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ABSTRACT: Quantum dots (QDs) provide an attractive alternative sensitizer to organic dyes. 

However, there have been few reports on quantum dot-sensitized solar cells (QDSCs) that have 

photovoltaic conversion efficiencies exceeding those of dye-sensitized solar cells. This is because 

of the lack of fundamental studies of QDs on conventional nanocrystalline metal oxide electrodes. 

An important first step is an investigation of the dependences of the optical absorption, the ground 

state energy level, and the interfacial electron transfer (IET) on the size of QDs deposited on well 

characterized single crystal oxides. The present study focuses on a system of CdSe QDs adsorbed 

on the (001), (110), and (111) surfaces of single crystal rutile-TiO2. The optical absorption spectra, 

characterized using photoacoustic spectroscopy, were found to be independent of the surface 

orientation. However, the exponential optical absorption tail (Urbach tail) suggests that the 

disorder decreases with the increasing size of the QDs, and is related to the surface orientation. 

The ground state energy levels of the QDs were characterized using photoelectron yield 

spectroscopy. Those on (001) and (111) surfaces show an upward shift as the size of QDs increases, 

while that on the (110) surface shows a downward shift, indicating a difference between the 

pinning effects for the different surface orientations. The IET rate constant and the relaxation 

component were characterized using the transient grating method. The IET rate constant was found 

to decrease as the size of the QDs increases and depends on the surface orientation, indicating 

differences in the decrease of the free energy change. The relaxation component increases with 

increasing QD size and depends on the surface orientation. This correlates with the density of 

states in the conduction band of rutile-TiO2.  

KEYWORDS: semiconductor quantum dot, TiO2 single crystal, photo-sensitization, ionization 

energy, interfacial electron transfer, photoacoustic spectroscopy, photoelectron yield 

spectroscopy, transient grating method,  
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INTRODUCTION 

When the size of a semiconductor material is reduced to dimensions below its effective exciton 

Bohr radius, exciton confinement results in the evolution of discrete optical transitions that 

gradually shift to higher energies with decreasing size (quantum confinement effect). Controlling 

the dimensions of semiconductor materials at the nanoscale level (thus creating quantum dots, 

QDs) is a promising strategy for developing novel functionality for various applications, including 

solar cells (quantum dot-sensitized solar cells, QDSCs).1-15 Thus, the most appealing quality of 

QDs from both academic and industrial perspectives is their size-dependent electronic properties. 

Due to the size-dependent quantum confinement effect, QDs have a tunable energy gap between 

the ground and excited states, and higher extinction coefficients, which suggests the possibility of 

using them as sensitizers in place of dyes. Moreover, the electron injection process benefits from 

the large built-in dipole moments produced in the QDs that facilitate the separation processes of 

the electron-hole pairs.16,17 These characteristics of QDs provide them with the possibility of 

boosting the light-to-energy conversion efficiency of QDSCs. In the quest for higher light-to-

electric conversion efficiencies and lower production costs, a number of researchers have proposed 

QDSC architectures stretching over two decades where nanoparticles of wide bandgap 

semiconductors are photosensitized with QDs. Although QDs have such advantages, there have 

been few reports on QDSCs with photovoltaic conversion efficiencies equaling or exceeding those 

of dye-sensitized solar cells (~ 12%).18 This is because of the lack of fundamental studies of the 

electronic structure and the interfacial electron transfer (IET) of QDs adsorbed on nanocrystalline 

metal oxide electrodes. In general, nanoparticulate TiO2 electrodes play a key role in applications 

to QDSCs, because they offer a large surface area onto which a large amount of QDs can be 

adsorbed for light harvesting.19 For QDs adsorbed on TiO2 and other metal oxide nanoparticulate 
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electrodes, heterogeneity can be caused by the distributions of defects, adsorption sites, and the 

exposed surfaces on the oxide. Also, the heterogeneity can be caused by distributions in the 

parameters of the QDs, such as their size, shape and charge, as well as their interactions.20 These 

complexities cloud a detailed understanding of the essential factors that contribute to the electronic 

structure and IET of QDs adsorbed on nanoparticulate TiO2 electrodes.  

