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ABSTRACT: Using spatial energy level gradient engineering with quantum dots (QDs) of 

different sizes to increase the generated carrier collection at the junction of a QD heterojunction 

solar cell (QDHSC) is a promising strategy for increasing the energy conversion efficiency. 

However, the results of current related research have shown that a variable band gap structure in a 

QDHSC will create an appreciable increase not in the illumination current density but rather in the 

fill factor. In addition, there is a lack of studies on the mechanism of the effect of these graded 

structures on the photovoltaic performance of QDHSCs. This study presents the development of 

air atmosphere solution-processed TiO2/PbS QDs/Au QDHSCs by engineering the energy level 

alignment (ELA) of the active layer via the use of a sorted order of differently sized QD layers (4 

QD sizes). Compared to the ungraded device (without the ELA), the optimized graded architecture 

(containing the ELA) solar cells exhibited a great increase (21.4%) in short-circuit current density 

(Jsc). As a result, a Jsc value greater than 30 mA/cm2 has been realized in absorption layer thinner

（~300nm） planar PbS QDHSCs, and the open-circuit voltage (Voc) and power conversion 

efficiency (PCE) were also improved. Through characterization by the light intensity dependence 

of the Jsc and Voc and transient photovoltage decay, we find that: (i) The ELA structure, as an 

electron-blocking layer, reduces the interfacial recombination at the PbS/anode interface; (ii) The 

ELA structure can drive more carriers towards the desirable collection electrode, and the additional 

carriers can fill the trap states, reducing the trap-assisted recombination in the PbS QDHSCs. This 

work has clearly clarified the mechanism of the recombination suppression in the graded QDHSCs 

and demonstrated the effects of ELA structure on the improvement of Jsc. The charge 

recombination mechanisms characterized in this work would be able to shed light on further 

improvements of QDHSCs and/or other types of solar cells. 
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1.INTRODUCTION 

Quantum dot solar cells (QDSCs), as a very promising candidate for next-generation solar cells, 

have attracted much attention. This is mainly because of the many advantages of QDs, such as 

their bandgap tunability due to the quantum size effect, facile solution processing, and multiple 

exciton generation (MEG) as well as their effect of slowing down the cooling of hot electrons.1-3 

Due to the large (18 nm) Bohr radius of lead sulfide (PbS), PbS QDs have a broadly tunable 

bandgap in the size range of 3–5 nm, making them competitive for photovoltaic applications.4 

Since the first near-infrared-absorbing (λ > 800 nm) colloidal QDSCs were reported,5 PbS 

quantum dot heterojunction solar cells (QDHSCs) have developed rapidly as a result of the efforts 

focused on advanced QD surface engineering and designing and improving device architectures.6-

8 In QDHSCs, normally, ZnO or TiO2 thin films deposited on transparent electrodes (such as FTO) 

are used as electron transport layers, PbS or PbSe QDs are employed as the optical absorption 

layer, and Au deposited on the surface of the QD layers is used as an electrode to collect holes. To 

date, PbS QDHSCs with efficiencies of more than 10%9-10 have been based on engineering the 

band alignment of two QD layers as well as better passivation using molecular halides.6 The 

success originally depended on the reasonable tuning of energy level alignments (ELAs) between 

different PbS QD layers treated with different ligands. Tuning the ELA serves as the main route 

to improve the efficiencies of QDHSCs, mainly through two approaches: size-tunable bandgaps11-

16 and ligand chemistry.6 In addition, using graded doping17 and surface dipole moments18 to tune 

the ELA to improve the performance in QDHSCs was demonstrated. 

ELA within the light-absorbing, charge-transport active layer has previously been used in 

epitaxial compound semiconductor thin films such as GaAs and CuInxGa1-xSe2 thin film solar 

cells.19-21 In those studies, ELA could improve photovoltaic (PV) performance through a number 
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of mechanisms and in a variety of materials. For example, it could facilitate carrier collection, 

strengthen the built-in electric field, and improve the fill factor (FF), short-circuit current (Jsc) and 

open-circuit voltage (Voc). As a result, improved photovoltaic conversion efficiencies have been 

experimentally demonstrated. However, the procedure to process the ELA structure in a thin film 

solar cell is complicated, and it is difficult to fabricate an efficient barrier layer between the 

window layer and the back-electrode layer to reduce electron and hole carrier recombination. 

Above all, in the thin film layer, the composition variation can easily generate many bulk traps 

due to the lattice mismatch.22 As a result, the range of bandgap grading is greatly limited. In 

addition, current matching is required to optimize the thin film solar cells, which requires 

theoretical calculations and a large number of experimental practices.21 

Compared with the preparative techniques of the abovementioned compound semiconductor thin 

film solar cells, the use of size-tunable QDs to prepare ELA solar cells is a good alternative. Tuning 

the ELA by simply adjusting QD sizes is an advantage of QD-based solar cells and is very easily 

achievable. Stacking multiple layers of QDs with different sizes need not to consider the lattice 

matching at the interfaces of QD layers, because the QDs are passivated by ligands and do not 

directly contact with each other. The bandgap-ordered QD layers can be created via a layer-by-

layer spin coating process, and this method can be used to easily control the spatial bandgap 

variation according to a design. In the QDHSCs, ELA has been used to improve carrier transport 

and collection, which can be ascribed to the quantum funnel effect, i.e., the ELA structure drives 

the performance-limiting electrons towards the electron-accepting electrode, resulting in the 

efficient collection of photogenerated carriers.13 However, previous research results 11, 13, 16 showed 

that the ELA structure solely leaded to an increase in FF rather than an appreciable increase in Jsc 
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as expected. In addition, after inserting the ELA structure in standard QDHSCs, changes in the 

transport as well as the recombination mechanism of carriers are not clear.  

