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Abstract—Recently, we have presented a method of ensemble
prediction of chaotic time series. The method employs strong
learners capable of making predictions with small error, where
usual ensemble mean does not work well owing to the long term
unpredictability of chaotic time series. Thus, we have developed
a method to select a representative prediction from a set of
plausible predictions by means of using LOOCV (leave-one-
out cross-validation) measure to estimate predictable horizon.
Although we have shown the effectiveness of the method, it
sometimes fails to select the representative prediction with
long predictable horizon. In order to cope with this problem,
this paper presents a method to select multiple candidates of
representative prediction by means of employing hierarchical
K-means clustering with K = 2. From numerical experiments,
we show the effectiveness of the method and an analysis of the
property of LOOCV predictable horizon.

Index Terms—hierarchical clustering of predictions, ensemble
prediction of chaotic time series, leave-one-out predictable hori-
zon, long-term unpredictability,

I. INTRODUCTION

So far, there have been a number of studies on time series

prediction [1], [2], where our methods awarded 3rd and 2nd

places in the competitions held at IJCNN’04 [3] and ESTSP’07

[4], respectively, as well as a number of other methods have

utilized model selection methods evaluating the mean square

prediction error (MSE) for holdout and/or cross-validation

datasets. Furthermore, our method in [5] utilizes moments of

predictive deviation as ensemble diversity measures for model

selection, and achieves better performance from the point of

view of MSE than the conventional holdout method. The

method in [6] uses direct multi-step ahead (DMS) prediction

to apply the out-of-bag (OOB) estimate of MSE. Although

both methods have selected the models to generate good

predictions on average, they cannot always have provided good

predictions, especially when the horizon to be predicted is

large. This is owing mainly to the fact that the MSE of a

set of predictions is largely affected by a small number of

predictions with short predictable horizons even if most of the

predictions have long predictable horizons. This is because the

prediction error of chaotic time series increases exponentially

with the increase of time after the predictable horizon (see [6]

for the analysis and [1] for properties of chaotic time series).

Recently, we have presented a method of ensemble pre-

diction of chaotic time series [7]–[9]. Here, from [10], [11],

we can see that the probabilistic prediction has come to

dominate the science of weather and climate forecasting,

mainly because the theory of chaos at the heart of meteorology

shows that for a simple set of nonlinear equations (or Lorenz’s

equations shown below) with initial conditions changed by

minute perturbations, there is no longer a single deterministic

solution and hence all forecasts must be treated as proba-

bilistic. Although most of the methods shown in [10] use

ensemble mean to obtain representative forecast, our method in

[7]–[9] selects representative individual prediction from a set

of plausible predictions because our method employs strong

learners capable of making predictions with small error and

there are individual predictions showing better performance

than ensemble mean.

Our method in [7]–[9] employs LOOCV (leave-one-out

cross-validation) measure to estimate predictable horizon to

select a representative prediction from plausible predictions

generated by strong learning machines. Comparing with our

previous methods embedding model selection techniques using

MSE [5], [6], the method has an advantage that it selects

a representative prediction for each start time of prediction.

Furthermore, it has provided long predictable horizons on

average, while it sometimes fails in selecting representative

predictions with long predictable horizons from plausible

predictions.

In order to cope with this problem, this paper presents a

method to select multiple candidates of representative pre-

diction which is expected to have long predictable horizon.

Here, it is mentioned in [11], [12] that a useful tool to provide

alternative scenarios, or representative deterministic forecasts,

is clustering which automatically groups the ensemble mem-

bers. However, the implementation of clustering is not so

straightforward in chaotic time series prediction with long

prediction horizon The present method employes hierarchical

K-means clustering with K = 2 accompanied with stepwise
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increase of prediction horizon, which enable us to execute

multiclass classification of chaotic time series predictions with

long prediction horizon. From a survey of clustering methods

for time series data [13], we can say that the present method

is a row-data-based method of clustering but has a novelty of

stepwise increase of prediction horizon. By means of analyzing

this method, we show the property and the validity of LOOCV

predictable horizon. We show the method in II, experimental

results and analysis in III, and the conclusion in IV.

