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Abstract Using the finite-part integral concepts, a set of hypersingular integral-differential equations for multiple 

interfacial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical 

analysis, unknown displacement discontinuities are approximated by the products of the fundamental density 

functions and power series, where the fundamental functions are chosen to express a two-dimensional interface 

crack exactly. As illustrative examples, the stress intensity factors for two rectangular interface cracks are 

calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors are 

decrease with the increasing of crack spacing. 
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Introduction 
The study of the interaction between multiple cracks has not only theoretical significance, but also important 

practical value. For 3-D homogeneous elastic infinity materials, the problems of interaction between two coplanar 

or parallel planer cracks have been studied by several scholars[1-4]. In recent years, much attention has been paid to 

the crack problems of multiphase composites [5-7]. With the wide range use of composite materials, interfacial 

crack problems have been widely concerned by a lot of researchers[8-10]. Due to the mathematical difficulties, the 

interactions of multiple interface cracks in the literature are limited to two-dimensional cases. Based on the 

body force method, Noda et al[11] studied the stress intensity factors related to the distance between the collinear 

cracks, elastic constants and the number of cracks, and discussed the interaction between multiple cracks. Using 

the boundary element free method and least square method, Sun et al.[12] studied the similar problems, and 

obtained the boundary integral equation and the stress intensity factors. Zhou et al.[13] discussed the problems of 

the interaction between two or four parallel cracks in piezoelectric materials. As for 3-D multiple interfacial 

cracks problems in boned bimaterials, none studies have been reported. 

Recently, the authors studied the problems of interfacial crack under tension or shear loads [14-15], and obtained the 

fast convergence and high precision numerical results. In this paper, based on the previous studies, the 

hypersigular integro-diffrential equations of multiple interfacial cracks in 3-D bonded bimaterials are studied. 
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Based on the theoretical solutions, the unknown displacement discontinuities are approximated by the products of 

the fundamental density functions and power series, where the fundamental density functions are chosen to 

express singular behavior along the crack front of the interface crack exactly. As illustrative examples, the stress 

intensity factors for two rectangular interface cracks are calculated for various spacing and elastic constants, and 

the interaction effect of interface cracks are discussed. 

 

1. Hypersingular integro-differential equations for multiple interfacial cracks 
Consider two dissimilar elastic half-spaces bonded together along the x–y plane (see Fig.1), the elastic constants 

for upper and lower space are 1 1( , )µ ν  and 2 2( , )µ ν  respectively, where 1 2,µ µ are shear modulus and 1 2ν ν,  

are Poisson’s ratio. Suppose N interfacial cracks are located at the bimaterial interface. 
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Fig.1 Problem configuration 

 

Based on 3-D bimaterial displacement fundamental solutions, using Somigliana formulae, the displacements for 

bimaterial multiple interfacial cracks problems can be expressed as follows: 
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Here, −+ −= ininin uuu∆  indicates the displacement discontinuity along i direction on the nth crack, ),( ξxm
kiT  is 

the traction fundamental solution of the bimaterial. Superscript 1 and 2 means material 1 and 2, the stresses at a 

point x in the materials can be obtained by use of equation (1) and constitutive equations as follows: 
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Using the boundary condition on the each crack surface and the concept of finite part integral, hypersingular 

integro-differential equations for interfacial multiple cracks in the bimaterial can be obtained. Here, only give the 

hypersingular integral- differential equations for jth crack, other ones can be given similarly.    
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1 2 NS S S S∈ =x U UL U , jS  means j-th crack surface, N total crack number is. The number of the hypersingular 

integro-differential equations is 3N, and the unknowns are the displacement discontinuities of the crack surfaces, 

whose total number is 3N . 

 

2. Numerical method for hypersingular integro-differential equations 
Due to the complexity of the hypersingular integro-differential Eq.(4), it is hard to get theoretical solution, so the 

numerical method is needed. Based on the stress singularity and oscillation along the front crack, the unknowns 

are approximated by the products of the fundamental density functions and power series. Firstly, let suppose: 
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For the problem of multiple rectangular interfacial cracks under tension at infinity, the fundamental density 

functions can be supposed as follows: 
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Here ,j ja b  are the dimensions of the rectangular crack, and 2 1 1
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bimaterial parameter. In this case, the stress intensity factors IK and IIK  are only depend on the parameter ε [14]. 