In a fundamental study, it is important and necessary to investigate the dependencies of the 

optical absorption, the ground state energy level, and the IET processes on the size of the QDs on 

well characterized single crystal metal oxide surfaces, where the electronic structure has been well 

investigated.20,21  Nevertheless, a detailed study of the influence of electrodes with different crystal 

orientations is seldom discussed except in a few reports. A high photovoltaic conversion efficiency 

(~ 4.73%) for PbS QD heterojunction solar cells using anatase (001) TiO2 nanosheet electrodes 

has been reported.22 The better photovoltaic performance of the nanosheet compared to 

nanoparticles may be attributed to the high reactivity of the (001) surface owing to the higher ionic 

charge of this surface compared to the thermodynamically stable (101) surface.23 Maitani and co-

workers have revealed the effect of the reactive {001} facet on the photoexcited charge transfer 

from organic fluorophores to anatase-TiO2 nanoparticles. The results imply a significant 

enhancement of the photoexcited charge transfer from fluorophores to TiO2 nanoparticles due to 

the reactive {001} facet with a maximum factor of more than 10 in the quenching rate constant.24 

Parkinson and co-workers have used dyes and several QDs to sensitize single crystal surfaces to 

create a simple model for studying the basic processes related to IET in single crystal metal oxide 

electrodes.25-32 The function of QDSCs relies on IET from the QD to a large band gap metal oxide 

(MO) (TiO2, ZnO etc.) and it is the first important step for solar cell performance. Although the 

effects on IET of the size of QDs and the QD-MO spacing have been studied for various materials, 
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the previous studies of the IET from molecules and QDs to nanoparticulate TiO2 electrodes have 

revealed highly heterogeneous IET dynamics because of the heterogeneity and polycrystalline 

nature of nanoparticulate TiO2.
32-42 Recently, the IET rate of CdSe QDs on rutile-TiO2 (R-TiO2) 

electrodes with different crystal orientations has been studied as a function of the energy gap (ΔE) 

between the conduction band minimum of R-TiO2 and the first excited state of the CdSe QDs.43 

The IET rate constant of CdSe QDs on a (111) surface with respect to ΔE is higher than those on 

the (001) and (110) surfaces, indicating differences in the crystal binding and the mixing of wave 

functions at the interface.43   

The present study focuses on the QD size-dependencies of the optical absorption, the ground 

state energy, the IET rate constant, and the components of the IET in systems comprising CdSe 

QDs on single crystal R-TiO2. We chose CdSe QDs as the sensitizer as these are the most 

extensively studied. Knowledge of the QD size-dependencies of the optical absorption, ground 

state energy, and IET is important in order to clarify the nature of the interaction between the QDs 

and R-TiO2. We chose single crystal R-TiO2, which is not only ideal for studying the crystal growth 

of the QDs but is also useful for studying the interactions between the QDs and TiO2. The rutile 

phase is the most stable and has been the subject of most fundamental studies because of the ready 

access to large bulk single crystals and relatively easy surface preparation procedures.21 First, we 

applied photoacoustic (PA) spectroscopy, which is a type of photothermal spectroscopy, to 

characterize the optical absorption, not only in the bandgap absorption region but also in the sub 

bandgap region.15,44,45 The PA signal is less sensitive to light-scattering effects than the signals in 

conventional spectroscopy. The sensitivity is higher for weak absorption than that of the 

conventional technique. Second, we applied photoelectron yield (PY) spectroscopy.46,47 Although 