II. ENSEMBLE PREDICTION OF CHAOTIC TIME SERIES

A. IOS Prediction of Chaotic Time Series

Let yt (∈ R) denote a chaotic time series for a discrete time

t = 0, 1, 2, · · · satisfying

yt = r(xt) + e(xt), (1)

where r(xt) is a nonlinear target function of a vector xt =
(yt−1, yt−2, · · · , yt−k)

T generated by the delay embedding

with dimension k from a chaotic differential dynamical system

(see [1] for chaotic timeseries). Here, yt is obtained not

analytically but numerically, and then yt involves an error

e(xt) owing to an executable finite calculation precision. In

general, a time series generated with higher precision has small

prediction error for longer duration of time from the prediction

start time. Thus, let a time series generated with a very high

precision be ground truth time series y
[gt]
t (see III for details),

while we execute the prediction shown below with standard

64 bit precision.

Let yt:h = ytyt+1 · · · yt+h−1 denote a time series with the

initial time t and the horizon h. For a given and training

time series ytg:hg
(= y

[train]
tg:hg

), we are supposed to predict

succeeding time series ytp:hp
for tp ≥ tg+hg. Then, we make

the training dataset D[train] = {(xt, yt) | t ∈ I [train]} for

I [train] = {t | tg ≤ t < tg + hg} to train a learning machine.

After the learning, the machine executes IOS (iterated one-

step ahead) prediction by ŷt = f(xt) for t = tp, tp+1, · · · ,

recursively, where f(xt) denotes prediction function of xt =
(xt1, xt2, · · · , xtk) whose elements are given by xtj = yt−j

for t−j < tp and xtj = ŷt−j for t−j ≥ tp. Here, we suppose

that yt for t < tp is known as the initial state for making the

prediction ŷtp:hp
.

As explained above, we execute the prediction with standard

64 bit precision, and we may say that there are a number of

plausible prediction functions f(xt) with small error for a

duration of time from the initial time of prediction by means

of using strong learning machienes.

B. Generation of IOS Predictions by CAN2s

As a strong learning machiene, we use CAN2 (competitive

associative net 2), or an artificial neural net for learning

efficient piecewise linear approximation of nonlinear function

by means of the following schemes (See [14] for details): A

single CAN2 has N units. The jth unit has a weight vector

wj , (wj1, · · · , wjk)
T ∈ R

k×1 and an associative matrix

(or a row vector) M j , (Mj0,Mj1, · · · ,Mjk) ∈ R
1×(k+1)

for j ∈ IN , {1, 2, · · · , N}. The CAN2 after learning the

training dataset Dn = {(xi, yi)|yi = r(xi) + ei, i ∈ In}
approximates the target function r(xi) by ŷi = ỹc(i) =

M c(i)x̃i, where x̃i , (1,xT
i )

T ∈ R
(k+1)×1 denotes the

(extended) input vector to the CAN2, and ỹc(i) = M c(i)x̃i

is the output value of the c(i)th unit of the CAN2. The

index c(i) indicates the unit who has the weight vector wc(i)

closest to the input vector xi, or c(i) , argmin
j∈IN

‖xi − wj‖.

The above function approximation partitions the input space

V ∈ R
k into the Voronoi (or Dirichlet) regions Vj , {x

∣∣ j =
argmin
i∈IN

‖x−wi‖} for j ∈ IN , and performs piecewise linear

prediction for the function r(x). We use the learning algorithm

shown in [14] whose high ability of learning has been shown

in Evaluating Predictive Uncertainty Challenge [15].

We make a number of IOS predictions ŷtp:hp
by means

of using CAN2s with different parameter values. Namely, we

use multiple ŷtp:hp
= y

[θN ]
tp:hp

generated by different learning

machines, where θN ∈ Θ indicates a learning machine indexed

by N , and Θ the set of learning machines.