In our work, we have designed an ELA architecture (i.e., the graded structure) through interface 

engineering by using different QD size layers in order to explore the effect of ELA on the 

photovoltaic performance of PbS QDHSCs. We found that the ELA structure can enhance Jsc 

greatly. Compared to an ungraded device (without the ELA), the optimized graded architecture 

(containing the ELA) solar cells exhibited a great increase (21.4%) in Jsc. A Jsc value greater than 

30 mA/cm2 has been realized in the PbS QDHSCs, and a high efficiency of 7.25% has been 

achieved. We have investigated the mechanism through characterization of Voc decay and light 

intensity dependences of Voc and Jsc. We have clearly demonstrated that enhancement of Jsc in 

the QDHSCs result from reducing the recombination at both the QD active layer and the interface 

using the ELA structure. Furthermore, the performance of unencapsulated PbS QDHSCs remained 

stable for over 150 days of storage in air. The most important thing is that all of the PbS quantum 

dots at each layer are passivated with inorganic ligands in our devices without using 1,2-

ethanedithiol (EDT) which is normally used, and all of the processes including preparation, 

characterization and store of the devices are carried out under air condition.  

2. RESULTS AND DISCUSSION 

In this work, different sizes of PbS QDs were synthesized using a modified hot-injection 

method,23 and four sizes of PbS QDs were prepared by controlling the injection temperature. 

Figure 1a shows the absorbance spectra of PbS QDs with the different sizes. The spectra 

demonstrate that the synthesis allows the preparation of QDs with a first excitonic absorption peak 

varying between 1055 and 750 nm (the first excitonic energy or bandgap Eg: 1.17–1.63 eV). The 

diameter (d) of the PbS QDs is calculated using equation (1).24 This equation allows us to 
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determine d directly from Eg, avoiding a lengthy transmission electron microscopy (TEM) analysis 

for each sample synthesized. The calculated sizes of the QDs are 2.6–3.6 nm, and the four sizes of 

PbS were denoted M (3.6 nm), S1 (3.3 nm), S2 (2.9 nm), and S3 (2.6 nm). 

𝐸𝑔 = 0.41 +
1

0.252𝑑2+0.283𝑑
        (1) 

 

Figure 1. (a) The absorption spectra of the PbS QDs in octane. (b) Photoelectron yield (PY) spectra 

of the PbS QDs. (c) The energy level diagram of the PbS QDs of different sizes. (d) A TEM image 

for PbS QDs with the first excitonic energy Eg of 1.17 eV. 

In this work, the valence band maximum (VBM) of the four sizes of PbS QDs were measured 

by using photoelectron yield (PY) spectroscopy, as shown in Figure 1b. As the PY signal intensity 
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has a good S/N ratio, the error bars are included within the points. The VBM edge is determined 

from the intersection of the baseline with the tangent to the spectra. Then, by combining the results 

of both of band gap Eg and VBM, the energy levels of the conduction band minimum (CBM) were 

determined, as seen in Figure 1c. We can observe that the energy levels of both CBM and VBM 

obviously change with the PbS QD sizes, which is in agreement with those results reported by 

Miller et al.25  Miller and co-workers reported that the standard way for analyzing the VBM using 

XPS/UPS may be not correct for larger size QDs due to the extremely low density of states at the 

VBM. But in our work, smaller size PbS QDs are used and thus the PYS results could be expected 

to be reliable. Based our measured PYS results, we can assume that in the 2.6–3.6 nm range, the 

changes in the VBM are smaller than those in the CBM as the size of the QDs varies. Thus, changes 

of size within a certain range can tune the conduction band energy at the top of the absorber layer 

for the constructed ELA structure of the PbS QDHSCs. In addition, for the PbS QDHSCs, it was 

confirmed that the 3–5 nm range translates into the broad optimal efficiency bandgap peak.26  Thus, 

we can use these four sizes of PbS QDs to build an ELA structure. Figure 1d shows a typical TEM 

image of M-size PbS QDs, illustrating that the PbS QDs are spherical and that their diameter is 

very close to the calculated one. 

In this work, we design and characterize an ungraded device and three types of graded devices 

with different electron collection efficiencies. Figure 2 illustrates spatial band diagrams of the 

photoelectron cascades within the solar cells studied here. In our previous report,27 solar cells 

employing PbS QDs with a first excitonic absorption peak at a wavelength λ = 1050 nm (first 

exciton energy Eg of 1.17 eV) showed high performance, and thus the PbS QDs with this 

absorption peak were employed to fabricate the ungraded device and the base layer of the graded 

devices, and other smaller-diameter QDs (Figure 1a) were employed to build the upper layers. The 
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active layer of Type I (ungraded device) had a thickness of approximately 300 nm, an optimized 

thickness that achieved the best efficiency (as shown in Figure S1) and the bulky ligands of the 

PbS QDs were replaced with short ligands through a hexadecyltrimethylammonium bromide 

(CTAB) treatment.27-28 All processes were performed under ambient conditions. For the devices 

using ELA engineering, the active layers of the three types of graded devices contained two, three 

and four compositions, respectively. Type II consisted of a 260-nm-thick film of M-PbS QDs (1.17 

eV) deposited on the TiO2 compact layer with a subsequent 40-nm-thick layer of S2-PbS QDs 

(1.46 eV); Type III consisted of a 220-nm-thick layer of M-PbS QDs with subsequent successive 

40-nm-thick layers of S1-PbS (1.27 eV) and S2-PbS QDs; and Type IV consisted of a 180-nm-

thick layer of M-PbS QDs with subsequent successive 40-nm-thick layers of S1, S2 and S3-PbS 

QDs (1.63 eV). Therefore, the thickness of the total active QD layers is ~300 nm for all the device 

types. 