That means when ε  is constant, IK and IIK do not change with the Poisson's ratio and shear modulus, although 

ε  is calculated from them.  

Then, the polynomials in Eq.(5) are expressed as follows: 
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Substituting Eq. (5)- (8) to (4), the discrete form of the hypersingular integro-differential equations can be 

obtained as follows: 
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( 0,1, 2,..., 1; 1, 2,..., )i l j N= − =   are unknown column vectors. Apparently, the total number of 

unknowns in discrete equations is 3Nl . 

Coefficients in Eq.(10) can be calculated from Eq.(4), whose expressions are complicated, such as: 
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It should be noticed that, the collocation point ( , )x y  and integral point ( , )ξ η in expression (11a) are both located 

on the jth crack. When ,x yx η→ → ， y η→ , that is, 0r → , then singularity appears and it needs special 

treatment using the finite part integral method[14]. In expression (11b), however, the collocation point and integral 

point are located on jth crack and ith crack respectively without singularity, so they can be integrated using normal 



numerical integration method.  

 

3. Numerical results and discussion 
3.1 Definition of dimensionless stress intensity factors 

As a typical example, a problem of the interaction between two rectangular interfacial cracks under tension 

load zσ ∞  at infinity is considered as shown in Fig.2. Suppose that the dimensions of crack 1 and crack 2 are 

1 12 2a b× and 2 22 2a b× , distance between two center point 1 2O O is 2d . Dimensionless stress intensity factors 
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Fig.2 Configuration of two rectangular interface cracks 

 

3.2 Convergence of the numerical results 

Fig.3 (a)-(c) show the remaining stresses on the crack surface shown in Fig.2 when 1 1/ 1a b = ， 1 1 2 2,a b a b= = ，

1 2 0.3ν ν= = ， 1 / 0.5a d = ， 0.06ε = , here collocation points are 100(10 10× ), polynomials exponents m n= =8. 

The results indicate that the remaining stresses 1z
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σ ∞  are less than 51.1 10−× . It can be seen 

that, due to the interaction, the remaining stresses are different with those of single interfacial crack. The results 

also show that, for cracks of different shape and bimaterial parameter ε , when 1 / 0.2a d ≥ , the remaining values 
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are around 610−  which are basically the same as the single case. When 1 / 0.5a d = , the residual values are around 

510− ; when 1 / 0.8a d = , the residual values are around 410− . If two cracks get closer, the residual values will be 

larger. Generally, high precision solutions can be obtained by increasing collocation points and polynomial 

exponents. 
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Fig.3 Compliance of boundary condition for 1 1/ 1a b = , 1 1 2 2,a b a b= = , 1 2 0.3ν ν= = , ε = 0.06  

3.3 Comparison with the results for plane strain case 

If the rectangular cracks are tenuous, 3-D problem can be degenerated to 2-D model which largely simplify the 

calculation. In this paper, let a1/b1=1/16, a1=a2，b1=b2，the comparison of stress intensity factors with Sun et al[12] 

is shown in Table 1, where the locations of points A and B are shown in Fig.4. It can be seen that the results 

obtained using 3-D model are slightly smaller than those of 2-D case, which are more conservative. For slender 

rectangular cracks discussed in this section, the crack growth begins from the mid-point of the long side. Along 

with the propagation and through-wall of the two cracks, the structure will collapse. Although calculating 2-D 

problem is easy, yet it cannot describe the crack propagation process authentically. It is more reasonable to design 

and evaluate structures using 3-D model. In studying the interaction between two rectangular cracks in 

homogenous material, Wang[1] 
 obtained similar results. 
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Table 1 Comparison with the two dimensional interface cracks 

 0ε =  0.1ε =  

1IF  1IF  1IIF  

Point A(-d+a1,0)  1.0204 1.0021 0.1941 

Sun[12] 点A 1.1125 1.0579 0.2258 

Point B(-d -a1,0) 1.0153 1.0014 0.1830 

Sun[12] 点B 1.0517 1.0026 0.1933 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Two dimensional problem configuration 

