切欠きを有する平板試験片の引張におけるひずみ速度集中係数*

野田 回昭 7	野田
---------	----

Strain Rate Concentration Factor of Notched Flat Bar Specimens

Nao-Aki Noda	Yunong Shen	Rei Takaki	Akane Inoue	Yoshikazu Sano	Yasushi Takase
--------------	-------------	------------	-------------	----------------	----------------

In this study, the strain rate concentration factor is considered for high speed tensile test, which is now being recognized as a standard testing method for polymeric materials. For notched flat bar specimens, the strain rate at the notch root $\dot{\epsilon}_{notch}$ cannot be determined experimentally and has to be studied analytically. In this study, therefore, the strain rate concentration factor defined as $K_{t\dot{\epsilon}} = \dot{\epsilon}_{notch}/\dot{\epsilon}_{smooth}$ is calculated by varying the notch geometry and specimen length. It is found that the strain concentration factor $K_{t\dot{\epsilon}}$ can be estimated from stress concentration factor K_t^* . The effects of specimen length and notch opening angle are also discussed to clarify the strain rate concentration factor.

KEY WORDS: Materials, Tensile Properties, Stress concentration, Notch, Impact strength, Strain rate (D3)

1. 緒 言

高分子材料はバンパーやインパネへの使用にとどまらず軽 量化技術の一つとしても使用の拡大が期待されている.その 強度は温度と速度によって変化し、材料によっては特定の条 件化でぜい性破壊へと遷移する^{(1)~(3)}.切欠きなどの応力集中 がある場合に、平滑材では延性を示す温度でも、切欠き底で部 分的に高いひずみ速度が生じるため、ぜい性破壊を起こし実 用上の課題となっている.

高速負荷に対応した材料評価に古くから用いられている衝 撃試験法としては振り子試験(アイゾットシャルピー試験)が 一般的である.しかしながら,本法は実製品の衝撃試験結果と 必ずしも相関が良くない.そこで,最近では衝撃強度評価に高 速引張試験機がよく用いられるようになり,一般に高速引張 試験において応力に関する研究が多くなされている^{(4)~(11)}.と ころで,製品には孔や段差などの応力集中部が存在するので その強度評価には切欠きを有する試験片が用いられる.また, 切欠き底では変形速度(ひずみ速度)の上昇を伴うので,より 大きなひずみ速度が生じる.したがって,高速引張試験を用い て高分子材料の衝撃強度を正確に評価するには切欠き底での ひずみ速度を正確に求める必要がある.

著者らは先に、高速引張試験により切欠き底の応力やひず み速度を求め、引張速度との関係を調べた⁽¹²⁾.材料を弾性体 として取り扱い、試験温度による衝撃試験の各温度による破 断ひずみと切欠き底ひずみ速度の関係に対して、時間―温度

*2018 年 1 月 11 日受理. 2017 年 5 月 26 日自動車技術会春季講 演会において発表.

1) 九州工業大学(804-8550 福岡県北九州市戸畑区仙水町1-1)

換算則が成立することを明らかにした^{(13),(14)}.また,引張速度 に依存する非線形の応力-ひずみ関係を有する高分子材料に おいても,先の弾性解析を適用できることを確認した⁽¹⁵⁾.

切欠き材の応力集中係数に関しては古くから多くの研究が なされており,任意の切欠きに対する応力集中係数の計算式 も提示され,設計者への便宜が図られている⁽¹⁶⁾.応力集中係 数と同様にひずみ速度集中係数を求めることができれば,引 張速度から切欠き底のひずみ速度の算出が可能となる.そこ で著者らは先に,球状黒鉛鋳鉄で円周切欠きを有する丸棒の 引張試験の解析を行い,切欠き半径と切欠き深さ,試験片長さ がひずみ速度集中係数に及ぼす影響について調べた.そして, 既知の応力集中との関係を調べることによって,V字型切欠き 形状における切欠き底のひずみ速度集中係数の予測を可能に した^{(17),(18)}.