 

Figure 2. Spatial band diagrams of ungraded and 3 types of graded QD solar cells. Color coding 

corresponds to larger bandgaps (more blue/violet). Type I: a thickness of ~300 nm the active layer 
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with M-PbS QDs, Type II:M-PbS (~260 nm) +S2-PbS (~40 nm), Type III:M-PbS (~220 nm) +S1-

PbS (~40 nm) +S2-PbS (~40 nm). Type IV: M-PbS (~180 nm) +S1-PbS (~40 nm) +S2-PbS (~40 

nm) +S3-PbS (~ 40 nm). 

As an example, Figures 3a and b show the schematic structure and a cross-sectional scanning 

electron microscopy (SEM) image, respectively, of a Type III graded solar cell with an Au 

electrode on the PbS QD layer. The low-temperature-processed TiO2 compact layer acts as an 

electron-accepting/hole-blocking layer. The bottom six cycles of the CTAB-passivated QD layer 

of this structure utilize the M-PbS QDs as the main charge generation layer, followed by single 

layers of CTAB-passivated S1 and then S2-PbS QDs as a spatial gradient ELA structure (Figure 

3a). The cross-sectional SEM image of a typical Type III device (Figure 3b) shows an ~35-nm-

thick TiO2 layer and an ~ 300-nm-thick QD layer. In addition, the layer-by-layer process keeps 

each CQD layer fused together, rather than producing distinctly stratified interfaces. 

 

Figure 3. (a) Schematic illustration of graded device Type III structure. (b) Cross-sectional SEM 

image of a typical device of type III (~300 nm thick PbS QD active layer). 
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Figure 4a show the typical photocurrent density–voltage (J–V) characteristics of the four types 

of QDHSCs under 1 sun-illumination. We have measured 24 devices for each type of the QDHSCs. 

The average values of the photovoltaic parameters such as Voc, Jsc, FF, series resistance (Rs), 

shunt resistance (Rsh), and PCE are shown in Table 1. In addition, the champion results of each 

type of the QSHSCs are shown in the parentheses of Table 1. Compared with the ungraded device 

(Type I), the graded devices (Types II, III) show desirably increased power conversion efficiencies 

(PCEs) that originate from the significant improvements in Jsc (~ 20% increase). From the J–V 

results, by employing different numbers of graded structure layers, we found that Types II and III 

of the ELA structure yielded an optimum result in this system and that an additional differently 

sized layer yielded no further benefits in photovoltaic properties. Remarkably, under 1-sun 

illumination, the best performance by a graded Type III QD device showed a Jsc of 32.65±1.03 

mA/cm2, Voc of 441±8 mV, FF of 46±2% and PCE of 7.12 ± 0.11%. 

Table 1. Statistical average of the photovoltaic performance parameters of 24 devices for 

each type of the QDHSCs. The champion results are shown in the parentheses.    

Sample 
Voc 

(mV) 

Jsc 

(mA·cm-2) 

FF 

(%) 

PCE 

(%) 

Rs 

(Ω·cm2) 

Rsh 

(Ω·cm2) 

Type I 

427 ±9 

（438） 

25.82±1.39 

（27.81） 

48±1

（50） 

6.12±0.13

（6.28） 

4.56±1.14

（4.73） 

111.4±11.7

（121.4） 

Type II 

438 ±8 

（448） 

30.92±1.12

（32.54） 

46±2

（49） 

6.82±0.12

（7.02） 

5.88±1.76

（6.1） 

124.2±17.6

（135.4） 

Type III 

441 ±8 

（451） 

32.65±1.03

（33.58） 

46±2

（48） 

7.12±0.11

（7.24） 

7.28±2.16

（7.94） 

677.9±19.2

（691.3） 

Type IV 
450 ±9

（462） 

28.88±1.17

（30.29） 

42±1

（44） 

6.10±0.09

（6.22） 

10.28±1.89

（10.57） 

726.8±14.8

（736.1） 
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The trend of improving performance with the ELA structure depended on two aspects: Jsc and 

Voc. The most important improvement was that the average (as shown in Figure S2, 24 samples) 

Jsc was enhanced in the graded device compared to the ungraded one. The Jsc improved to 32.65

±1.03（33.58）mA/cm2 (Type III) compared to 25.82±1.39 mA/cm2 (Type I), and the Voc also 

slightly increased from 427 ±9 mV (Type I) to 450 ±9 mV (Type III) with the added layer of the 

ELA structure, while the FF decreased to 46±2 % (Type III) from 48±1% (Type I). However, for 

the added three layers of differently size QDs (Type IV), we observed decreased efficiency due to 

the deteriorated Jsc and FF compared to the Type III solar cell. 

The dark J-V characteristics of the four types of QDHSCs are shown in Figure 4b, which suggest 

that the increasing number of ELA structure layers leads to an increase in series resistance (Table 

1). Resistive losses are believed to be the main reason for the reduced FFs observed in the 

QDSCs.29 The increased series resistance may arise from the valence band offset between the 

absorber layer (M) and the top layer (Sn, n=1, 2, 3), which causes a weak effect that blocks hole 

diffusion to the metal contact (Au), and a hole accumulation layer, which forms a weak barrier at 

the upper layer of the ELA structure. This barrier reduced hole collection in the graded devices 

compared with the ungraded device and caused interfacial effects at the metal contacts (Figure S3). 