PY spectroscopy has been used to determine the ionization energy of a number of bulk 
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semiconductors and metals, it has not been applied to the study of the ionization energy of QDs as 

a function of size. While UV optical absorption spectra specify the energies of bands relative to 

each other and give information only at the band edge, they do not determine the absolute energy 

levels. Understanding of the absolute energy levels is vital in order to get a complete picture of the 

electronic structure, including the quantum confinement effect in the system. PY spectroscopy is 

useful for determining the absolute ground state energy level of CdSe QDs on R-TiO2, in contrast 

to ultraviolet visible (UV) spectra. Advantageously, the PY method is a rapid and reproducible 

measurement that can be done under ambient conditions.46,47 Third, we applied the improved-

transient grating (TG) method to characterize the IET dynamics.14 Basically, the TG method 

depends on the refractive index changes resulting from photoexcited carriers. In this method, a 

diffraction grating consisting of photoinduced charge carriers was utilized for monitoring the 

carrier dynamics. The improved-TG method features very simple optical alignment, high 

sensitivity, and evaluation of both the electron and hole relaxation processes, under low pump light 

intensity.14,48,49 Comparison of the IET dynamics for IET from CdSe QDs to single crystal R-TiO2 

with different crystal surfaces as a function of the size of the QDs leads to an understanding of the 

charge injection dynamics and suggests possible ways to improve QDSCs.  

EXPERIMENTAL SECTION 

    Materials and Chemicals. The characteristics of single crystal R-TiO2 have already been 

reported.50 Single-crystal R-TiO2 wafers, 5 mm x 7 mm in area and 0.5 mm thick, with (001)-, 

(110)-, and (111)-cuts were obtained from Furuuchi Chemical Co., Ltd., Japan. The surface 

roughness of the (001), (110), and (111) surfaces were 0.322 nm, 0.356 nm, and 0.394 nm,  
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respectively. The flat surfaces were treated by washing them in acetone for 30 min, immersing 

them in distilled water for 30 min, and exposing them to ozone for 10 min. CdSe QDs were 

adsorbed on the surfaces of the wafers using a chemical bath deposition (CBD) technique.50 An 80 

mM sodium selenosulphate (Na2SeSO3) solution was prepared by dissolving elemental Se powder 

in a 200 mM Na2SO3 solution. Then, 80 mM CdSO4 and 120 mM of the trisodium salt of 

nitrilotriacetic acid [N(CH2COONa)3] were mixed with the Na2SeSO3 solution in a volume ratio 

of 1:1:1. The single crystal R-TiO2 was placed in a glass container filled with the final solution at 

10ºC in the dark for various times (4 ~ 28 h). Figure 1 shows examples of AFM images of CdSe 

QDs adsorbed on (a) (001) R-TiO2, (b) (110) R-TiO2, and (c) (111) R-TiO2. The adsorption 

temperature and time were 10ºC and 4 h, respectively. The AFM images show that there are many 

more CdSe QDs on the (111) surface than on the (001) and (110) surfaces. Also, the rate of 

adsorption from optical absorbance measurements of the CdSe QDs on the (111) surface is higher 

than for those deposited on the (001) and (110) surfaces, similar to results previously reported 

((111) > (110) > (001)).50 Therefore, the adsorption of CdSe QDs on R-TiO2 is related to the 

orientation of the surface and its associated electronic structure. Characterization of the crystal 

Figure 1. AFM images of CdSe quantum dots adsorbed on the (a) (001), (b) (110), and (c) (111) 

surfaces of single crystal of R-TiO2 (adsorption temperature 10°C; adsorption time, 4 h). 
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structure of CdSe QDs by conventional XRD measurements was not possible due to the small 

number of QDs. One would like to characterize the structure by high-resolution XRD 

measurements, since the ground state energy level of the QDs might depend on the crystal 

structure.51  

PA Spectroscopy Characterization. The optical absorption of CdSe QDs on R-TiO2 were 

investigated using a single beam PA spectrometer with a gas-microphone technique.15 The PA cell 

consists of an aluminum cylinder with a small channel at the periphery into which a microphone 

is inserted. Monochromatic light from a 300 W xenon short arc lamp modulated at 33 Hz was 

focused onto the sample surface in the sealed PA cell. The PA signal was detected by first passing 

the output from the microphone through a preamplifier and then a lock-in amplifier. The spectra 

were taken at room temperature in the wavelength range of 300 – 830 nm. The PA signal intensity 

is proportional to the optical absorption coefficient due to the relationship between the optical 

absorption length and the thermal diffusion length.52 The spectra were calibrated using the PA 

signals from a carbon black sheet.15,52  

    PY Spectroscopy Characterization. The PY spectra were collected using an ionization energy 

measurement system (BIP-KV201, Bunkoukeiki, Co., Ltd., Japan).15,43 The number of 

photoelectrons was obtained using an ammeter to measure the current needed to compensate for 

the photoexcited holes generated in the sample. In the PY measurements, the photoemission yield 