高分子材料の引張試験では丸棒ではなく平板が用いられる ことが多い.しかし,平板試験片においてはひずみ速度集中係 数を詳しく調べた研究は見当たらない.そこで,本研究では平 板引張試験片で切欠きの幾何学形状を変化させてひずみ速度 集中係数を計算する.次に,切欠き半径と切欠き深さ,試験片 長さ,ならびに開き角がひずみ速度集中係数に及ぼす影響に ついて調べ,既知の応力集中係数との関係を調べる.

2. ひずみ速度集中係数の定義

はじめに著者らの先の研究⁽¹²⁾におけるひずみ速度集中係数 の定義と結果の一部を紹介する.図1(a)の図中に示すように 最大ひずみ速度が発生する時間*t*において,切欠き底のひずみ 速度分布から最小断面の公称ひずみ速度*ɛ̄nom*を求めた.そし て、切欠き底での最大ひずみ速度 $\dot{\epsilon}_{max}$ と $\dot{\epsilon}_{nom}$ の比を求め、ひ ずみ速度集中係数 $K_{t\dot{\epsilon}}$ = $\dot{\epsilon}_{max}/\dot{\epsilon}_{nom}$ と定義した⁽¹²⁾. これは通常 の応力集中係数と同様な定義である.図1に $K_{t\epsilon}$ と $\dot{\epsilon}_{max}$ と $\dot{\epsilon}_{nom}$ を示す.図1(a)は任意の時間 t での切欠き底のひずみ速度 $\dot{\epsilon}_{max}(t)$ と最小断面の公称ひずみ速度 $\dot{\epsilon}_{nom}(t)$ である.ここで は両側切欠きを有するポリカーボネート(ヤング率 E=2.3GPa, ポアソン比v=0.37)の平板試験片を対象としており、その寸法 は平行部長さ l=50 mm, 幅 D=10mm, 切欠き半径 p=0.2 mm, 切欠き深さ t=2.5 mm, 切欠きの開口角度 ω=90°である. 図1 (b) は任意の時間 t における $K_{t\dot{\epsilon}}(t)$ を $\rho=0.2$ mm と $\rho=0.03$ mm に対して示す.図1(b)において,異なる切欠き半径それぞ れにおいて, Kte(t)が時間によらず常に一定であることが示さ れている.

しかし、先の研究におけるひずみ速度集中係数の定義では、 以下の問題点がある. ひずみ速度集中係数 $K_{t\bar{\epsilon}} = \dot{\epsilon}_{max} / \dot{\epsilon}_{nom}$ に おいて、仮にひずみ速度集中係数Ktsが分かっていても、切欠 き底におけるひずみ速度 Emax を求めるためには、最小断面の 公称ひずみ速度 *ɛ̇nom* を知る必要がある. 図2(a) に示すよう に,静的応力集中係数では公称応力 onom は荷重 Pと断面積 (D -2t)により容易に求まるが、公称ひずみ速度 $\dot{\epsilon}_{nom}$ は図2(b) に示すように最小断面のひずみ速度分布を積分しその平均値 を求めなければならない.この方法では、切欠き形状ごとに最 小断面のひずみ速度分布は変化するため Enom を求めることは 実用上不便である.

そこで、最小断面のひずみ速度分布の代わりに平滑材に

生じるひずみ速度をもって基準にすることを考える(17). すなわち前述の $\dot{\epsilon}_{max}/\dot{\epsilon}_{nom}$ に代わって,式(1)に示すように, 切欠き材の切欠き底の最大ひずみ速度 Emax と平滑材のひず み速度 *k*smooth との比によってひずみ速度集中係数を新た に定義する. ここで, 平滑材のひずみ速度は引張速度に対 して比例的に増加する. そこで, u(t)を試験片に生じる変 位,u(t)/tを引張速度,lを試験片長さ,tを時間とすると, 次の関係が成立する.

$$\dot{\varepsilon}_{smooth} = \frac{u(t)/l}{t} \tag{1}$$

一方, 切欠き底の最大ひずみ速度を FEM 解析で求めた結 果から,引張速度に対して比例的に増加することを明らか にしてきた(17).よってひずみ速度は切欠き材,平滑材と も引張速度に対して比例して上昇するため、その比Kteは 引張速度に依存せず常に一定である. すなわち, ひずみ速 度集中係数Ktzを式(2)のように切欠き材と平滑材の比と して定義すると、切欠き底でのひずみ速度は、引張速度と ひずみ速度集中係数から求まる.