Therefore, we used three differently sized PbS QDs to prepare three kinds of Type II model graded 

structure devices and measured their dark current characteristics. The results indicate that the series 

resistance increased with increasing valence band offset (Figure S4), revealing a reduction in hole 

transport to gold electrode due to increasing hole-blocking effect. 

Our experimental results and the previously reported results clearly differ.11, 13, 15-16 In our graded 

devices, Jsc can be increased to very high values, but FF deteriorates. The external quantum 

efficiency (EQE) spectra of the four types of QDHSCs are shown in Figure 4c. The EQE values 
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of the graded devices are much larger than those of the ungraded device. On the other hand, the 

optical absorption spectra (Figure S5) show that the optical absorption of the graded devices are 

not larger than that of the ungraded device. Therefore, the improvements of the EQE and Jsc of 

the graded devices are not attributable to an enhancement of the light absorption, which has also 

been confirmed by other groups.14 We believe that the greater EQE of the graded devices is due to 

the quantum funnel effect 13 resulting from the ELA structure. 

 

Figure 4. (a) J-V characteristics under simulated AM 1.5G illumination for the ungraded and three 

types of graded devices. (b) The dark current characteristics of these devices. The series resistances 

(RS) were extracted by fitting these dark current characteristics by a single diode model.29 (c) 

External quantum efficiency (EQE) spectra for the ungraded and three types of graded devices. 

(a) (b) 

(c) 
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From the spatial band diagrams (Figure 2), the upper layer of both the Type II and Type III 

devices is the same, i.e., an S2-PbS QDs layer. Although the Jsc values of the two types of devices 

both increased, Type III has a higher Jsc. This result shows that for the Type II device, the role of 

the ELA structure is mostly to effectively block electrons, but the ELA structure of the Type III 

device, in addition to blocking electrons, also provides a multi-stage impetus to drive minority 

carriers generated at these depths towards the desired electrode. In order to further confirm this, 

we have compared the photovoltaic performances of the ungraded device (Type I), the graded 

device (Type III) and a new device which only contains an electron blocking layer (EBL) of 

PEDOT: PSS. The QD active layers are same for these three devices as shown in Fig. S6. Here, 

we chose PEDOT: PSS as electron blocking layer material is because that PEDOT: PSS has the 

very good band energy level matching as an EBL (as shown in Figure S6a) for the PbS QDs used 

in the active layer. As shown in Figure S6b, c and Table S1, it is very clear that the photovoltaic 

performance has been enhanced significantly by the ELA structure (graded Type III device) 

compared to the device employing the EBL layer only. This result demonstrates that the graded 

energy level structure does contribute to the improvement of the solar cell performance, but the 

improvement is not merely due to the formation of electron blocking layer. 

Through integrating the EQE spectra with the AM1.5G solar spectrum for the four champion 

QDHSC types, values of Jsc were calculated as 26.7±0.92 and 30.7 ±1.07mA/cm2, respectively, 

in good agreement with the measured J–V results (25.82±1.39 and 32.65±1.03 mA/cm2). These 

results also suggest that the Jsc of these planar PbS QDHSCs with a PbS layer thickness of only 

approximately 300 nm can more closely approach the Jsc of depleted-bulk-heterojunction-

structured PbS QDSCs, in which the active layer thickness is normally larger than 1000 nm (e.g., 

ZnO nanowires/PbS)27, 30 The Jsc more than 30 mA/cm2 in planar PbS QDHSCs were also reported 
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by other two strategies28, 31. One strategy is that a cascaded-junction quantum dot solar cell was 

fabricated by using 3 kinds of sizes of highly monodispersed PbS QDs. 31 In the device, one layer 

of larger size PbS QDs with TBAI ligand was placed between ZnO and QD active layer to reduce 

the interfacial recombination at ZnO/QD interface and to decrease leakage current. 31 Then, one 

layer of smaller size PbS QDs with EDT ligand was placed between the QD active layer and the 

Au electrode as an electron-blocking/hole-extraction layer to decrease recombination at this 

interface. However, the organic ligand EDT passivated PbS quantum dot layer would have a 

negative influence on the illumination stability of device under air condition32,33. Almost all of the 

PbS QDHSCs using EDT as passivation ligands were measured in N2 atmosphere rather than in 

air6, 9, 34-35. In another strategy, a new-ligand (pseudohalogens) was employed for PbS QD surface 

passivation and a thick QD active layer (more than 500 nm) was used, which increased the Jsc 

largely28. In our devices, although the thickness of the active layer is only about 300 nm, Jsc values 

greater than 30 mA/cm2 have been realized, which is originated from the ELA structure. The most 

important thing is that all of the PbS quantum dots at each layer are passivated with inorganic 

ligands (Br-) in our devices, and all of processes including preparation, characterization and store 

are carried out under air condition in this work. 

For our graded devices, the conduction band energy gradient produces an additional driving force 

for electrons, and the degree of band bending (the conduction bandgap variation with position) is 

in the order of Type IV > Type III > Type II. Figure 4c shows that the EQE of the graded devices 

increased as the quantum funnel effect strengthened in the visible and long-wavelength range 

(400–1050 nm). This is because of the decreased recombination rate caused by the enhanced 

separation of the electrons and holes due to the driving force originating from the internal electric 

field and the ELA. In other words, the ELA structure causes an increased gradient in the carrier 
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profile (i.e., an effective larger intrinsic electric field), and thus, the recombination rate decreases; 

this explains the further enhancement in EQE for the graded devices. In this work, the EQE 

spectrum shows that the improvement in Jsc in the graded device is mainly due to the visible light 

range of the photoelectric conversion, although the optical absorbance in the visible region is 

almost the same for the four devices. This result indicates that the charge collection efficiency 

decreases in the order of Type IV > Type III > Type II > Type I. The decrease in Type IV EQE in 

the 1000–1200 nm spectral range may be partly attributed to the decrease in the optical absorbance 

due to the thinner active layer thickness as shown in Figure S5.  

