible
rule, if τ is a rule in at least one derived DIS for given α
and β .

If τ is a certain rule, we can conclude τ is also a rule
in the unknown actual DIS ψactual . (We see there is one
derived DIS ψactual ∈ DD(Φ) which contains the actual
values.) This property is also described in Lipski’s in-
complete information databases [7]. In DIS, the same set
of rules are defined by two definitions, so two definitions
seem to be a natural extension from rules in DIS. How-
ever, the number of DD(Φ) increases exponentially, and
there are more than 10100 derived DISs for the Congres-
sional Voting data set. It will be hard to examine the cer-
tain rules and the possible rules by checking each derived
DIS sequentially. For this problem, we afford a solution
by showing some properties on rules [14, 17]. In [18],
some examples are uploaded.

We are now proposing the new framework related to
NIS and missing values [17]. We focused on how we ob-
tain rules in DIS and NIS in the previous research. Since
we gave a solution for rule generation in DIS and NIS, we
think that it will be able to cope with next new topics in
Figure 4. The 2⃝ and 3⃝ consider the estimation of un-
certain values by using the machine learning strategy, and
the 4⃝ aims the dilution of information. We intentionally

Fig. 4. An overview of new topics [17].

change deterministic information to non-deterministic in-
formation with preserving some constraints. This strategy
seems to be similar to the pay-per-view scrambled broad-
casting. The 5⃝ tries to apply NIS to privacy preserving
system. We agree with that each respondent answers two
choices for questionnaire consisting of multiple choice
question. Then, we have NIS instead of DIS, and some
personal answers are diluted for privacy preserving. In
our RNIA, we can obtain certain rules and possible rules
for knowing the properties of data sets. Namely, a privacy
preserving questionnaire system can be realized by using
RNIA [16].

6. Apriori-Based Rule Generation and Rough
Set-Based Rule Generation

This section compares Apriori-based rule generation
with rough set-based rule generation. In rough sets, the
following property takes the important role.
Proposition 4. [10] In DIS and an implication τ :
∧A∈CON [A,valA] ⇒ [Dec,val], the following (1) and (2)
are equivalent:
(1) accuracy(τ)=1,
(2) OBJ(∧A∈CON [A,valA])⊆ OBJ([Dec,val]).

At the beginning, (2) in Proposition 4 are employed
for detecting the implication τ satisfying accuracy(τ)=1.
Since the condition accuracy(τ)=1 is too strict, the re-
search to handle accuracy(τ) ≥ β has been investigated.
Due to this historical background, rough set-based rule
generation generally takes the next strategy.
(Rough set-based rule generation)
(1) For one descriptor [Dec,val], we fix a target set X=
OBJ([Dec,val]) and two threshold values α and β .
(2) After finding a set LOW (=OBJ(∧A∈AT T L[A,valA]))
for AT T L ⊂ AT , an implication τ : ∧A∈AT T L[A,valA] ⇒
[Dec,val] with accuracy(τ)=1 is obtained as a side effect.
We recognize τ is a rule, if support(τ)≥ α .
(3) After finding a set UPP (=OBJ(∧A∈AT TU [A,valA]))
for AT TU ⊂ AT , an implication τ : ∧A∈AT TU [A,valA] ⇒
[Dec,val] is obtained similarly. We recognize τ is a rule,

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 7
and Intelligent Informatics

if τ satisfies support(τ)≥ α and accuracy(τ)≥ β .
In rough sets, the most important issue is how we find

two sets LOW and UPP. The problem of rule generation
is converted to the problem of finding two appropriate sets
LOW and UPP. Here, Propositions 3 and 4 take the im-
portant role.
Remark 3. In rough set-based rule generation, it may
be easy to find one LOW and one UPP by using equiv-
alence classes. However, to find all LOW and all UPP
may not be easy. Skowron showed that the problem to
find all LOW is NP-hard [21]. Since each rule is con-
nected with one LOW or UPP, we may miss some rules
if we do not find some LOW or UPP. The complete-
ness in Theorem 1 may not be assured. In order to solve
this problem, Skowron introduced the discernibility func-
tion method [21]. Even though the use of the equivalence
classes is effective, some specific methods are necessary
for preserving the completeness of rule generation.

On the other hand, the original Apriori algorithm does
not consider decision attribute Dec. There is no concept
of decision attribute. In order to handle table data sets,
we adjusted the Apriori algorithm and introduced deci-
sion attribute Dec in Algorithm 1. Apriori-based rule gen-
eration does not consider a target set X defined by the de-
scriptor [Dec,val]. This is the difference between Apriori-
based rule generation and rough set-based rule generation.
Apriori-based rule generation generates all implications τ
satisfying support(τ) ≥ α and accuracy(τ) ≥ β for de-
cision attribute Dec, and rough set-based rule generation
does all implications τ satisfying the same condition for
the descriptor [Dec,val].