$$K_{t\dot{\varepsilon}} = \frac{\dot{\varepsilon}_{max}}{\dot{\varepsilon}_{smooth}} \tag{2}$$

 $\dot{\varepsilon}_{max} = K_{t\dot{\varepsilon}} \cdot \dot{\varepsilon}_{smooth}$

式(2)のようにひずみ速度集中係数Ktzを定義すると、切欠 き材最小断面の公称ひずみ速度*ɛ_{nom}を*求める必要はない.

(a) Maximum strain rate and nominal strain rate. (b) Strain rate concentration factor. Fig.1 Constancy of strain rate concentration factor (Plate specimen).

Nominal stress σ_{nom} and nominal strain rate $\dot{\varepsilon}_{nom}$ (Plate

自動車技術会論文集 Vol.49, No.3, May 2018.

u(t)

3. 切欠きを有する板状試験片と解析モデル及び解析方法

図3(a) に本研究で考察する板状切欠き試験片の形状寸法 を示す.今回は,最近行った丸棒円周切欠きを有する丸棒試験 片の研究に合わせて図3(a) に示す試験片幅D = 8mm(開き角ω = 45°)の試験片で考察する.本研究では動弾性解析 を用いた.

また、図3(c) に ρ = 0.25mmの、図3(d) に ρ = 2mmそれ ぞれの解析モデルと切欠き底の拡大図を示す.切欠き底での 最小メッシュサイズeはe = $\rho/243$ であり、この2つのモデル を用いた応力集中係数の解析結果は、精度の高い体積力法に 準じる高い精度を有する計算式により算出した応力集中係数 に対して誤差1%以内となっており、十分な精度を有する.図 3(c),(d)の軸対称 FEM モデルの片方の端部を固定して、 一方の端部に変位1mm、引張速度20mm/sと境界条件を設定 して解析を行った.

本研究では、図3(a) において、切欠き半径 ρ = 0.25mm, ρ = 2mm に 対 し て 、切 欠 き 深 さ を t = 0.0625, 0.25, 1, 2mm と変化させ、試験片長さをl = 8~20480mmと変えてひずみ速度集中係数 $K_{t\bar{t}}$ を計算する.次 に、試験片長さをl = 40mm、切欠き半径 ρ = 0.25mm、 ρ = 2mmに対して、切欠き深さをt = 1~3.96mmと変化させて考 察する.

また,第4章3節については,先の研究で用いた幅D = 20 mm(開き角 $\omega = 90^{\circ}$)の平板試験片^{(12),(13)}(図4(b)に注目して開き角 ω の値を変え,応力集中係数 K_t ,ひずみ速度集中係数 $K_{t\epsilon}$ に及ぼす影響を考察する.

(a) Specimen 1 (b) Specimen 2 (2.5 times larger than specimen 1) Fig.4 Similar specimen (Dimension: mm)

Table 1 Strain rate concentration factor $K_{t\dot{\varepsilon}}$ and stress concentration factor K_t for similar geometry.

	Specimen 1(D=8)	Specimen 2(D=20)
K_t	6.125	6.145
$\dot{\varepsilon}_{max}$ (s ⁻¹)	4.080	4.080
$\dot{\varepsilon}_{smooth}$ (s ⁻¹)	1.000	0.400
$K_{t\dot{\varepsilon}} = \dot{\varepsilon}_{max} / \dot{\varepsilon}_{smooth}$	10.17	10.20

4. 解析結果

4.1. 試験片長さがひずみ速度集中係数に及ぼす影響

応力集中係数 K_t は $l/D \ge 1$ ならば試験片長さlに依存しないことが知られているが、ひずみ速度集中係数 $K_{t\hat{e}}$ は相対試験片長さl/Dに依存する.