As shown in the above results, the Jsc and Voc both increased by introducing the ELA structures, 

which indicates that the extracted current is increased and recombination within the quasineutral 

region is reduced, so the optimized ELA structure can increase the diffusion length such that it is 

longer than the quasineutral region. To explore the mechanism of the photovoltaic enhancement 

in the graded structure solar cells, we need to understand the recombination mechanism in the PbS 

QDHSCs. In the PbS QDHSCs, there are several possible recombination mechanisms. Figure 5a 

shows the possible recombination processes, including interfacial recombination, trap-assisted 

recombination, and band-to-band recombination.31 In this study, we focus on ①  interfacial 

recombination at the PbS/Au contact interface and ② trap-assisted recombination in the PbS QD 

active layer through an intragap state. After employing the graded structure, the following three 

effects are anticipated, as shown in Figure 5b: i) The graded structure, as an electron-blocking 

layer, reduces the interfacial recombination at the PbS/Au interface; ii) The graded structure 

provides a multi-stage impetus to drive efficiency-limiting electrons towards the TiO2 electron-

transfer layer; and iii) the additional carriers can fill the trap states to reduce the trap-assisted 

recombination in the PbS QD active layers. 
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Figure 5. Possible recombination channels for photogenerated carriers in the PbS QDHSCs 

including ① Interfacial recombination at PbS/gold contact interface, ② Trap-assisted 

recombination, ③Band to band recombination and ④ Interfacial recombination at TiO2 /PbS for 

(a) Ungraded device and (b) Graded devices. 

To better understand the improvement in the short-circuit current and the change in the 

recombination mechanism of the graded structure PbS QDHSCs, we characterized the devices in 

several ways to investigate their working mechanisms. First, to gain insights into the mechanisms 

leading to the photovoltaic performance improvements in graded QD devices with different ELA 

structures, we studied how Jsc and Voc depend on light intensity (P) in these devices (Figure 6a, 

b). Figure 6a displays the Jsc as a function of the light intensity PLight in a double logarithmic scale. 

The Jsc values for all devices increased sub-linearly with the light intensity, and the experimental 

data are fitted with Jsc(P)=Pα
Light,

32to ascertain the contribution of the charge recombination in the 

loss mechanism for the photocurrent, where α is the exponential factor (called the recombination 

coefficient) and is obtained for the ungraded and graded devices from the fitting. If the α value is 

close to 1, that signifies that nongeminate recombination (such as trap-assisted recombination) at 

short-circuit conditions is negligible.32-33 However, if the α value is smaller than 1, both trap-
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assisted recombination and interface state recombination are present in the solar cell.34 In the 

current case, for the Type I ungraded device and the Type II, III, and IV graded devices, a 

logarithmic dependence is observed at all ranges of light intensities with α being 0.71, 0.74, 0.78, 

and 0.75, respectively. The changes in the value of α correspond to the changes in Jsc. In the graded 

devices, a reduction in the nongeminate recombination is expected because of the decreased trap-

assisted recombination in the PbS active layer (process 2 in Figure 5b). 

 

Figure 6. (a) Light-intensity dependence of Jsc and (b) light intensity dependence of Voc for the 

four types of QDHSCs. The solid lines are the fitting results.  

In these solar cells, by investigating the diode ideality factor n, the dominant recombination 

mechanism could also be determined. Two methods can be used to obtain the ideality factor: one 

is by fitting the dark J−V curves with the ideal diode equation; the other is by fitting the light 

intensity dependence of the Voc curves. However, it is hard to ignore the influence of the series 

resistance in the former method. Using the latter method to determine the ideality factor n is usually 

considered to be a better estimate since it is not influenced by series resistance and is supposed to 

reflect the recombination mechanisms under open-circuit conditions.34 Figure 6b also shows the 

increase in Voc for the four types of devices with increasing light intensity. For a standard junction 

(a) (b) 
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solar cell, neglecting the series and shunt resistances, the light intensity (Plight) dependence of the 

Voc has the following relation:35-36 

𝑉𝑜𝑐(𝑃) =
𝑛𝑘𝑇

𝑞
𝑙𝑛(𝑃𝐿𝑖𝑔ℎ𝑡) + 𝐶               (2) 

where k is the Boltzmann constant, T is the temperature, q is the absolute value of electron 

charge, n is the ideality factor, C is a constant. 

By fitting the Voc vs. PLight curves with equation (2), n is determined to be 2.06, 1.61, 1.42, and 

1.14 for the ungraded device Type I and the graded devices Type II, III, IV, respectively (Figure 

6b). The great difference in n for different type of the QDHSCs can be interpreted as being due to 

the different carrier recombination characteristics, reflecting the different J–V characteristics of 

solar cells with different device structures. Ideally, for a standard p-n junction, when the 

recombination is dominated by band-to-band recombination where electrons in the conduction 

band recombine directly with holes in the valence band, the value of the ideality factor n is 

theoretically close to 1. On the other hand, when trap-assisted recombination at the interfaces or 

through the mid-gap states in the PbS QD active layer dominates, the values n theoretically range 

from 1 to 2 (1 < n ≤ 2).36 Our results (Figure 6b) reveal the decrease in the ideality factor from 

2.06 (ungraded) to 1.14 (graded) along with the increase in the number of layers of differently size 

QDs, reflecting that the relative contribution of trap-assisted recombination is reduced. This is 

because, in the graded structure as shown in Figure 5b, the intrinsic electric field induced by the 

graded structure increases in the order of Type IV > Type III > Type II. Thus, more charge carriers 

can be driven with the electric field increasing and more trap states can be filled by charge carriers, 

which results in the strong suppression of the trap-assisted recombination. Thus, for the graded 

devices, the ELA structure additionally acts like an increase in incident light intensity. Therefore, 
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this validates the idea that trap-assisted recombination can be largely suppressed in the graded 

structure solar cells. 