(Y) was measured as a function of photon energy (hν), and the value of the ionization energy (I) 

was determined from the onset of the PY spectrum. The PY spectrum around the photoelectric 

threshold I can be expressed by the following equation 

                                                                Y = K (hν – I )n                                                               (1) 
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where K is a constant and n is a parameter that mainly depends on the shape of the density of 

electronic states at the upper edge of the valence band and the probability of the transmission of 

electrons across the surface.46 In this study, we employed a cubic function (n = 3) based on a 

theoretical analysis.46,53 The value of I was determined by extrapolating the linear part of Y1/3 to 

the baseline.15 An energy scan of the incident photons was performed with UV light (4 ~ 9.5 eV). 

The UV light was focused on the sample over an area of 1 × 3 mm2. All the measurements were 

performed in a vacuum chamber (~ 4 × 10-3 Pa) at room temperature.  

   Improved-TG Characterization. For these measurements, a laser beam was separated into two 

parts for the pump and probe beams. These were then aligned coaxially before being trained on 

the transmission grating. For the pump beam, the spatial intensity profile has an interference 

pattern close to the surface on the far side of the transmission grating. When a sample is brought 

near to this surface, it is excited by the optical interference pattern. The probe beam is diffracted 

both by the transmission grating and by the grating induced on the sample (TG). The two 

diffractions progress in the same direction and the time dependent diffraction intensity is 

measured.14 The laser source used for this characterization was a regeneratively amplified 

titanium/sapphire laser (CPA-1000, Clark-MXR Inc., USA) with a fundamental wavelength of 775 

nm, a repetition rate of 1 kHz, and a pulse width of 150 fs. The probe pulse (775 nm) was delayed 

by an optical delay line (0 ~ 400 ps). The pump pulse was generated using a travelling-wave optical 

parametric amplifier of a super fluorescence (TOPAS) system and was set at a wavelength of 500 

nm, suitable for optical absorption in CdSe QDs. The diameters of both the pump and probe lasers 

were 5 mm. We have shown previously that the mechanism for carrier depopulation by the TG 

technique under our experimental conditions (2 ~ 7 μJ/pulse: linear response range) is due to hole 

trapping and electron injection or trapping.14 In this case, we were able to separate charge 
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transfer/trapping from charge recombination, simplifying the data analysis. Also, samples 

exhibited no apparent photo-damage during the TG experiments.  

RESULTS AND DISCUSSION 

   PA Characterization of CdSe QDs on Single Crystal R-TiO2. Figure 2 (a) shows an example 

of the PA spectra for CdSe QDs on the (111) surface of single crystal R-TiO2 with different 

adsorption times (12 ~ 24 h). The shapes of the PA spectra are independent of the modulation 

frequency (33 ~ 233 Hz) of the incident light, indicating reflection of the optical absorption 

coefficient character. Similar PA spectra can be obtained for CdSe QDs on the (001) and (110) 

surfaces of single crystal R-TiO2. The energy gap between the ground and excited states (first 

excitation energy) was evaluated using the shoulder point (↓, energy value is E1). In general, the 

values of E1 in the logarithmic PA spectra agree well with the reported values of the bandgaps.54 

A redshift in E1 with increasing adsorption time is perceptible, suggesting the growth of CdSe QDs. 