そこで、試験片長さl/Dを変えてひずみ速度集中係数 $K_{t\epsilon}$ を 計算した.表2に、切欠き半径2 ρ/D = 0.0625、2 ρ/D = 0.5 について、試験片長さl/Dを1~2560まで変化させた時のひず み速度集中係数 $K_{t\epsilon}$ を示す.また、切欠き半径2 ρ/D = 0.0625、0.5 に対して、切欠き梁さを2t/D = 0.015625、0.0625、0.25、0.5と変化させた.さらに、図5 に 2t/D = 0.25、0.5のときのひずみ速度集中係数 $K_{t\epsilon}$ 、応力集中 係数 K_t を示す.表2と図5より、ひずみ速度集中係数 $K_{t\epsilon}$ は、 試験片の長さが増加するにつれて増加するが、比較的実際の 問題に近い板半幅4 mmの4分の1、すなわち2t/D = 0.25の 場合、l/D = 10で一定値に収束する.なお、表2中の枠で囲 んだ部分は $K_{t\epsilon}$ が一定になる最長長さにおける値との誤差が 1%以内になる範囲を示している.

表3に応力集中係数 K_t と平滑部における引張応力に基づく 応力集中係数 K_t^* を示す.応力集中係数 K_t は式(3)のように定 義する.一方,応力集中係数 K_t^* は便宜上,ひずみ速度集中係 数と応力集中係数の関係を明らかにすることを目的にそれら の比をとる際,その値を有限にするために用いる. K_t^* は平滑 部における引張応力 σ_{gross} に基づいて式(4)のように定義す る.

$$K_t = \frac{\sigma_{max}}{\sigma_{net}}, \ \sigma_{net} = \frac{P}{d}$$
 (3)

$$K_t^* = \frac{\sigma_{max}}{\sigma_{gross}} = K_t \cdot \left(\frac{D}{d}\right), \quad \sigma_{gross} = \sigma_{net} \cdot \left(\frac{d}{D}\right) \tag{4}$$

								: less than 1	% difference		
K _{tė}											
	$\begin{array}{c c} t(mm) & 0.0625 \\ (2t/D) & (0.015625) \end{array}$		0.25 (0.0625)		1 (0.25)		2 (0.5)				
l/D	$\rho(\text{mm}) \\ (2\rho/D) \\ l(\text{mm})$	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.5)		
1.00	8	1.917	1.151	2.944	1.601	4.595	2.017	5.011	2.039		
$ \begin{array}{r} 1.25 \\ 1.5 \\ 1.75 \\ 2 \\ 2.5 \\ 3.5 \\ 5 \\ 5 \\ \end{array} $	10 12 14 16 20 28 40	1.944 1.964 1.978 1.987 1.994 1.994 1.992	1.300 1.314 1.324 1.330 1.335 1.335 1.335	3.016 3.038 3.052 3.064 3.068 3.067	1.626 1.644 1.657 1.665 1.673 1.676 <u>1.676</u>	4.760 4.864 4.936 4.989 5.061 5.133 5.185	2.101 2.155 2.192 2.220 2.258 2.299 2.330	5.658 5.990 6.153 6.400 6.627 <u>6.832</u>	2.178 2.294 2.390 2.469 2.592 2.751 <u>2.885</u>		
10 40 80	80 320 640	1.991 1.989 1.988	1.332 1.331 1.331	3.067 3.066 3.066	1.677 1.677 1.677	5.246 5.294 5.302	2.368 2.396 2.401	7.231 7.506 7.554	3.060 3.204 3.229		
160 320 640	1280 2560 5120	1.988 1.988 1.988	1.331 1.331 1.331	3.066 3.066 3.066	1.678 1.677 1.677	5.307 5.308 5.309	2.403 2.404 2.405	7.578 7.590 7.597	3.242 3.249 3.252		
1280 2560	10240 20480	1.988 1.988	1.331	3.066 3.066	1.678 1.677	5.309 5.310	2.405 2.406	7.600 7.601	3.253 3.254		

Table 2 Strain rate concentration factor $K_{t\dot{\epsilon}}$ under different length and D = 8mm in Fig.3(a) ($\omega = 45^{\circ}$)