 

Figure 7. (a) Normalized open-circuit photovoltage decay curves for ungraded and graded PbS 

QDHSCs, showing three dominant decay processes. (b) The effective carrier lifetimes calculated 

from the voltage decay curves. 

Table 2. Fitted proportionality constants (including the relative weights) and time constants 

obtained from the open-circuit photovoltage decay curves of the PbS QDHSCs. 

 

To directly investigate the possible charge-recombination processes, the transient photovoltage 

decays were measured. Upon illumination of the PbS QDHSCs by a 532-nm laser pulse at open-

Cells A1 (A1/ (A1 + A2 + A3)) τ1(ms) A2 (A2/ (A1 + A2 + A3)) τ2(ms) A3 (A3/ (A1 + A2 + A3)) τ3(ms) 

Type 

I 
0.131(34.4%) 

0.031±0.

001 
0.108（28.3%） 

0.384±0.

001 
0.143（37.3%） 3.66±0.01 

Type 

II 
0.132(30.5%) 

0.056±0.

001 
0.128（29.8%） 

0.457±0.

001 
0.171（39.7%） 4.98±0.01 

Type 

III 
0.126(28.6%) 

0.078±0.

001 
0.124（28.3%） 

0.547±0.

001 
0.190（43.1%） 6.43±0.01 

Type 

IV 
0.087(18.8%) 

0.127±0.

001 
0130（27.9%） 

0.646±0.

001 
0.248（53.3%） 7.40±0.01 

(a) (b) 
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circuit conditions, open-circuit photovoltages of the solar cells are obtained. When the incident 

laser is switched off, all photogenerated carriers will ultimately recombine, leading to a decay in 

the photovoltage. The transient photovoltage decay depends on the recombination types and thus 

gives valuable information on carrier recombination. In addition, to obtain further detail about the 

effects of intragap states, we measured transient photovoltage decay without background 

illumination. 

Figure 7a shows the transient photovoltage decay behaviours of the ungraded device and the 

three types of graded devices. The graded cells exhibited much slower decay processes than the 

ungraded cell, which provided direct proof of reduced recombination and increased carrier lifetime 

in the graded cells. In addition, for the graded cells, the decay processes slowed with the increase 

in the top layer number. The decay curves can be roughly divided into three processes, where 

section I and section II are both fast decay processes and section III is a slow decay process. These 

photovoltage decay processes correspond to different recombination processes occurring at 

different timescales. Therefore, the three decay processes suggest that there are at least three 

recombination mechanisms in this case. We can fit the decay curves very well by using a 

superposition of three exponential functions as shown in the following equation: 

𝑦(𝑡) = 𝐴1𝑒−𝑡/𝜏1 + 𝐴2𝑒−𝑡/𝜏2 + 𝐴3𝑒−𝑡/𝜏3   (3) 

where A1, A2 and A3 are proportionality constants and τ1, τ2 and τ3 are time constants. The fitted 

curves and the corresponding parameters are shown in Figure 7a (yellow line) and Table 2, 

respectively. For equation (3), we assigned the first exponential decay to the fastest photovoltage 

decay process (section I), the second exponential decay to the sub-rapid voltage decay process 

(section II) and the third exponential decay to the slow photovoltage decay process (section III). 

Figure S7 shows that in the PbS QDHSCs, when the excitation light is switched off, the 
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photogenerated free carriers could recombine through three channels: (i) intrinsic trapping-assisted 

recombination in PbS and the TiO2 films; (ii) interfacial recombination at the TiO2/PbS interface 

defects and PbS/Au interface defects and (iii) direct recombination of photogenerated free 

electrons in TiO2 and holes in PbS layers. From our previous research results,27, 37-38 in the high 

Voc regime (section I), the value of τeff was in the ultrafast timescale (~0.1 ms, constant τ1), and 

thus, this regime could be related to trap-assisted recombination (process i in Figure S7). In the 

section II regime, the value of τeff was more than 0.2 ms (constant τ2), and this regime could be 

related to interfacial recombination at the TiO2/PbS and PbS/gold interfaces (process ii in Figure 

S7). In the low Voc regime (section III), the value of τeff was more than 1 ms (constant τ3); as this 

regime shows a long time-scale decay process, it could be related to direct recombination of free 

holes in the PbS layer and free electrons in the TiO2 layer due to diffusion (process iii in Figure 

S7).  

Table 2 shows the parameters obtained by fitting equation (3) to the Voc decays in Figure 7(a). 

In section I, the weight of A1 decreases and the decay time constant τ1 increases from the Type I 

device to the Type IV device. This shift reflects the reduction of trap-assisted recombination with 

the increasing extent of the band bending due to the trap states filling as mentioned above, which 

is consistent with the ideality n change for different devices. For section II, the weight of A2 

showed no obvious changes, but the decay time constant τ2 increased continually from Type I to 

Type IV (process ii in Figure 6b). This could be attributed to the reduction in the recombination at 

the interfaces of PbS/Au in the ELA structures. The section III decay process represents direct 

recombination between electrons and holes in the TiO2 and PbS layers, respectively, where the 

Voc will disappear completely after this process. As a result of other recombination proportion 

decreases in the graded cells, the weight of A3 increased correspondingly. In addition, the decay 
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time constant τ3 significantly increased in the graded devices. We suspect that this is probably 

because more ELA structure layers can cause stronger band bending, which creates a quasi-electric 

field opposed to the electron diffusion direction in this situation, thus increasing the difficulty of 

direct recombination of electrons and holes. 

