
A Hardware Accelerated Robot Middleware
Package for Intelligent Processing on Robots

Yutaro Ishida∗, Takashi Morie∗ and Hakaru Tamukoh∗
∗Graduate School of Life Science and Systems Engineering

Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196
Email: ishida.yutaro954@mail.kyutech.jp

Abstract—Service robots require implementation of intelligent
processing, e.g., image processing. However, the computational
resources of standard PCs typically used in service robots are
not sufficient for such processes. Furthermore, robot middleware
is widely used in many robots because such systems facilitate
integration and are suitable for rapid prototyping. We propose
a “connective object for middleware to accelerator (COMTA),”
which is a processing system that uses hardware accelerators, i.e.,
field programmable gate arrays (FPGAs), and robot middleware.
Users can access the FPGAs in the proposed system via middle-
ware interfaces; thus, complex internal circuits are not required.
For human tracking using image processing, the proposed system
can automatically generate from a single configuration file. The
proposed system performs 3.3 times more efficiently relative to
computation than standard PCs in robots.

I. INTRODUCTION

In recent years, service robots have become increasingly
common. “Exi@” [1], a home service robot we developed
for RoboCup@Home [2], [3] competition, is shown in Fig. 1.
RoboCup@Home, an annual competition first held in 2006,
is the largest worldwide competition for home service robots.
In this competition, robots perform practical applications in
residential and public environments, e.g., acting as a waiter in
a restaurant. To realize such applications, robots are equipped
with sensors and actuators that approximate the human senses
and motor functions (Fig. 1).

A block diagram of the software in our home service robot
is shown in Fig. 2. The software consists of perception and
control units to process sensory data and control actuators,
respectively. In these units, a significant number of intelligent
processes run simultaneously. However, in ordinary robot
systems, such software run on a laptop PC connected to the
robot. Thus, computing resources are always insufficient. In
addition, recognition technologies that use deep learning have
been implemented on most robots [4], [5]. However, such
technologies incur significant calculation costs, and real-time
processing on a laptop PC is difficult.

Furthermore, developing intelligent processing is becoming
complex, as many different types of software and hardware
must be integrated. For example, robotic engineers must deal
with relatively simple device drivers and much more complex
perception-level software. This requires multiple technologies
and is extremely time-consuming. Therefore, robot middle-
ware that supports open sources, large-scale software integra-
tion and prototyping is widely used in robots [6]–[11].

Fig. 1. Home service robot “Exi@” hardware

Fig. 2. Home service robot “Exi@” software

For these reasons, robots require an efficient (i.e., high-
speed computation and low-power consumption) processing
system that exploits accelerators with dedicated intelligent
processing architecture. Expected applications of the system
are robots ’perception such as image processing and object
recognition by deep learning. In addition, the system must
satisfy robot hardware requirements and should be easy to
integrate with robot middleware.

Thus, we propose an efficient processing system that uses
field programmable gate arrays (FPGAs) that can be integrated
with the robot middleware. The proposed system is described
in the following sections, and experimental results show the
effectiveness of a practical application using the proposed
system.

© IEEE2018



Fig. 3. Typical ROS Interface

II. RELATED WORK

A. Robot middleware

Middleware mediate between an operating system and an
application, and provides data communication/management
and debugging functions. In recent years, several robot middle-
ware has been developed, e.g., robot operating system (ROS)
[6][7], OpenRTM-aist [8][9] and V-Sido OS [10].

ROS has many users worldwide [11]; many research in-
stitutes and companies have adopted it. In addition, many
robotic systems ranging from research to commercial robots,
are implemented using ROS. One of the reasons why ROS
has attracted attention is its ease of integration using its own
unified interfaces.