C. Selecting Plausible Predictions Via Similarity of Attractors

Among ŷtp:hp
= y

[θN ]
tp:hp

for θN ∈ Θ, there are implausible

predictions which do not contribute to improve the accuracy of

ensemble prediction. To remove such implausible predictions,

we select the following set of plausible predictions (see [7]

for illustration of the method):

Y
[ΘS ]
tp:hp

,

{
y
[θN ]
tp,hp

∣∣∣∣ θN ∈ ΘS

}

,

{
y
[θN ]
tp,hp

∣∣∣∣ S
(
y
[θN ]
tp,hp

, y
[train]
tp:hp

)
/Smax ≥ Sth, θN ∈ Θ

}
(2)

where Smax = max

{
S
(
y
[θN ]
tp,hp

, y
[train]
tp:hp

) ∣∣∣∣ θN ∈ Θ

}
, Sth is a

threshold, and

S
(
y
[θN ]
tp,hp

, y
[train]
tp:hp

)
,

∑
i

∑
j a

[θN ]
ij a

[train]
ij√

∑
i

∑
j

(
a
[θN ]
ij

)2√∑
i

∑
j

(
a
[train]
ij

)2

(3)

denotes the similarity of two-dimensional attractor (trajectory)

distributions a
[θN ]
ij and a

[train]
ij of time series y

[θN ]
tp,hp

and y
[train]
tg :hg

,

respectively. Here, the two-dimensional attractor distribution,

aij , of a time-series yt:h is given by

aij =

t+h−1∑

s=t

1

{⌊
ys − v0
∆a

⌋
= i ∧

⌊
ys+1 − v0

∆a

⌋
= j

}
, (4)

where v0 is a constant less than the minimum value of yt for

all time series and ∆a indicates a resolution of the distribution.

Furthermore, 1{z} is an indicator function equals to 1 if z is

true, and 0 otherwize, and ⌊·⌋ indicates the floor function.

D. LOOCV Predictable Horizon and Hierarchical Clustering

for Multiple Representative Predictions

Although plausible predictions have almost the same attrac-

tors, they show different prediction error. As a measure of



prediction error, let us define predictable horizon between two

predictions y
[θN ]
tp:hp

and y
[θN′ ]
tp:hp

in Y
[ΘS ]
tp:hp

as

h
(
y
[θN ]
tp:hp

, y
[θN′ ]
tp:hp

)
=

max
{
h
∣∣ ∀s ≤ h ≤ hp; |y

[θN ]
tp+s − y

[θN′ ]
tp+s | ≤ ey

}
, (5)

where ey indicates a threshold. Furthermore, we introduce

LOO (leave-one-out) predictable horizon given by

h̃
[θN ,ΘS ]
tp =

〈
h
(
y
[θN ]
tp:hp

, y
[θN′ ]
tp:hp

)〉
y
[θN′ ]
tp:hp

∈Y
[ΘS ]
tp:hp

∖
{y

[θN ]
tp:hp

}
. (6)

Here, 〈·〉 denotes the mean and the subscript indicates

the range of the mean. We select representative predic-

tion y
[θσ1 ]
tp:hp

with the longest LOO predictable horizon given

by h̃
[θσ1

,ΘS]
tp = max

{
h̃
[θN ,ΘS ]
tp

∣∣ θN ∈ ΘS

}
which we call

LOOCV predictable horizon as introduced in [7]. Here, θσ1

indicates the learning machine which has generated the pre-

diction with the maximum h̃
[θσN

,ΘS]
tp .

In order to select multiple candidates of representative

prediction with long predictable horizon involved in Y
[ΘS ]
tp:hp

, we

execute hierarchical binary clustering of Y
[ΘS ]
tp:hp

into Y

[

Θ
[L,c]
S

]

tp:hp

for L = 0, 1, · · · , Lmax and c = 0, 1, 2, · · · , 2L − 1 by

means of the algorithm shown in Fig. 1. Here, we do not

execute further clustering of Θ
[L,c]
S with |Θ

[L,c]
S | ≤ 3 because

LOO predictable horizons for predictions less than 3 are not

effective. Furthermore, we define

h
[L,c]
0 , min

{
h

(
y
[θN ]
tp:hp

,
〈
y
[θ]
tp:hp

〉
θ∈Θ

[L,c]
S

) ∣∣∣∣ θN ∈ Θ
[L,c]
S )