With the values of E1 and the bandgap (Eg) for bulk CdSe, the average diameter, R, can be estimated 

from the effective mass approximation (EMA)55 using the following equations 

                                                                 E1 = Eg + 
ℎ2

8𝜇𝑟2                                                    (2) 

                                                                  
1

𝜇
 = 

1

𝑚𝑒
∗  + 

1

𝑚ℎ
∗     

where r is the radius (R = 2r) of the CdSe QDs, μ is the reduced mass, h is Planck’s constant, me
* 

is the electron effective mass, and mh
* is the hole effective mass. The Coulomb and correlation 

terms are neglected. Hence the EMA assumes an infinite potential barrier at the surface of the dot, 

and fails for small dot sizes because the bands at higher wave vectors are non-parabolic and 
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the potential step at the surface of the dot is finite. Murray and co-workers showed that the size of 

CdSe QDs calculated by the EMA agree with the experimental results for CdSe QDs larger than 3 

nm in diameter.56 R values estimated from the PA measurements in our case were in the acceptable 

range of the EMA. Figure 2 (b) shows an example of the adsorption time dependence of R of CdSe 

QDs on the (111) single crystal R-TiO2. R increases in diameter from 3.5 to 6.5 nm. Similar results 

were obtained for the other surfaces showing that the adsorption time dependence of R is 

Figure 2. (a) Photoacoustic spectra for CdSe quantum dots adsorbed on the (111) surface of 

single crystal R-TiO2. (b) Dependence of average diameter, R, on adsorption time. 
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independent of the R-TiO2 surface. However, the rate of adsorption measured by the optical 

absorbance in CdSe QDs on the (111) surface is higher than for those deposited on the (001) and 

(110) surfaces, giving a similar result to that reported previously ((111) > (110) > (001)).50  

In semiconductors and insulators, the absorption edge in the region below the bandgap increases 

exponentially (Urbach tail or exponential tail).57 The exact cause of the Urbach tail has been 

extensively studied.58-63 One study gave fundamental information associated with the structural 

disorder, defects, impurities, and electron-phonon interactions.62 The PA signal intensity (P) in the 

region of the Urbach tail is given by the following equation62 

                                                   P = P0 exp [
𝜎(ℎ𝜈−ℎ𝜈0)

𝑘𝐵𝑇
]                                                    (3) 

where h is Planck’s constant (hν, incident photon energy), kB is the Boltzmann constant, T is 

absolute temperature, and P0 and ν0 are fitting parameters. σ is a characteristic of the logarithmic 

slope (exponential tail) and is called the steepness parameter. Figure 3 (a), (b), and (c) show the 

dependence of the value of σ on R for CdSe QDs on (001), (110), and (111) single crystal R-TiO2, 

respectively. We assume firstly that the value of σ is a reflection of the structural disorder from the 

ideal stoichiometry for CdSe QDs. Smaller σ corresponds to a broader exponential tail and hence 

to larger structural disorder.64 The value of σ increases with increasing R, indicating a decrease in 

structural disorder. Another possibility for the R dependence of σ is the effect of electron-phonon 

interactions.62 Our results suggest that the number of electron-phonon interactions is larger for 

smaller R because these interactions increase as the number of phonons at room temperature 

increases.62 The structural disorder and electron-phonon interactions,  
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together with the impurities, strongly influence the optical absorption process.59,62 The temperature 

dependence of σ is needed to account for the effects of the structural disorder and electron-phonon 

interactions for CdSe QDs on different electrode surface orientations.62  

    PY Characterization of CdSe QDs on Single Crystal R-TiO2. The orientation of the crystal 

surface affects the ionization energy because the strength of the electric double layer at the surface 

is proportional to the density of positive ion cores. There is a double layer because the surface ions 

are asymmetric, with vacuum on one side and substrate on the other.15 We utilized  

Figure 3. Dependence of steepness parameter, σ, on the average diameter, R, of CdSe quantum 

dots adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal R-TiO2. 
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the PY spectroscopy method to determine the size-dependent ground state energy level of CdSe 

QDs on (001), (110), and (111) single crystal R-TiO2. Figure 4 (a) shows an example of the PY 

spectra of CdSe QDs grown on the (111) surface with an adsorption time of 18 h (~ 6 nm diameter). 