The effective carrier lifetime (τeff) in the PbS QDHSCs from the photovoltage decay can be 

evaluated as defined by the following equations:39-40 

𝜏𝑒𝑓𝑓 = − (
𝑘𝑇

𝑞
)

𝑑𝑉𝑜𝑐

𝑑𝑡
⁄ =

1

(𝜏𝑛
−1+𝜏𝑝

−1)
                     (4) 

         𝜏𝑛
−1 =

(𝑑𝑛 𝑑𝑡⁄ )

𝑛
                                         (5) 

        𝜏𝑝
−1 =

(d𝑝 𝑑𝑡⁄ )

𝑝
                                         (6) 

where k is the Boltzmann constant, T is the temperature, q is the elementary charge, and n and p 

are the photoexcited electron and hole carrier densities in the PbS QDHSCs. τn and τp are the 

electron and hole lifetimes in the PbS QDHSCs. According to the above equations, the open-circuit 

photovoltage decay is dependent on both the electron and hole lifetimes in PbS QDHSCs.  

As shown in Figure 7b, the photovoltage-dependent effective carrier lifetime could also be 

divided into three sections, corresponding to the three photovoltage decay processes. Throughout 

the Voc regime (sections I, II and III in Figure 7b), the values of τeff in the graded devices were 2–

6 times higher than in the ungraded device, in the order of Type IV > Type III > Type II > Type I, 

which can be understood through the above discussions. Based on these experimental results, the 

ELA structure was concluded to have three benefits in the Voc decay processes: (i) reducing the 

interfacial recombination, e.g., at PbS/Au; (ii) reducing the trap-assisted recombination and (iii) 

slowing the direct recombination of free electrons and holes. 
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Figure 8. Band diagram for the PbS absorber layer of a graded Type IV device, with linear band-

gap variation as a function of position (graded structure thickness). 

According to the above analysis, in the graded structure, the carriers have a longer “diffusion 

length”, which will increase the probability of charge collection at the heterojunction, thus leading 

to an increased Jsc. Due to the band bending, the graded structure will provide a force similar to 

the drift force due to a quasi-electric field. In other words, in the graded device, electrons drift 

because of the electric field due to the potential variation and by the additional quasi-electric field 

associated with the conduction band variation with position.41 Thus, in the case of a graded 

structure, a drift-diffusion length should be defined. If electron drift and diffusion are in the same 

direction, the drift-diffusion length will be42 

𝐿𝑛 =
𝑙𝑛

√1+(
𝜉𝑒𝑙𝑛
2𝑉𝑇

)
2

−  
𝜉𝑒𝑙𝑛
2𝑉𝑇

   

        (7) 

where l𝑛 is the electron diffusion length, VT is the thermal potential (kT/q) and 𝜉𝑒 is the quasi-

electric field in the ELA region. For the Type IV device (Figure 8), the absorber layer thickness is 

approximately 300 nm, the diffusion length in the colloidal PbS QD film is (as one report) ln=80 

± 10 nm,43 and the total band gap (conduction band) change is ΔEg=0.46 eV. As mentioned above, 
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the ELA structure can cause the band bending, and here we assume that the ELA structure of the 

adjacent layer of M-PbS also belong to this quasi-electric field. Thereby the space-charge width 

for this device could be on the order of 160 nm (1 layer M + 1 layer S1 + 1 layer S2 + 1 layer S3-

PbS). Therefore, the quasi-electric field caused by this band gap variation would be approximately 

𝜉𝑒 =2.88×104 V/cm directed towards the junction interface. The drift-diffusion length Ln will 

become approximately 720 nm, which is approximately 9 times the diffusion length (80 nm). Thus, 

the quasi-electric field attributed to an ELA structure built by differently sized PbS layers in a solar 

cell should result in a large increase in effective diffusion length.    

Furthermore, we have evaluated two important properties, i.e., hysteresis and stability, for our 

solar cells. Figure S8a shows the hysteresis of our PbS QDHSCs, where no significant hysteretic 

effect (lower than 1%) is identified. Then, the long-term stability was evaluated without any 

encapsulation in ambient atmosphere, which was stored under dark conditions without any 

humidity control, as shown in Figure S8b. Both the ungraded device (Type I) and the graded 

devices (e.g., Type III) were stable for over 150 days (>3600 h) without any significant degradation, 

exhibiting excellent long-term storage stability. 

3. CONCLUSIONS 

In summary, we have demonstrated that the ELA engineering in the active QD layers of 

QDHSCs can be used to improve the electron collection efficiency at the heterojunction and reduce 

trap-assisted and interfacial recombination. Through the ELA strategy, a great increase (from 28 

mA/cm2 to 33 mA/cm2) in Jsc and a maximum efficiency of 7.24% (the active area is 16 mm2) 

have been achieved by optimization of the structure. Grading the energy level does not cause much 

variation in the optical absorption, but it can improve the collection of photogenerated carriers. 

The ELA produces spatial decoupling of the electron and hole profiles, resulting in an effective 
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increase in the photoexcited carrier lifetime. This is directly linked to the enhanced effective 

diffusion length and increased Jsc. In our study, recombination mechanisms in PbS QDHSCs were 

investigated by examining the light intensity dependence of Jsc and Voc and the transient voltage 

decay. Our results show that the ELA structure has two benefits for QDHSCs: (i) The ELA 

structure, as an electron-blocking layer, reduces the interfacial recombination at the PbS/Au 

interface; (ii) The ELA structure can drive more electron carriers towards the electron transfer 

layer, and the additional electron carriers can fill the trap states, reducing the trap-assisted 

recombination in the PbS QDHSCs. With the increase in the number of graded structure layers, 

the electron driving force becomes stronger, leading to longer minority carrier lifetimes. However, 

the graded Type IV device has the longest carrier lifetime but does not have the best performance. 