}

(7)

which denotes the shortest predictable horizon between y
[θN ]
tp:hp

and the mean prediction
〈
y
[θ]
tp:hp

〉
θ∈Θ

[L,c]
S

for θN ∈ Θ
[L,c]
S

(see Fig. 2). After the clustering, we obtain representative

predictions y

[

θ[L,c]
σ1

,Θ
[L,c]
S

]

tp with the LOOCV predictable horizon

h̃

[

θ[L,c]
σ1

,Θ
[L,c]
S

]

tp for each cluster of predictions Y

[

Θ
[L,c]
S

]

tp:hp
.

E. Analysis of LOOCV Predictable Horizons in Hierarchical

Clusters

We have shown that the performance of the selection

of representative prediction using LOOCV predictable hori-

zon is better than an intuitive selection using the maxi-

mum similarity of attractors (see [7]–[9]). In [8], [9], we

have shown that longer predictable horizons can be achieved

by means of employing bagging method to improve the

prediction performance of learning machines. However, the

validity has not been clarified, yet, and it is examined

here as follows: let y
[θ[L,c]

σ1
]

tp:hp
, y

[θ[L+1,c0]
σ1

]
tp:hp

and y
[θ[L+1,c1]

σ1
]

tp:hp
are

representative predictions with LOOCV predictable horizons

h̃

[

θ[L,c]
σ1

,Θ
[L,c]
S

]

tp:hp
, h̃

[

θ[L+1,c0]
σ1

,Θ
[L+1,c0]

S

]

tp:hp
and h̃

[

θ[L+1,c1]
σ1

,Θ
[L+1,c1]

S

]

tp:hp
,

respectively. Here, c0 and c1 represent the clusters divided

by K-means clustering with K = 2 from the cluster c. Let

us suppose h

(
y
[θ[L+1,c0]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
> h

(
y
[θ[L+1,c1]

σ1
]

tp:hp
, y

[gt]
tp:hp

)

as shown in Fig. 2. Furthermore, we suppose h
[L,c]
0 ≃

h

(
y
[θ[L+1,c0]

σ1
]

tp:hp
, Y

[

Θ
[L,c]
S

]

tp:hp

)
≃ h

(
y
[θ[L+1,c1]

σ1
]

tp:hp
, Y

[

Θ
[L,c]
S

]

tp:hp

)
.

Then, we have LOO predictable horizons for θ
[L+1,c0]
σ1 and

θ
[L+1,c1]
σ1 as

h̃

[

θ[L+1,c0]
σ1

,Θ
[L,c]
S

]

tp =

∣∣∣∣Y
[

Θ
[L+1,c0]

S

]

tp:hp

∣∣∣∣h̃
[

θ[L+1,c0]
σ1

,Θ
[L+1,c0]

S

]

tp +

∣∣∣∣Y
[

Θ
[L+1,c1]

S

]

tp:hp

∣∣∣∣h
[L,c]
0

∣∣∣∣Y
[

Θ
[L+1,c0]

S

]

tp:hp

∣∣∣∣+
∣∣∣∣Y

[

Θ
[L+1,c1]

S

]

tp:hp

∣∣∣∣
(8)

h̃

[

θ[L+1,c1]
σ1

,Θ
[L,c]
S

]

tp =

∣∣∣∣Y
[

Θ
[L+1,c0]

S

]

tp:hp

∣∣∣∣h
[L,c]
0 +

∣∣∣∣Y
[

Θ
[L+1,c1]

S

]

tp:hp

∣∣∣∣h̃
[

θ[L+1,c1]
σ1

,Θ
[L+1,c1]

S

]

tp

∣∣∣∣Y
[

Θ
[L+1,c0]

S

]

tp:hp

∣∣∣∣+
∣∣∣∣Y

[

Θ
[L+1,c1]

S

]

tp:hp

∣∣∣∣
(9)

Then, when the condition

d
(
Θ

[L+1,c0]
S ,Θ

[L+1,c1]
S

)
,

∣∣∣∣Y
[

Θ
[L+1,c0]

