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Abstract

We propose stabilized explicit stochastic Runge–Kutta methods of strong order one
half for Itô stochastic delay differential equations with one fixed delay. The family
of the methods is constructed by embedding Runge–Kutta–Chebyshev methods of
order one for ordinary differential equations. The values of a damping parameter of
the methods are determined appropriately in order to obtain excellent mean square
stability properties. Numerical experiments are carried out to confirm their order
of convergence and stability properties.



1 Introduction

While one generalization of ordinary differential equations (ODEs) is delay differential
equations (DDEs), the stochastic generalization of ODEs is stochastic differential equa-
tions (SDEs). The both classes are used for modeling in many fields such as biology,
economics, and neuroscience, and numerical methods for them are proposed and stud-
ied by many researchers [9, 18, 25]. A further generalization that emerges by mixing
both classes is stochastic delay differential equations (SDDEs). SDDEs can deal with
more general situations in applications to the real-world (see [14, 27, 22] and references
therein). In addition, as SDDEs rarely have analytical explicit solutions, numerical meth-
ods for SDDEs attract attention of researchers [11, 12, 24, 28]. Here we are concerned
with numerically stabilized explicit methods for some type of SDDEs.

It has been customary to treat the numerical solution of stiff ODEs by implicit meth-
ods. However, there are a few classes of stabilized explicit methods. One such class is
the class of Runge–Kutta–Chebyshev (RKC) methods, which are well suited to solving
stiff problems whose eigenvalues lie near the negative real axis [3, 26]. The class has
been recently extended to cope with stiff SDEs [1, 2, 4, 19, 20]. These approaches are
important because implicit methods lead to solving a large nonlinear system of equations
when the dimension of SDEs is large. For example, Abdulle and Li [2] have developed
a family of explicit stochastic orthogonal Runge–Kutta–Chebyshev (SROCK) methods
with extended mean square (MS) stability regions. The methods are of strong order one
half for non-commutative Itô SDEs. We will extend an idea used in SROCK methods
later.

In the case of SDDEs, the issues to derive numerical methods are much more com-
plicated. Nevertheless, Küchler and Platen [21] have derived a strong first order Taylor
method for SDDEs as well as a family of stochastic theta methods including the explicit
and implicit Euler–Maruyama (EM) methods for SDDEs. Baker and Buckwar [7] and
Buckwar [10] have given an important theorem for the strong order of convergence of
explicit one-step methods. Mao [23] have carefully investigated relationships between MS
exponential stability properties of the explicit EM method and the solution of not only
SDDEs with one fixed delay but also SDDEs with one variable delay. Huang, Gan, and
Wang [17] have analyzed the asymptotic MS stability of the stochastic theta methods
when the methods are applied to a scalar test equation with real coefficients and one
fixed delay. Wang, Gan, and Wang [27] have analyzed the MS exponential stability of
the stochastic theta methods for SDDEs with one variable delay and the asymptotic MS
stability of the methods for SDDEs with one fixed delay. Hu, Mohammed, and Yan [16]
have derived the Milstein method for SDDEs with several delays, which is of strong order
one, whereas the EM method is of strong order one half. Recently, in [14] there has been
an attempt to extend SROCK methods for SDDEs. However, the attempt is only for a
specific linear SDDE, not for general problems, and does not give favorable MS stabil-
ity properties as the values of a damping factor of the SROCK methods have not been
determined appropriately.

In the present paper we shall propose a family of SROCK methods for SDDEs with
one fixed delay and determine the values of a damping factor of the methods on the basis
of MS stability analysis. In Section 2 we will briefly introduce RKC methods of order one
for ODEs. In Section 3 we will introduce the EM method for SDDEs and a useful theorem
when we consider explicit one-step methods for the strong approximation. In Section 4
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we will derive our SROCK methods, and in Section 5 we will give their stability analysis.
In Section 6 we will present numerical results and in Section 7 our concluding remarks.

2 First order RKC methods for ODEs

For the autonomous d-dimensional ODE

y′(t) = f(y(t)), t ∈ [0, T ], y(0) = y0, (2. 1)

van der Houwen and Sommeijer [26] have constructed the RKC method

K0 = yn, K1 = yn +
h

s2
f(K0),

Ki = 2
h

s2
f(Ki−1) + 2Ki−1 − Ki−2, i = 2, 3, . . . , s, (2. 2)

yn+1 = Ks,

where yn denotes a discrete approximation to the solution y(tn) of (2. 1) for an equidistant
grid point tn = nh (n = 1, 2, . . . , N) with step size h = T/N < 1 (N is a natural number).
Regardless of s ≥ 1, the method gives first order approximations to the solution of (2. 1).