Figure 3 shows typical ROS interfaces related to a pub-
lish/subscribe messaging model. Note that ROS interfaces
are based on a network connection. ROS has a master that
manages the entire system. For the master, the publisher
and subscriber register the request for data exchange using
namespace (Fig. 3(1)). If the name matches, data exchange
begins with a peer-to-peer (P2P) connection (Fig. 3(2-6)).
Therefore, users only need to manage the namespace for
automatic system integration.

Thus, it is important to automatically activate a processing
system with an accelerator via the ROS interfaces for robot
engineers to use the accelerator easily.

B. Accelerators suitable for robots

Graphics processing units (GPUs), application specific in-
tegrated circuits (ASICs), and FPGAs are all considered to
be accelerator devices. GPUs enable parallel computation by
exploiting many computing cores, and an ASIC is an inte-
grated circuit (IC) chip optimized for a specific application. In
addition, FPGAs are small size, reconfigurable digital circuits
that operate at high speeds and with low-power consumption.

According to benchmark results obtained using the convo-
lutional neural network [13], FPGAs are superior to embedded
CPUs and mobile GPUs relative to both calculation speed and
calculation performance per unit power. In addition, FPGAs
generate less heat due to their low power consumption; thus,
they are reliable under thermal considerations in embedded
environments. However, the development man-hours required
to implement them are significantly greater than CPUs and
GPUs [14].

ASICs have an advantage compared to FPGAs in terms of
computing performance and power consumption. In Addition,
for mass-produced applications, ASICs are also advantageous
relative to cost compared to FPGAs. However, FPGAs can be
reconfigured; thus, they can be used to update an application
even after it has been implemented in a robot.

In addition, robots generally use a limited power source,
such as a battery; thus, it is difficult to implement GPUs,
which have high power requirements, in robots. Furthermore,
intelligent processing are evolving; thus, functions that cannot
be updated after implementation in a robot become obsolete.

For these factors, FPGAs are considered to be suitable accel-
erators for robots. However, the number of development man-
hours remains a problem. Therefore, it is important to propose
a high-affinity robot middleware interface that connects with
FPGAs, which would reduce the workload burden for both the
circuit and robot engineers.

C. Accelerator applications

A previous study has applied FPGAs in hardware/software
(hw/sw) complex system [15] that combines hw (an FPGA)
and sw (a CPU). High-speed parallel computation is performed
for processes that FPGAs can execute efficiently such as signal
processing. On the other hand, processes that FPGAs cannot
execute efficiently, such as complex conditional branches, are
performed by CPUs. As a result, this combines the advantages
of FPGAs and CPUs, which enables high-speed operation and
reduces the power consumption of the entire system. Recently,
the system on chip (SoC), which is an IC that integrates an
embedded CPU and an FPGA on a single chip, has been
released [17], and has shown a high degree of attention.

Another study has integrated a hw/sw complex system and
robot middleware, i.e., ROS compliant FPGA components
[12]. In that study, ROS was implemented in the CPU on the
SoC and intelligent processing was implemented in the FPGA
on the SoC. However, from a computing load perspective,
it is unrealistic to compute intelligent processing installed in
service robots using only the SoC. Therefore, it is important
to propose a system that can be integrated with ROS installed
on PCs.

In addition, integration of ROS and FPGAs for real-time
control has been reported [16]. This research focused on
latency for control problems. However, to accelerate intelligent
processing on service robots, we should consider not only
latency but also throughput.

III. HARDWARE ACCELERATED ROS PACKAGE

We propose a connective object for middleware to acceler-
ator (COMTA), as shown in Fig. 4, as a hardware accelerated
intelligent processing system for robots.

A. ROS specialized hardware accelerator model

COMTA automatically constructs a processing system that
including a hardware accelerator from ROS space. A laptop
PC (Fig. 4 left) and a hw/sw complex system (Fig. 4 right)
are used in this processing system. The hw/sw complex

© IEEE2018



Fig. 4. Block diagram of proposed system（COMTA)

system is activated using an image file on an SD card. The
sensors and actuators employ existing device drivers installed
on an embedded CPU in the hw/sw complex system. Here,
intelligent processing is performed by a dedicated architecture
(referred to as user logic) implemented on an FPGA.