S

]

tp:hp

∣∣∣∣

(
h̃

[

θ[L+1,c0]
σ1

,Θ
[L+1,c0]

S

]

tp − h
[L,c]
0

)

∣∣∣∣Y
[

Θ
[L+1,c1]

S

]

tp:hp

∣∣∣∣

(
h̃

[

θ
[L+1,c1]
σ1

,Θ
[L+1,c0]

S

]

tp − h
[L,c]
0

) > 1

(10)

holds, we have h̃

[

θ[L+1,c0]
σ1

,Θ
[L,c]
S

]

tp ≥ h̃

[

θ[L+1,c1]
σ1

,Θ
[L,c]
S

]

tp and then

y
[θ[L,c]

σ1
]

tp:hp
= y

[θ[L+1,c0]
σ1

]
tp:hp

(11)

because h̃

[

θ[L+1,c0]
σ1

,Θ
[L,c]
S

]

tp has the maximum value among

h̃

[

θN ,Θ
[L,c]
S

]

tp for all θN ∈ Θ
[L,c]
S . Here,

∣

∣

∣

∣

Y

[

Θ
[L+1,c0]
S

]

tp:hp

∣

∣

∣

∣

>

∣

∣

∣

∣

Y

[

Θ
[L+1,c1]
S

]

tp:hp

∣

∣

∣

∣

and



h̃

[

θ
[L+1,c0]
σ1

,Θ
[L+1,c0]
S

]

tp
− h

[L,c]
0



 >



h̃

[

θ
[L+1,c1]
σ1

,Θ
[L+1,c0]
S

]

tp
− h

[L,c]
0



 are expected to be satisfied

when we use a set of sufficiently large number of sufficiently

strong learning machines, where the actual predictable horizon

h
(
y
[θN ]
tp:hp

, y
[gt]
tp:hp

)
of a learning machine and the number of

learning machines with larger predictable horizons, respec-

tively, become larger with the increase of the strength (or

prediction precision) of learning machines. An equivalent

relationship between (10) and (11) can be written as follows;

i.e. we have

y
[θ[L−1,⌊c/2⌋]

σ1
]

tp:hp
= y

[θ[L,c]
σ1

]
tp:hp

(12)

when

D[L,c] > D[L,c̄]. (13)

for h

(
y
[θ[L,c]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
> h

(
y
[θ[L,c̄]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
. Here, c̄ =

2 ⌊c/2⌋+1 if c = 2 ⌊c/2⌋ and c̄ = 2 ⌊c/2⌋ if c = 2 ⌊c/2⌋+1,



Algorithm Hierarchical Clustering
(
Y

[ΘS ]
tp:hp

, Lmax

)

step 1: Set L := 0, c := 0, and Θ
[L,c]
S := ΘS .

step 2: Execute binary clustering of Θ
[L,c]
S into Θ

[L+1,2c]
S and Θ

[L+1,2c+1]
S for each c = 0 to 2L − 1 as follows:

if |Θ
[L,c]
S | ≤ 3, then set Θ

[L+1,2c]
S := Θ

[L,c]
S and Θ

[L+1,2c+1]
S := φ. Otherwise, obtain two clusters of

predictions Y

[

Θ
[L+1,2c]
S

]

tp:h
[L,c]
0

and Y

[

Θ
[L+1,2c+1]
S

]

tp:h
[L,c]
0

by means of applying K-means clustering with K = 2 to

Y

[

Θ
[L,c]
S

]

tp:h
[L,c]
0

. Here, the horizon h
[L,c]
0 is given by (7) in text and shown in Fig. 2.

step 3: Set L := L+ 1. Go to step 2 if L ≤ Lmax.

step 4: Return

{

Y
[Θ[L,c]

S ]
tp:hp

∣∣L=1,··· ,Lmax;c=0,1,2,··· ,2L−1

}

.

Fig. 1. Hierarchical clustering of predictions in Y
[ΘS ]
tp:hp

.