The error bars are included to show the good S/N ratio. Figure 4 (b) shows an example of the 

alignment of the energy levels of CdSe QDs on (111) R-TiO2, together with the valence band 

maximum (VBM) positions of (111) R-TiO2.
50,64 The positions of the VBM measured for (001), 

(110), and (111) R-TiO2 were the same as reported previously (-7.83 eV, -7.74 eV, and -7.60 eV, 

respectively).50 The size-dependent ground state and excited state energy levels of CdSe QDs on 

(a) (001), (b) (110), and (c) (111) single crystal R-TiO2 are shown in Figure 5. Figure 5 shows that 

the ground state energy levels of CdSe QDs on the (001) and (111) surfaces shift upward with 

increasing R, while that on the (110) surface shifts downward. Here, the excited state energy levels 

of CdSe QDs on (001), (110), and (111) R-TiO2 are evaluated from the PA characterization (E1 

value), and they show downward shifts with increasing R. In the simplest EMA model,65 the 

ground and excited energy level shifts (ΔEGS and ΔEES,  

 

Figure 4. (a) Photoelectron yield spectrum of CdSe quantum dots adsorbed on the (111) surface of 

single crystal R-TiO2. (b) alignment of energy levels. 
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respectively) are inversely proportional to the effective masses of the holes (mh
*) and electrons 

(me
*), respectively, and given by  

                                   ΔEGS = 
−ℎ2

2𝑚ℎ
∗ 𝑅2       ΔEES = 

ℎ2

2𝑚𝑒
∗ 𝑅2                                             (4)    

where h is Planck’s constant, and R is the diameter of the QDs.66 Since mh
* for CdSe is three times 

heavier than me
*, EMA predicts the upward shift of the ground state energy level is approximately 

three times smaller than the downward shift of the excited state energy level. The measured 

Figure 5. Dependence of ground state and excited state energy levels of CdSe quantum dots on 

average diameter, R, adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal 

R-TiO2 
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changes in ΔEGS and ΔEES with R are smaller than those calculated from equation (4). This implies 

that EMA is inaccurate and overestimates the quantum confinement effect. There is a chemical 

interaction between the CdSe QDs and the R-TiO2 surface upon adsorption that correlates with the 

ground states of the CdSe QDs. The interactions between CdSe QDs and the (001) and (111) R-

TiO2 surfaces are similar to each other because the R dependences of ΔEGS and ΔEES are the same 

On the other hand, the interaction between CdSe QDs and the (110) R-TiO2 surface is different 

because of the different R dependence of ΔEGS. The different R dependence for the (110) surface 

is possibly due to the pinning of the CdSe QD ground state to the VBM of R-TiO2, which is 

attributed to direct electronic interaction between the two semiconductor materials.66 

  TG Characterization of CdSe QDs on Single Crystal R-TiO2. Figure 6 shows an example of 

the TG response for CdSe QDs grown on a R-TiO2 (111) surface with an adsorption time of 18 h 

(~ 6 nm diameter). There are two relaxation processes: a fast one (~ 1 ps) and a slow one (several 

tens of ps). The TG signal intensity S(t) is proportional to the refractive index change, which is 

determined by a linear function of the concentration of free photogenerated carriers (electron and 

holes) according to the Drude model.67,68 S(t) can be fitted with two exponential relaxation 

functions plus an offset (S0) 

                                            S(t) = A1 exp (
−𝑡

𝜏1
)  + A2 exp (

−𝑡

𝜏2
) + S0                                    (5)  

where A1, A2, and S0 are fitting parameters, which correspond to the components of the fast, slow, 

and longer relaxation processes, respectively. Here, we assume that S0 is related to the 

recombination process. τ1 and τ2 are the time constants of the fast and slow relaxation processes, 

respectively. The two exponential functions together with the offset term fit with the  
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experimental data using a least-squares fit (red-line in Figure 6). The fast relaxation time constant 

τ1 is observed to be around 1 ps. In the TG measurements, τ1 is independent of the surface 

orientation. The fast relaxation process of around 1 ps region was not observed in the TG 

measurements when we characterized CdSe QDs adsorbed on a nanaoparticulate TiO2 

electrode.49,67,68 We measured the TG responses of each single crystal rutile TiO2 surface without 