This is because the presence of the graded structure causes gradual resistance increase by 

introducing undesirable band bending between the valence band of the M-size PbS layer and the 

gold contact. In the Type IV device, this barrier is hard to ignore, which seriously affected the 

transport of holes to the gold contact. Through the band energy engineering strategy and the 

optimization of the thickness of the graded structure, the Type III device achieved the best 

efficiency. The device stability and hysteresis were also evaluated. Negligible hysteretic effects 

were observed in our devices, and they exhibited excellent storage stability in air (without any 

performance decline over 150 days). In short, this study highlights the significance of band energy 

engineering in achieving high-efficiency planar heterojunction QD solar cells. The charge 

recombination mechanisms characterized in this work may be able to shed light on further 

improvements of QDHSCs and/or other types of solar cells. This study suggests a useful strategy 

to improve the effective diffusion lengths and photogenerated carriers of PbS QDHSCs via simple 

architecture design.  
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4. EXPERIMENTAL SECTION 

4.1. Materials. Lead (II) oxide (Wako, 99.5%), oleic acid (OA, Wako, 60%), 1-octadecene 

(ODE, Aldrich, 90%), and bis (trimethylsilyl) sulfide (TMS2 sulfide, Aldrich, 99.999%), 

Cadmium chloride (CdCl2, Wako, 99.8%), Oleylamine (OLA, Aldrich, 70%), 

Tetradecylphosphonic acid (TDPA, Aldrich, 97%), Titanium diisopropoxide bis(acetylacetonate) 

(75 wt %, Aldrich), 1-butanol (Wako, 99%) were used as purchased without further purification. 

4.2. PbS quantum dot synthesis. Colloidal PbS QDs were synthesized according to a modified 

literature method,23 various sizes of PbS QDs were prepared as described previously in literature.44 

In this work, PbS QDs were manipulated using the standard Schlenk line techniques.6 The mixed 

solution of 6 mmol PbO and 15 mmol OA and 50 ml of ODE in a 100 mL three-neck flask was 

stirred and degassed at room temperature and 80 °C for 20 min and 40 min, successively. The 

solution was then heated for 1 h up to 120 °C under a nitrogen atmosphere, then the solution was 

allowed to cool down to the required temperatures of 115, 105, 75, and 69 °C, followed by the 

injection of TMS solution (3 mmol TMS mixed with 10 mL pre-degassed ODE). After injection, 

the heater was removed immediately while the solution was kept stirring. When the solution was 

cooled down to 75 °C, a CdCl2-TDPA-OLA solution containing 1 mmol CdCl2, 0.1 mmol TDPA, 

and 3 mL OLA was injected into the PbS colloid. After cooling down to room temperature, PbS 

QDs were precipitated from the growth mixture and re-dispersed into an organic solvent toluene. 

The resulting precipitate was isolated by centrifugation, washed twice with acetone to remove the 

unbound OA ligands in PbS colloid, and then was dispersed in octane. The concentration of PbS 

colloid was approximately 100 mg·ml-1 assuming that the reactant TMS was completely 

transformed into the PbS product. 
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4.3. TiO2 compact layer synthesis. Thin TiO2 compact layer was coated on FTO glass (25 mm 

× 25 mm). The TiO2 compact film was prepared according to a standard procedure which has been 

reported in the literature.45 To prepare the precursor solution, 1.46 mL of Titanium diisopropoxide 

bis(acetylacetonate) and 10 mL of 1-butanol were stirred at room temperature for 30min. To form 

a sol, the solution should be filtered by 0.1 μm filter. A compact TiO2 film was coated by spin-

coating method with a low speed of 1000 rpm for 2s and at a high speed of 3000 rpm for 30s. The 

thickness of the TiO2 compact film was controlled by the high speed of the spin coater. After spin 

coating, the film was thermally annealed at 500 °C for 30 min. 

4.4. Device fabrication. To fabricate PbS heterojunction solar cells, PbS colloidal QDs were 

prepared on TiO2 electrodes by a typical layer-by-layer method using a fully automatic spin-coater 

under ambient conditions. Each PbS colloidal layer was deposited at 2500 rpm and ligand 

exchange briefly with CTAB solution (30mM in methanol) was conducted by spin-cast at 2500 

rpm. The ligand exchange step was conducted twice to ensure complete ligand exchange with the 

oleic acid capped on PbS surfaces. Each layer was then rinsed three times with methanol while 

spinning at 2500 rpm to remove excess unbound ligands. Then the QD spin procedure was repeated 

until desired thickness was reached. Contacts consisting of ~100 nm of gold were deposited on the 

PbS layer through a mask to create four identical cells on each substrate by thermal evaporation. 

The contact sizes were 0.16 cm2. 

4.5. Characterization 

The current density-voltage (J-V) measurements were performed using a Keithley 2400 source 

meter under dark and AM 1.5 with solar simulator PEC-L10. The IPCE spectra were measured 

under illumination using a Nikon G250 monochromator equipped with a 300 W Xenon arc lamp. 

The transient open-circuit voltage decay measurements were carried out using a 630-nm diode 
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laser with the pulse duration of 5 ns and repetition rate of 4 Hz. The voltage responses were 

recorded using an Iwatsu digital oscilloscope DS-5554. The transient voltage decay measurements 

were taken without a background light bias. 
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