7. Concluding Remarks

This paper clarified the properties of Apriori in Pro-
log and Apriori in SQL, and described the difference be-
tween Apriori-based rule generation and rough set-based
rule generation. Two generators have their properties, and
two types of rule generation also have their properties. For
handling several types of tables, it is necessary to consider
which generator and which rule generation are suitable for
existing data sets. We think the following:
(1) For large data sets, generally rough set-based rule gen-
eration will reduce the execution time, because the deci-
sion part of rules is predefined.
(2) Apriori-based rule generation seems to include the
functionality of rough set-based rule generation. Namely,
rules defined by a set of descriptors {[Dec,val] | val ∈
VALDec} are generated in one rule generation. Rough set-
based rule generation repeats rule generation for each de-
scriptor [Dec,val].
(3) Apriori in Prolog may have constraint on PC environ-
ment for execution, but the use of the equivalence classes
is effective. So, Apriori in Prolog will be better for small
size data sets (the object size is about less than 1000).
On the other hand, the description of data set may not be
easy.
(4) Apriori in SQL will be applicable to large size data

sets, and PC environment for execution is stable, for ex-
ample Xampp system supports PC environment. Even
though it is necessary to prepare one procedure to trans-
late a csv data set to rdf data set, we can uniformly handle
any csv data set after this translation.

In this paper, we handled Table 1 for describing the
frameworks, however the conclusion in this paper de-
pends upon the actual execution of data sets, like the
Mammographic data set, the Lenses data set, the Car eval-
uation data set, the Credit approval data set, the Congres-
sional voting data set, the Hepatitis data set, etc. [18]. It is
necessary to consider the effective use of the several pro-
posed frameworks toward the intelligent analysis of table
data sets.

Acknowledgments The authors are grateful to the anony-
mous reviewers and Professor Junzo Watada (Waseda
University and Universiti Teknologi PETRONAS,
Malaysia) for their useful comments. This paper is an
extended version of a paper presented at FIM2017.

This work is supported by the Grant-in-Aid for Scien-
tific Research (C) (No.26330277), Japan Society for the
Promotion of Science.

References:
[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association

rules in large databases, Proc. VLDB’94, pp. 487–499, 1994.
[2] Bazan, J., Szczuka, M.: The rough set exploration system, Transac-

tions on Rough Sets, 3, pp. 37–56, 2005.
[3] Ceglar, A., Roddick, J.F.: Association mining, ACM Computing

Survey, 38(2), 2006.
[4] Frank, A., Asuncion, A.: UCI Machine Learning Repository, Irvine,

CA: University of California, School of Information and Computer
Science, 2010.
http://mlearn.ics.uci.edu/MLRepository.html

[5] Grzymała-Busse, J.W., Werbrouck, P.: On the best search method
in the LEM1 and LEM2 algorithms, in: Incomplete Information:
Rough Set Analysis, Studies in Fuzziness and Soft Computing 13,
pp. 75–91, 1998.

[6] Kowalski, M., Stawicki, S.: SQL-based heuristics for selected KDD
tasks over large data sets, In: Proc. FedCSIS 2012, pp. 303–310,
2012.

[7] Lipski, W.: On semantic issues connected with incomplete infor-
mation databases, ACM Transactions on Database Systems, 4(3),
pp. 262–296, 1979.

[8] Nakata, M., Sakai, H.: Twofold rough approximations under incom-
plete information, International Journal of General Systems, 42(6),
pp. 546–571, 2013.

[9] Orłowska, E., Pawlak, Z.: Representation of nondeterministic infor-
mation, Theoretical Computer Science, 29(1-2), pp. 27–39, 1984.

[10] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About
Data, Kluwer Academic Publishers, 1991.

[11] phpMyAdmin Web Page http://www.phpmyadmin.net/,
2016.

[12] Riza, L.S. et al.: Implementing algorithms of rough set theory and
fuzzy rough set theory in the R package RoughSets, Information
Sciences, 287(10), pp. 68–89, 2014.

[13] Sakai, H., Nakata, M., Ślęzak, D.: A NIS-Apriori based rule gen-
erator in Prolog and its functionality for table data, in: Proc. RSKT
2011, Springer LNAI, 6954, pp. 226-231, 2011.

[14] Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in in-
complete information databases and non-deterministic information
systems, Fundamenta Informaticae, 130(3), pp. 343–376, 2014.

[15] Sakai, H., Liu, C., Zhu, X., Nakata M.: On NIS-Apriori based data
mining in SQL, in: Proc. Int’l. Conf. on Rough Sets, LNCS 9920,
Springer, pp. 514–524, 2016.

[16] Sakai, H., Liu, C., Nakata, M., Tsumoto, S.: A proposal of a
privacy-preserving questionnaire by non-deterministic information
and its analysis, in: Proc. IEEE Big Data Conference, pp. 1956-
1965, 2016.