CdSe QDs to investigate the effect of the TiO2 only. In this case, similar fast relaxation processes 

with relaxation times of around 1 ps were observed for the three different surfaces. These TG 

responses are identical with those obtained for CdSe QDs on R-TiO2. Therefore, the fast relaxation 

process is mainly due to the optical Kerr effect, which is an effect due to the electric field of the 

light itself. The optical Kerr effect causes a variation in the refractive index which is proportional 

to the local irradiation of the light. This effect is pronounced with intense beams such as lasers 

applied to single crystals. On the other hand, the fast relaxation processes in the region of several 

ps due to hole trapping49,67,68 were not observed in our TG measurements on CdSe QDs on single 

crystal R-TiO2 owing to the overlap of the TG signal intensity with the strong optical Kerr effect 

around 1 ps. Figure 7 shows the dependence on R of the relative value  

Figure 6. Transient grating response for CdSe quantum dots adsorbed on the (111) surface of 

single crystal R-TiO2 (adsorption time, 18 h). 
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of the parameter A1 for the fast relaxation process to the value of the combined parameters (A1/(A1 

+ A2 + S0)) on (a) (001), (b) (110), and (c) (111) surfaces. The relative value depends on R and 

decreases with increasing R due to the decrease in penetration of the pump beam to the single 

crystal rutile TiO2, corresponding to a decrease in the optical Kerr effect. However, the rate of 

decrease of the relative component of A1 on the (110) surface is lower than those on the (001) and 

(111) surfaces, indicating a greater influence of the optical Kerr effect, despite the adsorption of 

QDs on the (110) surface being larger than that on the (001) surface. According to the PY 

characterization, the interactions between the CdSe QDs and R-TiO2 for the (001) and (111) 

Figure 7. Dependence of the relative component of A1/(A1 + A2 + S0) on the average diameter, R, 

of CdSe quantum dots adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal 

R-TiO2.  
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surfaces are similar to each other. On the other hand, the interaction between the CdSe QDs and 

R-TiO2 for the (110) surface is different. The different R dependence for the (110) surface is 

possibly due to pinning of CdSe QD ground state to the VBM of R-TiO2, which is attributed to the 

direct electronic interaction between the two semiconductor materials.66 The different pinning 

effect leads to the smaller ratio of the relative component of the relaxation process for the (110) 

surface.  

   The slow relaxation time constant τ2 of between 30 and 80 ps is assumed to be due to the 

photoexcited electron relaxation process. τ2 obtained in the measurements increases with 

increasing adsorption time similar to previous reports37,68 and depends on the R-TiO2 surface. We 

calculate the apparent IET rate constant, ket, for CdSe QDs adsorbed on R-TiO2 using the following 

relationship69  

                                                        Ket = 
1

𝜏2(TiO2)
 - 

1

𝜏2 (SiO2)
                                           (6) 

where τ2 (TiO2) and τ2 (SiO2) are the time constants of the QDs adsorbed on R-TiO2 and SiO2, 

respectively. Applying the time constant τ2 in the measurements for QDs on R-TiO2 and those on 

SiO2 from the literature,49 we calculated the apparent IET rate constant Ket using eq. (6). Figure 8 

shows the dependence of Ket on R for QDs on (a) (001), (b) (110), and (c) (111) surfaces. Ket 

decreases with increasing R. This result can be explained by the fact that with larger R a smaller 

percentage of the total charge density is localized near the surface.70 This causes a decrease in the 

free energy change, so that the IET rate constant decreases. The symmetry of the wave functions 

determines the total charge density.70 The symmetry of the excited states of CdSe QDs to the 

orbitals of the substrate influences the IET rate constant. The rates of decrease of Ket for  
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the (110) and (111) surfaces are higher than that for the (001) surface, indicating that smaller 

percentages of the charge are localized near the (110) and (111) surfaces than near the (001) surface 

with increasing R. Figure 9 shows the dependence on R of the relative value of the parameter for 

the slow relaxation process (A2/(A1 + A2 + S0)) for QDs on (a) (001), (b) (110), and (c) (111) 

surfaces. The component A2 depends on R and increases with increasing R. The rate at which A2 

increases for the (111) surface is higher than those for the (001) and (110) surfaces, indicating a 

difference in the density of states (DOS) in the conduction band for (111) R-TiO2. The DOS of the 

conduction band of R-TiO2 is dominated by Ti 3d orbitals. DFT calculations  

Figure 8. Dependence of the electron transfer rate constant, Ket, on the average diameter, R, of 