Fig.5 Strain rate concentration factor $K_{t\dot{\epsilon}}$ and stress concentration factor K_t^* under different length.

		t(mm) (2t/D)		$\begin{array}{c} t(\text{mm}) \\ (2t/D) \\ (0.015625) \end{array} 0.0625$		0.25 (0.0625)		1 (0.25)		2 (0.5)	
		l (mm)	$\rho(\text{mm})$ $(2\rho/D)$ l/D	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.25)	0.25 (0.0625)	2 (0.25)
Strain concentration factor	K _{tė}	5	40	1.992	1.333	3.067	1.676	5.185	2.330	6.832	2.885
Stress	K _t	1~∞	8~∞	1.963	1.313	2.877	1.574	3.986	1.806	3.805	1.629
concentration factor	$K_t^* = K_t \cdot (D/d)$	1~∞	8~∞	1.994	1.334	3.069	1.679	5.315	2.408	7.610	3.258
Ratio	$K_{t\dot{\epsilon}}/K_t$	5	40	1.015	1.015	1.066	1.065	1.301	1.290	1.796	1.771
	$K_{t\dot{\epsilon}}/K_t^*$	5	40	0.999	0.999	0.999	0.998	0.976	0.968	0.898	0.886

Table 3 Relationship between strain concentration factor $K_{t\varepsilon}$ and stress concentration factor K_t under different length.

4.2. ひずみ速度集中係数と応力集中係数の関係

ここで、試験片長さを板幅D = 8mmに対して丸棒における JIS 規格l/D = 5に基づいてl = 40mmとして考える^{(17),(18)}. 表 4 と図 5 (a) に切欠き半径2 $\rho / D = 0.0625$, $2\rho / D = 0.1$, $2\rho / D = 0.5$ について切欠き深さを変化させてひずみ速度集 中係数 $K_{t\epsilon}$ を求めた結果を示す.ここで、 $2\rho / D = 0.0625$ ($\rho =$ 0.25mm, D = 8mm) はシャルピー衝撃試験における試験片 の切欠き半径 $\rho = 0.25$ mmに対応し、 $2\rho / D = 0.5$ ($\rho = 2$ mm, D = 8mm) は鋳鉄製品における比較的鋭いコーナー部半径に 対応させている.図 6 (a) より、切欠き深さ2t / Dの増加に伴 いひずみ速度集中係数 $K_{t\epsilon}$ は増加し、深さが 0.9 をこえ、 $2t / D \rightarrow 1$ では $K_{t\epsilon} \rightarrow \infty$ となる.

比較のため、応力集中係数 K_t と切欠き深さ2t/Dとの関係も 表4と図6(b)に合わせて示す.ここで、表4と図5(b)よ り、 $2t/D \rightarrow 1$ で、応力集中係数 $K_t \rightarrow 1$ となる.一方、2t/D =0は平滑材に相当するので、ひずみ速度集中係数 $K_{t\ell} = 1$ 、応力 集中係数 $K_t = 1$ となる.ここで、ひずみ速度集中係数と応力集 中係数の関係を明らかにするために、直接それらの比をとっ た.そこで、表5と図7にひずみ速度集中係数と応力集中係 数の比 $K_{t\ell}/K_t$ と切欠き深さ2t/Dの関係を示す. $2t/D \rightarrow 1$ で、 ひずみ速度集中係数と応力集中係数 K_t の比 $K_{t\epsilon}/K_t \rightarrow \infty$ となる.また、 $2t/D \rightarrow 1$ でひずみ速度集中係数 $K_{t\epsilon} \rightarrow \infty$ であるが、応力集中係数 $k_t \rightarrow 1$ となる.一方、 $2t/D \rightarrow 1$ で応力集中係数 $K_t^* \rightarrow \infty$ となる.すなわち、 $K_{t\epsilon} \geq K_t^*$ は $2t/D \rightarrow 1$ でどちらも無限大となる.これを利用して、直接ひずみ速度集中係数と応力集中係数 $K_{t\epsilon}$ との関係を調べる.