We propose to automatically generate the hardware acceler-
ated intelligent processing system and its specialized hardware
accelerator via the ROS interfaces, which is possible by using
a block of programs called an “object”.

A COMTA controller object is the core of the system and
activates the hw/sw complex system. When it is defined and
given by a tiny configuration file (Fig. 4) via the ROS interface,
the objects in the hw/sw complex system are activated accord-
ing to the following flow: (1) a data object is activated for data
exchange with external devices or ROS on the laptop, and (2)
a SHM and CPU-FPGA objects are activated for internal data
exchange in the hw/sw complex system.

The user logic is connected via a FIFO interface; therefore,
circuits can be optimized using HDL, a circuits can be
generated by high-level synthesis, and any circuits can be
connected. In addition, by implementing the FIFO interface,
ROS users can use these circuits without considering their
internal structures.

Consequently, the hardware accelerator can be handled
simply like the previous ROS system. For example, for typ-
ical ROS navigation, users are simply required to introduce
hardware (Laser rangefinder) into their system and download
the software [18]–[20] required to run a navigation system.
Similarly, users of the proposed hardware accelerated ROS
package only need to implement an FPGA board and down-
load the hardware accelerated ROS package from the Internet.

B. Shared memory communication model

The computational resources of the embedded CPU are very
limited; thus, data exchange on the embedded CPU requires a
communication model with a smaller computational load than
that of the ROS interface shown in Fig. 3. Therefore, rather
than using the ROS interface, we propose a shared memory
communication model. This model exchanges data using only
internal memory; thus, the computation load is less than that
of the ROS interface, which exchanges data via a network.

IV. EXPERIMENT

To demonstrate the effectiveness of the proposed system, we
implemented a human tracking application on a home service
robot. The flow of the application is described as follows.

1. Acquire a depth image from an RGB-D camera using
OpenNI [21].

2. Generate a binary image from the depth image with
a threshold distance.

3. Extract region of interest images from the binary
image using sliding windows.

4. Extract multi-resolution co-occurrence histograms of
oriented gradients (MRCoHOG) features [22] from
the region of interest images.

5. Determine whether the features are a human or not
using a real AdaBoost [23].

6. Control the wheel base of the robot to approach the
target human.

7. Set the distance of the human region as the threshold
for generation of the next binary image.

Figure 5 shows a block diagram of the system constructed
for the experiment. Note that Fig. 5(a) shows the a conven-
tional system. In this system, all operations (i.e., sensing to
control operations) were performed on a laptop PC.

Figure 5(b) shows the proposed system. Here, operations
were performed using a laptop and the hw/sw complex system.
First, based on the behavior of the hw/sw complex system
which is defined in the XML format, the COMTA controller
object activates the embedded CPU’s software. Then, the
operation flow 1 is executed using an OpenNI object. At this
time, the distance image is sent to an FPGA controller via
a shared memory. Operation flows 2 and 3 are executed, on
the FPGA controller, and the region of interest images are
written to FIFO via the CPU-FPGA object. In the FPGA,
the region of interest images are sent to three line buffers
at the original, half, and quarter resolutions. The buffered
images are calculated luminance gradients using the upper,
lower, left and right of the 3 × 3 kernel, and vote on a
histogram block. The histogram is evaluated by the output
of weak classifiers implemented in LUT. Finally, the result is
sent to the embedded CPU via FIFO and sent to the laptop via
shared memory. Thus, the laptop is only used to activate the
hw/sw complex system and control of the wheel base of the
robot, and the computational load of the intelligent processing
is offloaded to the hw/sw complex system.