CdSe quantum dots adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal R-

TiO2.   
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have shown that the DOS due to Ti 3d orbitals for (001) and (110) R-TiO2 is broad, between 1.6 

and 6 eV. However, Ti 3d orbitals for (111) R-TiO2 give rise to a somewhat narrower structure 

between 1.6 and 3.6 eV, suggesting the possibility of a higher DOS in (111) R-TiO2 than the other 

crystal orientations.43 Hence, there is a possibility that the higher rate of increase of A2/(A1 + A2 + 

S0) with R in (111) R-TiO2 is due to the higher DOS in (111) R-TiO2. We have shown that (111) 

R-TiO2 is suitable for the adsorption of CdSe QDs and electron transfer.50,64 To clarify the 

effectiveness of (111) R-TiO2 for sensitizing solar cells, we introduce the product of Ket and A2/(A1 

+ A2 + S0). The value of Ket • A2/(A1 + A2 + S0) corresponds to the short circuit current  

Figure 9. Dependence of the relative component of A2/(A1 + A2 + S0) on the average diameter, R, 

of CdSe quantum dots adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal 

R-TiO2.  
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density, Jsc, in the photovoltaic cell. Figure 10 shows the dependence of Ket • A2/(A1 + A2 + S0) on 

R for the (a) (001), (b) (110), and (c) (111) surfaces. These each have maximum values. Figure 10 

(c) shows that the maximum value on the (111) surface is higher than those on the (001) and (110) 

surfaces, indicating the effectiveness of (111) R-TiO2 as a photoanode. Hence, the combination of 

a (111) R-TiO2 nanosheet as a photoanode with CdSe QDs with diameters of ~ 6.6 nm can 

contribute to better photovoltaic performance of CdSe QDSCs, similar to the improvements 

achieved by applying photoelectrodes of anatase TiO2 nanosheets with exposed (001) facets.22  

CONCLUSIONS 

Figure 10. Dependence of the value of Ket • A2/(A1 + A2 + S0) on the average diameter, R, of CdSe 

quantum dots adsorbed on the (a) (001), (b) (110), and (c) (111) surfaces of single crystal R-TiO2. 
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We have shown the dependences of the optical absorption, the ground state energy level, and the 

interfacial electron transfer dynamics on the size of CdSe QDs adsorbed on the (001), (110), and 

(111) surfaces of single crystal rutile-TiO2 (R-TiO2). The exponential optical absorption tail 

indicates a decrease in structural disorder or a decrease in the electron-phonon interactions with 

increasing size. The ground state energy levels of the CdSe QDs on (001) and (111) R-TiO2 

surfaces indicate an upward shift with increasing size, while that for the (110) surface shows a 

downward shift. These results suggest that the pinning of the CdSe QD ground state to the VBM 

depends on the orientation of the R-TiO2. The excited state energy levels of CdSe QDs on (001), 

(110), and (111) R-TiO2 surfaces indicate a downward shift with increasing size. The IET rate 

constant decreases with increasing size and depends on the R-TiO2 surface orientation, indicating 

a decrease in the free energy change. The relative value of the parameter for the slow relaxation 

process increases with increasing size and depends on the R-TiO2 surface orientation, indicating 

differences between the density of states in the conduction bands for (001), (110) and (111) single 

crystal R-TiO2. The product of the IET rate constant and the relative value of the parameter for the 

slow relaxation process is related to the short circuit current density in QDSCs. The higher value 

of this product for CdSe QDs with a diameter of ~ 6.6 nm adsorbed on a (111) R-TiO2 nanosheet 

is advantageous and can contribute to improvements in the photovoltaic performance of CdSe 

QDSCs. 
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