先述の通り、2t/D → 1でひずみ速度集中係数の比 K_{te}/K_t は 無限大に発散する.そこで、その発散をなくすために、応力集 中係数 K_t^* を用いて、ひずみ速度集中係数と応力集中係数の比 を有限値で求める.表5と図8にこのひずみ速度集中係数と 応力集中係数 K_t^* の比 K_{te}/K_t^* と切欠き深さ2t/Dの関係を示す. 2t/D ≤ 0. で K_{te}/K_t^* の値は切欠き半径2 ρ/D = 0.0625、 2 ρ/D = 0.1、2 ρ/D = 0.5において 2%以内の誤差で一致して いることがわかる.このことから、 K_{te}/K_t^* の値は2t/D ≤ 0.5 の範囲で切欠き半径に依存せず切欠き深さのみに依存するの で、2t/D ≤ 0.9の現実的な問題では、ひずみ速度集中係数を 求める際に、応力集中係数を求めて K_t^* を知ることにより、図 7 よりひずみ速度集中係数を容易に予測することが可能であ る.

Table 4 Strain rate concentration factor and the net stress concentration factor when l/D = 5(l = 40mm, D = 8mm, $\omega = 45^{\circ}$)

		$K_{t\dot{\epsilon}}$	K _t				
2ρ/D 2t/D	0.0625	0.1	0.5	0.0625	0.1	0.5	
0.00	1.000	1.000	1.000	1.000	1.000	1.000	
0.25	5.185	4.240	2.330	3.986	3.271	1.806	
0.50	6.832	5.498	2.885	3.805	3.089	1.629	
0.75	8.879	6.467	3.843	2.830	2.299	1.302	
0.90	12.206	10.080	6.342	1.871	1.569	1.124	
0.99	44.060	39.792	25.454	1.101	1.065	1.014	
→1.00	$\rightarrow \infty$	$\rightarrow \infty$	$\rightarrow \infty$	→1.000	→1.000	$\rightarrow 1.000$	

自動車技術会論文集 Vol.49,No.3,May 2018.

$(l = 40 \text{mm}, D = 8 \text{mm}, \omega = 45^{\circ})$										
		$K_{t\dot{\varepsilon}}/K_t$		$K_{t\dot{e}}/K_t^*$						
2ρ/D 2t/D	0.0625	0.1	0.5	0.0625	0.1	0.5				
0.00	1.000	1.000	1.000	1.000	1.000	1.000				
0.25	1.301	1.299	1.290	0.976	0.975	0.968				
0.50	1.796	1.780	1.771	0.898	0.890	0.886				
0.75	3.137	3.096	2.952	0.784	0.774	0.738				
0.90	6.524	6.424	5.642	0.652	0.642	0.564				
0.99	40.018	37.363	25.103	0.400	0.374	0.251				
→1.00	$\rightarrow \infty$	$\rightarrow \infty$	$\rightarrow \infty$	→0.000	→0.000	→0.000				

Table 5 Ratio of strain rate concentration factor and stress concentration factor K_t when l/D = 5 $(l = 40 \text{mm}, D = 8 \text{mm}, \omega = 45^\circ)$

Fig.7 Relationship between $K_{t\bar{e}}/K_t$ and 2t/Dwhen l/D = 5 (l = 40mm, D = 8mm)

when l/D = 5 (l = 40 mm, D = 8 mm)

Table 6 Effect of notch opening angle ω when $2t/D = 0.5, t/\rho = 25$ ($t = 5 \text{ mm}, \rho = 0.2 \text{ mm}, l = 50 \text{ mm}, D = 20 \text{ mm}$)

 $\omega = 0^{\circ}$

10.81

(1.000)

6.485

(1.000)

12.97

(1.000)

1.666

0.833

 $\omega = 45^{\circ}$

1078

(0.9972)

6.470

(0.9977)

12.94

(0.9977)

1.668

0.834

 $\omega = 60^{\circ}$

10.71

(0.9910)

6.430

(0.9915)

12.86

(0.9915)

1.665

0.833

 $\omega = 90^{\circ}$

10.20

(0.9440)

6.145

(0.9476)