Y

[

Θ
[L+1,c0]
S

]

tp:hp

Y

[

Θ
[L+1,c1]
S

]

tp:hp

Y
[Θ[L,c]

S ]
tp:hp

y
[gt]
tp:hp

··
·

y

[

θ
[L+1,c0]
σ1

]

tp:hp
··
·

··
·

y

[

θ
[L+1,c1]
σ1

]

tp:hp

··
·

tp

h
[L,c]
0

h̃

[

θ
[L+1,c0]
σ1

,Θ
[L+1,c0]
S

]

tp

h̃

[

θ
[L+1,c1]
σ1

,Θ
[L+1,c1]
S

]

tp

ey

ey

ey

ey

〈
y
[θ]
tp:hp

〉
θ∈Θ

[L,c]
S

Fig. 2. Schematic illustration of binary clustering of predictions Y

[

Θ
[L,c]
S

]

tp:hp
into Y

[

Θ
[L+1,c0]
S

]

tp:hp
and Y

[

Θ
[L+1,c1]
S

]

tp:hp
via using the horizon h

[L,c]
0 .

and

D[L,c] =

∏L
l=1 d

[l,⌊c/2L−l⌋]
∑2L−1

c=0

∏L
l=1 d

[l,⌊c/2L−l⌋]
(14)

d[l,c] =





1

1+d
(

Θ
[l,2⌊c/2⌋+1]
S ,Θ

[l,2⌊c/2⌋]
S

) if c = 2 ⌊c/2⌋

1

1+d
(

Θ
[l,2⌊c/2⌋]
S ,Θ

[l,2⌊c/2⌋+1]
S

) if c = 2 ⌊c/2⌋+ 1).

(15)

Here, D[L,c] holding
∑2L−1

c=0 D[L,c] = 1 for each L is a

normalized version of d (·, ·) in (10) which reflects a degree

of sufficient number of sufficiently long predictable horizons

in the cluster of predictions, Y

[

Θ
[L−1,⌊c/2⌋]
S

]

tp:hp
.

The relationship between (12) and (13) indicates that the

representative prediction with the LOOCV predictable horizon

in a higher level of clusters will be also selected as the

representative prediction with the LOOCV predictable horizon

in the lower level of clusters when there are sufficiently

large number of sufficiently strong learning machines. In

other words, the representative prediction y

[

θ[L,c]
σ1

,Θ
[L,c]
S

]

tp:hp
with

[L, c] = [0, 0] for the original set of plausible predictions

Y

[

Θ
[0,0]
S

]

tp:hp
= Y

[ΘS ]
tp:hp

will be the representative prediction in

higher level clusters which are expected to have sufficiently
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Fig. 3. Lorenz time series y(t) for t = 0, 1, 2, · · · , 4999, or ground truth

time series y
[gt]
0:5000.

long predictable horizon h

(
y
[θ[L,c]

σ1
]

tp:hp
, y

[gt]
t

)
when we use a set

of sufficient number of sufficiently strong learning machines.

When we do not have a set of sufficiently large number but

several number (more than or equal to 3) of sufficiently strong

learning machines, a higher level cluster involving them can

select a representative prediction with long predictable horizon

h

(
y
[θσ1 ]
tp:hp

, y
[gt]
t

)
by means of LOOCV predictable horizon,

which is reflected by a small D[L,c] and a long predictable

horizon h

(
y
[θ[L,c]

σ1
]

tp:hp
, y

[gt]
t

)
as shown in III.

III. NUMERICAL EXPERIMENTS AND ANALYSIS

A. Experimental Settings

We use the Lorenz time series, as shown in Fig. 3 and [6],

obtained from the original differential dynamical system given

by

dxc

dtc
= −σxc + σyc, (16)

dyc
dtc

= −xczc + rxc − yc, (17)

dzc
dtc

= xcyc − bzc, (18)

for σ = 10, b = 8/3, r = 28. Here, we use tc for

continuous time and t (= 0, 1, 2, · · · ) for discrete time related

by tc = tT with sampling time T . We have generated the time

series y(t) = xc(tT ) for t = 1, 2, · · · , 5000 from the initial

state (xc(0), yc(0), zc(0)) = (−8, 8, 27) with T = 25ms via

Runge-Kutta method with 128 bit precision of GMP (GNU

multi-precision library). We use y0:htr
= y0:2000 for training

learning machines, and execute IOS prediction of ytp:hp
with

the initial input vector xtp = (y(tp − 1), · · · , y(tp − k)) for

prediction start time tp = 2000 + 100i (i = 0, 1, 2, · · · , 19)
and prediction horizon hp = 500. For learning machines,

we have employed CAN2s (competitive associative nets) for

learning piecewise linear approximation of nonlinear functions

(see [14] for details).