8 Journal of Advanced Computational Intelligence Vol.0 No.0, 200x
and Intelligent Informatics

[17] Sakai, H., Nakata, M., Yao, Y.: Pawlak’s many valued informa-
tion system, non-deterministic information system, and a proposal
of new topics on information incompleteness toward the actual
application, Studies in Computational Intelligence, 708, Springer,
pp. 187-204, 2017.

[18] Sakai, H.: Execution logs by RNIA software tools, 2016.
http://www.mns.kyutech.ac.jp/˜sakai/RNIA

[19] Shen, K.Y., Tzeng, G.H.: Contextual improvement planning by
fuzzy-rough machine learning: A novel bipolar approach for
business analytics, International Journal of Fuzzy Systems 18(6),
pp. 940–955, 2016.

[20] Shen, K.Y., Sakai, H., Tzeng, G.H.: Stable rules evaluation for
rough-set-based bipolar model: A preliminary study for credit loan
evaluation, in: Proc. Int’l. Conf. on Rough Sets, LNCS 10313,
pp. 317–328, 2017.

[21] Skowron, A., Rauszer, C.: The discernibility matrices and functions
in information systems, Intelligent Decision Support - Handbook of
Advances and Applications of the Rough Set Theory, pp. 331–362,
Kluwer Academic Publishers, 1992.

[22] Ślęzak, D., Sakai H.: Automatic extraction of decision rules from
non-deterministic data systems: Theoretical foundations and SQL-
based implementation, in: Database Theory and Application, CCIS
64, Springer, pp. 151–162, 2009.

[23] Swieboda, W., Nguyen, S.: Rough set methods for large and spare
data in EAV format, in: Proc. IEEE RIVF 2012, pp. 1–6, 2012.

[24] Wu, M., Nakata, M., Sakai, H.: An overview of the getRNIA sys-
tem for non-deterministic data, Procedia Computer Science, 22,
pp. 615-62, Elsevier, 2013.

Name:
Hiroshi Sakai

Affiliation:
Graduate School of Engineering, Kyushu Insti-
tute of Technology

Address:
Tobata, Kitakyushu 804-8550, Japan
Brief Biographical History:
Hiroshi Sakai received B.S., M.S. and D.S. degrees in applied mathematics
and computer science from Kyushu University, in 1982, 1984 and 1988.
He is a professor of Graduate School of Engineering, Kyushu Institute of
Technology.
Main Works:
• Rough non-deterministic information analysis for uncertain information,
The Handbook on Reasoning-Based Intelligent Systems, pp. 81–118,
World Scientific, 2013.
• Apriori-based rule generation in incomplete information databases and
non-deterministic information systems, Fundamenta Informaticae, Vol.
130, No.3, pp.343-376, 2014.
Membership in Learned Societies:
• Japan Society for Fuzzy Theory and Intelligent Informatics
• International Rough Set Society (Senior member)
• The Mathematical Society of Japan

Name:
Kao-Yi Shen

Affiliation:
Department of Banking & Finance, Chinese Cul-
ture University (SCE)

Address:
Da’an Dist., Taipei City Taiwan, R.O.C
Brief Biographical History:
Kao-Yi Shen received his Bachelor and Master degrees in Industrial
Engineering from the Tunghai University; in 2002, he received the Ph.D.
degree in Business Administration from the Chengchi University in
Taiwan. He worked as a senior analyst in the venture capital industry as
well as a Marketing Manager and Head of Project Management in a
Taiwan-based international IT company. He is an Associate Professor of
Department of Banking & Finance, Chinese Culture University (SCE) in
Taipei.
Main Works:
• Financial modeling and improvement planning for the life insurance
industry by using a rough knowledge based hybrid MCDM model,
Information Sciences, Vol. 375, pp. 296–313, 2017.
• New concepts and trends of hybrid multiple criteria decision making,
CRC Press, New York, US, 2017, ISBN: 978-1-4987-7708-7.
Membership in Learned Societies:
• Taiwan Fuzzy System Associations
• International Rough Set Society
• International MCDM Society

Name:
Michinori Nakata

Affiliation:
Faculty of Management & Information Science,
Josai International University

Address:
1, Gumyo, Togane, Chiba, 283-0003, Japan
Brief Biographical History:
1985-1990 Assistant Professor, Chiba-Keizai College, 1991-1998
Associate Professor, Chiba-Keizai College, 1999-2000 Professor,
Chiba-Keizai College, 2001- Professor, Josai International University
Main Works:
• Applying rough sets to information tables containing possibilistic values,
Trans. Computational Science, Vol. 2, pp. 180–204, 2008.
• Twofold rough approximations under incomplete information,
International Journal of General Systems, Vol. 42(6), pp. 546–571, 2013.
Membership in Learned Societies:
• Japan Society for Fuzzy Theory and Intelligent Informatics(SOFT)
• American Association of Artificial Intelligence(AAAI)
• Association for Computing Machinery(ACM)
• The Institute of Electrical and Electronics Engineers(IEEE)

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 9
and Intelligent Informatics