In this experiment, we used a Xilinx XC7Z020 SoC and its
evaluation board [17], [24]. To synthesize the internal circuit
of the FPGA, we used a Xilinx Vivado HLS 2016.2 which is a
high level synthesis tool [25]. The synthesis results shows that
8% Flip Flops and 31% Look Up Tables of available resources
were used; whereas, no DPS and Block RAM were used.

A. Evaluation of embedded CPU internal communication

Data exchange in the embedded CPU is shown in Fig.
5(b)(1). We compare the performance of the conventional
ROS interfaces and the proposed shared memory model. In

© IEEE2018



(a) (b)

Fig. 5. Block diagram; (a) conventional and (b) proposed systems

TABLE I
EMBEDDED CPU INTERNAL COMMUNICATION RESULTS

Method Send/ Average frame rate [fps]
Receive QVGA VGA

ROS interfaces Send 309 65
Receive 244 60

Shared memory Send 1261703 822011
Receive 70550 77393

the former, data exchange is performed via a local network
inside the embedded CPU, and the latter method is often
used for inter-process communication with the data exchange
performed using memory. In this experiment, QVGA/VGA,
RGB 8 bit, three-channel images were exchanged. In addition,
we measured the average frame rate.

The results are shown in Table I. As can be seen, the shared
memory can exchange data at a high speed with a smaller
calculation load.

B. Evaluation of the proposed system using robot application

As mentioned previously, we compared the performances of
the conventional and proposed systems using a human tracking
application. In this experiment, frame rate, power consump-
tion, power efficiency and CPU utilization were measured.

The experimental results are shown in Table II. In the
conventional system, the processing frame rate was the same as
that of the RGB-D camera. However, the conventional system
consumed 26 W and its power efficiency is low.

In the proposed system, the processing frame rate was less
than that of the conventional system. Here, operation flow 2
and 3 which are implemented in the embedded CPU, caused a
reduction in operational speed. However, the proposed system
consumed only 5 W, and the power efficiency was 3.3 times
better than that of the conventional system.

The experimental results in terms of CPU utilization are
shown in Fig. 6. As can be seen, the CPU utilization of the
proposed system was less than that of the conventional system,
which demonstrates that the heavy load incurred by person
tracking was offloaded to the proposed system.

TABLE II
EXECUTION RESULTS OF THE PERSON TRACKING APPLICATION

Conventional Proposed
Core i5 5200U ARM Dual Core

2.2GHz 667MHz/FPGA
Frame rate [fps] 29.06 17.25

Power consumption [W] 26 4.7
Efficiency [fps/W] 1.12 3.69

(a) Conventional (b) Proposed

Fig. 6. Results of CPU Utilization

V. CONCLUSION

We have proposed COMTA hardware accelerated robot
middleware package. The proposed system can automatically
generate an intelligent processing system using a tiny configu-
ration file in ROS space. In addition, we focused on communi-
cation and proposed a shared memory communication model.
The experimental results indicate that the communication of
the proposed system has better throughput and latency than
ROS interfaces. In a person tracking application, the power
efficiency of the proposed system was 3.3 times better than
that of a general PC system. In the future, we will improve
the efficiency of intelligent processing, and implement further
intelligent processing using deep neural networks.

ACKNOWLEDGMENT

This research is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO), and partially supported
by JSPS KAKENHI grant number 17H01798.

© IEEE2018



REFERENCES

[1] S. Hori, Y. Ishida, Y. Kiyama, Y. Tanaka, Y. Kuroda, M. Hisano, Y. Ima-
mura, T. Himaki, Y. Yoshimoto, Y. Aratani, K. Hashimoto, G. Iwamoto,
H. Fujita, T. Morie and H. Tamukoh, “Hibikino-Musashi@Home
2017 Team Description Paper,” The Computing Research Repository,
arXiv:1711.05457 [cs.RO], 2017.

[2] T. Wisspeintner, T. van der Zant, L. Iocchi and S. Schiffer, “RoboCup
Home: Scientific Competition and Benchmarking for Domestic Service
Robots,” Interaction Studies, Vol. 10, Issue 3, pp. 392-426, 2009.