B. Results and Analysis

For generating original predictions, we have used CAN2s

with the number of units (or the number of piecewise linear

regions) being N = 5i (i = 1, 2, · · · , 60). In Fig. 4. we show

examples of original and selected predictions ŷ
[θN ]
tp:hp

for tp =

2300, 3100 and 4700, which correspond to the cases with the

achieved actual predictable horizon h

(
y
[θ[L,c]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
being

smaller than 100 for [L, c] = [0, 0] as shown in Fig. 5.

From Fig. 4 (b), we can see that plausible predictions

selected by thresholding the similarity of attractors with

Sth = 0.5 involve predictions with predictable horizons

shorter than 100. From (c), we can see that the representa-

tive prediction y
[θ[0,0]

σ1
]

tp:hp
(dark green) has predictable horizon

h

(
y
[θ[0,0]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
smaller than 100. But, for tp = 2300,

3100 in (e) and for tp = 4700 in (d), we can see the predictions

with predictable horizon larger than 100, which corresponds to

the predictable horizons h

(
y
[θ[0,0]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
= 227, 167, 180

in the cell for (tp, L) = (2300, 2), (3100, 2) and (4700, 1),
respectively, in Fig. 5(b).

From Fig. 5(a), we can see that predictable horizon larger

than 100 is achieved by the maximum of predictable horizons

of representative predictions in hierarchical clusters not for

L = 0 but for L = 0, 1, 2. In the two cells for (tp, L) =
(4700, 1), we have D[L,c](= 0.38) < D[L,c̄](= 0.62) for

h

(
y
[θ[L,c]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
= 180 > h

(
y
[θ[L,c̄]

σ1
]

tp:hp
, y

[gt]
tp:hp

)
= 95,

which does not satisfy the condition (13) and indicates that we

do not have sufficient number of sufficiently long predictable

horizons in the cluster of predictions Y

[

Θ
[L−1,⌊c/2⌋]
S

]

tp:hp
=

Y

[

Θ
[0,0]
S

]

tp:hp
. Furthermore, it is difficult to select the maximum

predictable horizon without knowing y
[gt]
tp:hp

. One of the so-

lution is using much stronger learning machines as shown in

[8], [9], and other solutions may be obtained by using further

information of ground truth time series, which is for our future

research studies.

IV. CONCLUSION

We have presented a method using hierarchical clustering

and LOOCV predictable horizon for ensemble prediction of

chaotic time series. The method selects multiple candidates

of representative prediction with long predictable horizons,

and enables us to analyze the property of LOOCV predictable

horizons. By means of executing numerical experiments using

CAN2s, we have shown that the method is able to select the

candidates of representative predictions with long predictable

horizons. In our future research studies, we would like to

introduce probabilistic prediction using the candidates of rep-

resentative predictions selected by the LOOCV predictable

horizon.
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Fig. 5. Experimental result of (a) predictable horizons h

(

y

[

θ
[L,c]
σ1

]

tp:hp
, y

[gt]
tp:hp

)

for (L, c) = (0, 0) (dark green), the maximum (green) and the minimum

(cyan) among the hierarchical level L = 0, 1, 2 and all clusters c = 0, 1, · · · , 2L − 1 for each tp = 2000, 2100, · · · , 4900. In (b), an integer number shows

the predictable horizon h

(

y

[

θ
[L,c]
σ1

]

tp:hp
, y

[gt]
tp:hp

)

for tp = 2300, 3100,4700, L = 0, 1, 2 and c = 0, 1, · · · , 2L − 1, and a dotted-decimal number indicates

the degree D[L,c] of sufficient number of sufficiently long LOOCV horizons for L = 1 and 2.