12.29

(0.9476)

1.660

0.830

Strain

concentration

factor

Stress

concentration

factor

Ratio

 $\rho = 0.2 \text{mm}$

t=5mm

 $K_{t\dot{\varepsilon}}$

 $(K_{t\dot{\varepsilon}}/K_{t\dot{\varepsilon}}\mid_{\omega=0^{\circ}})$

K_t

 $(K_t/K_t|_{\omega=0^\circ})$

 $K_t^*(K_t^*=K_t*\frac{D}{d})$

 $(K_t^*/K_t^*|_{\omega=0^\circ})$

 $K_{t\dot{\epsilon}}/K_t$

表 5 に、開き角を ω = 0°, 45°, 60°, 90° と変化させた時 の応力集中係数 K_t , K_t^* , ひずみ速度集中係数 K_{tt} を示す.表 5 より、 ω が大きくなると、上記の3つの値は減少している.ま た、表5それぞれの値を ω = 0°における値で割った値も合わ せて示す.これらの値も、 ω が大きくなると減少しているこ とがわかる.

さらに、表5にひずみ速度集中係数と応力集中係数の比 $K_{t\epsilon}/K_t$, $K_{t\epsilon}/K_t$ の値を示す.この2つの値は、 ω が大きく

4.3. 開き角の影響

切欠きの応力集中については、切欠きの鋭さ t/ρ が大きいほど、開き角の影響を受けやすいことが分かっている.そこで、 図 9 に示すような、著者らが先の研究で用いた t/ρ が極端に大きい $t/\rho = 25$ の平板試験片^{(12),(13)}(切欠き半径 $\rho = 0.2$ mm, 試験片幅D = 20 mm,試験片長さl = 50 mm)において、開き 角が応力集中係数とひずみ速度集中係数に及ぼす影響につい なってもその値はほぼ一定になり、開き角には依存しないこ とがわかった.よって、応力集中係数*K*tが分かれば、開き角 に依らずひずみ速度集中係数を求めることが可能である.

5. 結 言

高速引張試験で両側切欠き付平板試験片を引張る場合に生 じる切欠き底でのひずみ速度集中について考察した.ひずみ 速度集中係数と比較的求めやすい応力集中係数の関係を切欠 き半径,切欠き深さ,ならびに開き角を変えて整理し,図表に まとめた.本研究より,以下の結論が得られた.

(1) ひずみ速度集中係数*K_t*と応力集中係数*K_t*と同様に, 試験 片形状が相似であれば,同じ値となる.

(2) ひずみ速度集中係数 $K_{t\epsilon}$ は, 試験片長さが増加するにつれ て増加する.この点で, 試験片長さに依存しない応力集中係数 とは異なる.比較的実際の問題に近い板半幅D/2 = 4 mmの 4分の1, すなわち2t/D = 0.25の場合, l/D = 10で一定値 に収束する.

(3) ひずみ速度集中係数 $K_{t\epsilon}$ と応力集中係数 K_t , または K_t^* の 比の値は、切欠き深さ $2t / D \le 0.5$ では、切欠き相対深さで一 義的に決まる.この関係を用いれば、応力集中係数 K_t , または K_t^* よりひずみ速度集中係数 $K_{t\epsilon}$ の予測が可能となる.

(4) 開き角 ω が増加すると、応力集中係数 K_t 、 K_t *およびひず み速度集中係数 $K_{t\dot{\epsilon}}$ はいずれも減少する.しかし、 $K_t \geq K_t$ *の減 少の割合は常に同じである.すなわち $K_{t\dot{\epsilon}}/K_t \geq K_{t\dot{\epsilon}}/K_t^*$ は開き 角 ω に依存しない(表 6).よって、切欠きの開き角に依らず、 応力集中係数 K_t の値が分かれば、ひずみ速度集中係数 $K_{t\dot{\epsilon}}$ を求 めることができる.