 

3.4 Solutions for one interface crack 

Due to the symmetry of stress and crack geometry, when a single rectangular crack locating on the interface, the 

stress intensity factors on the symmetric sides are the same. Especially, if the interfacial crack is a square, the 

stress intensity factor IK  has symmetry on the four sides. But when two cracks exist, the symmetry disappears 

due to the interaction. Take crack 1 shown in Fig.2 as an example, when the cracks are squares, from Fig.5 and 

Fig.6, it can be seen that the maximum SIF appears at point 1( , 0)d a− + . The interaction between the two cracks is 

related to the distance. If 1 / 0.2a d ≥ , that is, the distance between the two cracks is more than 5 times of the side 

length, the interaction can be ignored. For two rectangular interfacial cracks in a homogenous material, 

when 14d a≥ , the interaction can be ignored[1]. When 1 / 0.5a d = , the value of SIF is 1％ more than that of single 

crack case. But if 1 / 0.8a d = , the value of SIF is 10％ more. When two cracks get closer, the SIF has a 

non-linear relationship with the distance between two cracks, and increases rapidly. For example, when 

1 / 0.9a d = , the value of SIF is 20％ more, when 1 / 0.95a d = , the increase is 35％ more. Fig.7 shows the values 

of SIFs with varying crack shape and bimaterial parameter ε . It can be noticed that the maximum SIFs appear at 

the mid-points of each crack’s longer side 1 1( )a b≠ . When the square becomes slender, the changing rates of the 

maximum SIFs are different. If 1 1/ 1a b > , the crack propagates along y direction, and the increasing rate of 
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maximum SIF decreases with the increasing rate of rectangular aspect ratio. However, when 1 1/ 1a b ≤ , the crack 

expands along x direction, and the increasing rate of maximum SIF increases with the increasing rate of 

rectangular aspect ratio. If 1 1/ 0.125a b = , the value of SIF is 22％ more than that of single crack case; when 

1 1/ 0.5a b = , the value is 15％ more. 
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Fig.5 Dimensionless stress intensity factors 1IF   for 0.06ε = , 1 1/ 1a b = , 1 2a a= , 1 2b b=  
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Fig.6  Dimensionless stress intensity factors 1IIF  for 0.06ε = , 1 1/ 1a b = , 1 2a a= , 1 2b b=   
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Fig.7  Dimensionless stress intensity factors 1IF  for 1 2a a= , 1 2b b=   

 
4. Conclusion  

The interaction between multiple interfacial cracks in 3-D bimaterial is studied by use of a hypersingular integral 

equation method, and the following points are noted. 

(1) The hypersingular integro-differential equations for multiple interfacial cracks in a bimaterial are obtained, 

and the unknown displacement discontinuities are approximated by the products of the fundamental density 

functions and power series, where the fundamental density functions are chosen to express the stress 

oscillation singularity. 

(2) Compared with 2-D interfacial cracks, the results of 3-D cracks are smaller than that of 2-D case. It can be 

seen that the crack growth begins from the mid-point of the long side. Along with the propagation and 

through-wall of the two cracks, the structure will collapse. Although calculating 2-D problem is easy, it 

cannot describe the crack propagation process authentically. It is more reasonable to design and evaluate 

structures using the 3-D model. 

(3)The values of stress intensity factors are obtained with different distance between two cracks. The maximum 

stress intensity factor appears at the mid-point of the longer side. For the problem shown in Fig.2, if 

1 1/ 1a b > , the crack propagates along y direction, and the increase rate of maximum stress intensity factor 

decreases with the increasing rate of rectangular aspect ratio. On the other hand, if 1 1/ 1a b ≤ , the crack 

propagate along x direction, and the increase rate of maximum stress intensity factor increases with the 

increasing rate of rectangular aspect ratio. When two cracks get closer, the maximum stress intensity 

factor has a non-linear relationship with the distance between the two cracks, and increases rapidly, which 

would reduce the structure strength greatly. 
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