[3] L. Iocchi, D. Holz, J. Ruiz-del-Solar, K. Sugiura, T. Zant, “Analysis
and results of evolving competitions for domestic and service robots,”
Artificial Intelligence, Vol. 229, pp. 258–281, 2015.

[4] J. Redmon, S. K. Divvala, R. B. Girshick and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” IEEE Conference on
Computer Vision and Pattern Recognition, pp. 779-788, 2016.

[5] Z. Cao, T. Simon, S. Wei and Y. Sheikh, “Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields,” IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler and A. Ng, “ROS: an open-source Robot Operating System,”
ICRA Workshop on Open Source Software, 2009.

[7] (2017, Nov.) ROS Wiki. [Online]. Available: http://wiki.ros.org/
[8] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W. Yoon, “RT-

middleware: distributed component middleware for RT (robot technol-
ogy),” IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3555-3560, 2005.

[9] (2017, Nov.) OpenRTM-aist official website. [Online]. Available: http:
//www.openrtm.org/openrtm/ja/content/openrtm-aist-official-website

[10] (2017, Nov.) V-Sido OS. [Online]. Available: https://www.asratec.co.jp/
v-sido-os/

[11] (2017, Nov.) ROS Community Metrics Report 2015. [Online]. Available:
http://download.ros.org/downloads/metrics/metrics-report-2015-07.pdf

[12] K. Yamashina, T. Ohkawa, K. Ootsu and T. Yokota, “Proposal of ROS-
compliant FPGA Component for Low-Power Robotic Systems -case study
on image processing application-,” International Symposium on Foun-
dations and Practice of Security, The Computing Research Repository，
abs/1508.07123, 2015.

[13] H. Yonekawa and H. Nakahara, “On-Chip Memory Based Binarized
Convolutional Deep Neural Network Applying Batch Normalization Free
Technique on an FPGA,” IEEE International Parallel and Distributed
Processing Symposium Workshops, pp. 98-105, 2017.

[14] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu and X. Tian, “High
performance biological pairwise sequence alignment: FPGA versus GPU
versus cell BE versus GPP,” International Journal of Reconfigurable
Computing, Vol. 2012, pp. 1-15, 2012.

[15] H. Tamukoh and M. Sekine, “Design of Networked hw/sw Complex
System using Hardware Object Model and Its Application,” Proc. of 39th
Annual Conference of the IEEE Industrial Electronics Society, pp. 2250-
2255, 2013.

[16] A. B. Lange, U. P. Schultz and A. S. Soerensen, “Towards Automatic
Migration of ROS Components from Software to Hardware,” The Com-
puting Research Repository, arXiv:1407.7560 [cs.RO], 2014.

[17] (2017, Nov.) Zynq-7000 All Programmable SoC. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[18] (2017, Nov.) hokuyo node. [Online]. Available: http://wiki.ros.org/
hokuyo node

[19] (2017, Nov.) amcl. [Online]. Available: http://wiki.ros.org/amcl
[20] (2017, Nov.) mode base. [Online]. Available: http://wiki.ros.org/move

base
[21] (2017, Nov.) OpenNI 2 Downloads and Documentation. [Online]. Avail-

able: https://structure.io/openni
[22] S. Iwata and S. Enokida, “Object Detection Based on Multiresolution

CoHOG,” International Symposium on Visual Computing, pp. 427-437,
2014.

[23] R. E. Shapire and Y. Singer, “Improved Boosting Algorithms Using
Confidencerated Predictions,” Machine Learning, Vol. 37, pp. 297-336,
1999.

[24] (2017, Nov.) Xilinx ZedBoard : http://zedboard.org/product/zedboard.
[25] (2017, Nov.) Xilinx. [Online]. Available: https://www.xilinx.com/

© IEEE2018