参考文献

 Radin J., Goldsmith W.: Normal Missile Penetration and Perforation of Layered Plates, Int. J. Impact Engng, Vol. 7, p. 229-259 (1988)

 (2) 綾哲也,中山登史男:高分子材料の縦弾性係数に及ぼす ひずみ速度の影響,塑性と加工, Vol. 36, No. 413, p. 665-670 (1995)

(3) 本間精一: プラスチックの実用強さと耐久性(4), プラス チックス, Vol. 55, No.1, p174-182 (2004)

(4) 茶谷明義,内山進:帯板の円孔および半円切欠き部の動的応力集中,材料, Vol. 21, No. 226, p. 636-640 (1972)

(5) Altenhof W., Zamani N., North W. and Arnold B. : Dynamic Stress Concentrations for an Axially Loaded Strut at Discontinuities Due to an Elliptical Hole or Double Circular Notches, International Journal of Impact Engineering, Vol. 30, No. 3, p.255-274 (2004)

(6) 河田幸三,橋本彰三:動的引張りをうける長い切欠き弾
 性棒での動的応力集中について,東京大学宇宙航空研究所報
 告, Vol. 8, No. 2, p. 377-384 (1972)

(7) 松本浩之,中原一郎:内外面に等分布衝撃圧力を受ける
 有孔円板および円筒,日本機械学会論文集,Vol. 32, No. 237,
 p. 709-717 (1966)

(8) Georgiadis H.G. : Dynamic Stress Concentration Around a Hole in a Viscoelastic Plate, Acta Mechanica, Vol. 111, No. 1-2, p. 1-12(1995)

 (9) 谷村眞治: 材料・構造物の衝撃問題研究(これまでの推移 と今後の展望),日本機械学会論文集A編, Vol. 63, No. 616,
 p. 2466-2471(1997)

(10) 武田展雄:先進複合材料/構造の衝撃損傷と破壊,日本 機械学会論文集A編, Vol. 63, No. 616, p. 2472-2477 (1997)
(11) 井上裕嗣,岸本喜久雄,青木繁:衝撃問題における逆解 析,日本機械学会A編, Vol. 63, No. 616, p. 2478-2484 (1997)
(12) 野田尚昭,大塚駿,安藤誠人,佐野義一,高瀬康,篠崎 貴宏,管文海:高速引張試験における切欠き試験片の動的応力 集中とひずみ速度集中の解析,日本機械学会A編, Vol. 79, No. 804, p. 1182-1190 (2013)

 (13) 安藤誠人,野田尚昭,黒島義人,石川康弘,竹田英俊: ポリジメチルシロキサンを共重合したポリカーボネートの衝<
 撃特性と時間-温度換算則の適用,日本機械学会論文集 A 編, Vol. 80, No. 814, p. SMM0149 (2014)

(14) Noda N.-A., Ohtsuka H., Zheng H., Sano Y., Ando M., Shinozaki T. and Guan T: Strain Rate Concentration and Dynamic Stress Concentration for Double-Edge-Notched Specimens Subjected to High-Speed Tensile Loads, Fatigue & Fracture of Engineering Materials & Structures, Vol. 38, Issue 1, p. 125-138 (2015)

(15) 野田尚昭,田中賢,鄭宏彬,安藤誠人,佐野義一,高瀬 康,赤木大地:高速引張試験の弾塑性解析に基づくポリカーボ ネートの衝撃特性における時間―温度換算則の適用,自動車 技術会論文集,Vol. 48, No. 2, p. 535-542 (2017)

(16)野田尚昭,高瀬康:設計に活かす切欠き・段付き部の材料強度,日刊工業新聞社,(2010)

(17)野田尚昭,赤木大地,沈雨濃,高木怜,池田朋弘,佐野 義一,高瀬康:円周切欠きを有する丸棒試験片におけるひずみ 速度集中係数の提案と応力集中係数の関係についての考察,

日本機械学会論文集, Vol. 83, No. 851, p. ROMBUNNO. 17-00034 (2017)

(18) Noda, N.-A., Shen, Y., Takaki, R., Akagi, D., Ikeda, T., Sano, Y., and Takase, Y. Relationship between Strain Rate Concentration Factor and Stress Concentration Factor, Theoretical and Applied Fracture Mechanics, Vol.90, p. 218-227 (2017)