When a one-step method is applied to the scalar test equation

y′(t) = λy(t), t ≥ 0, y(0) = y0, (2. 3)

where <(λ) ≤ 0 and y0 6= 0, it is expressed as yn+1 = R(hλ)yn in general. Then R(z) is
called its stability function, and {z | |R(z)| ≤ 1, z ∈ C} is called its stability region.

The stability function of (2. 2) is given by

R(z) = Ts

(
1 +

z

s2

)
, (2. 4)

where Tk(x) is the Chebyshev polynomial of degree k defined by Tk(cos θ) = cos(kθ) or
by the three term recurrence relation

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x) − Tk−2(x), k = 2, 3, . . . , s.

For a given s, (2. 4) has the maximal stability region along the negative real axis [−2s2, 0].
However, it has the drawback that the stability region reduces to a single point at s − 1
intermediate points in [−2s2, 0].

In order to overcome it, a damping parameter η has been introduced. Then the RKC
method with η can be written as

K0 = yn, K1 = yn + h
ω1

ω0

f(K0),

Ki = 2
Ti−1(ω0)

Ti(ω0)

(
hω1f(Ki−1) + ω0Ki−1

)
−Ti−2(ω0)

Ti(ω0)
Ki−2, i = 2, 3, . . . , s,

yn+1 = Ks,

(2. 5)
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Figure 1: Stability region for s = 5 and η = 0, 0.05

where

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′
s(ω0)

.

Its stability function is given by

R(z) = Ps(z)
def
=

Ts(ω0 + ω1z)

Ts(ω0)
. (2. 6)

Here, note that if η = 0, then (2. 6) leads to (2. 4). In Figure 1 we can see that (2. 6)
can have a strip included in the stability region at the cost that the stability interval is
slightly shortened. We will refer to Ps(z) in later sections.

Incidentally, when f is Lipschitz continuous, by the formulation of (2. 5) we obtain

‖Ks − yn − hf(yn)‖ ≤ Ch2 (2. 7)

for a given s and sufficiently small h > 0, where C is a constant independent of h.

3 Explicit EM method for SDDEs

We consider the autonomous d-dimensional SDDE

dy(t) = f(y(t), y(t − τ))dt +
m∑

j=1

gj(y(t), y(t − τ))dWj(t), t ∈ [0, T ],

y(0) = Ψ(t), t ∈ [−τ, 0],

(3. 1)

where τ > 0 is a constant, Wj(t), j = 1, 2, . . . , m, are scalar Wiener processes, and Ψ is
continuous on [−τ, 0] and independent of Wj(t) − Wj(0), j = 1, 2, . . . , m, for t > 0 and
satisfies E[supt∈[−τ,0] ‖Ψ(t)‖2] < ∞. We assume the following global Lipschitz condition
to ensure that the SDDE has exactly one global solution on [−τ, T ] [10, 21]: there exists
a constant L > 0 such that

‖f(ζ, η) − f(ν, ξ)‖ +
m∑

j=1

‖gj(ζ, η) − gj(ν, ξ)‖ ≤ L(‖ζ − ν‖ + ‖η − ξ‖) (3. 2)
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for all ζ, η, ν, ξ ∈ Rd. Note that the following linear growth condition holds from (3. 2)
since (3. 1) is autonomous [6, p. 113]: there exists a constant K > 0 such that

‖f(ζ,η)‖ +
m∑

j=1

‖gj(ζ,η)‖ ≤ K(1 + ‖ζ‖ + ‖η‖)

for all ζ, η ∈ Rd.
The definition of strong convergence of order q is given as follows [10, 21]. Suppose

that discrete approximations yn, n = 1, 2, . . . , N , are given by a numerical method. Then,
we say that the method is of strong (global) order q if there exist positive constants C
(independent of h) and δ0 such that

(E[‖y(T ) − yN‖2])1/2 ≤ Chq, ∀h ∈ (0, δ0).

Throughout the present paper, we assume that τ = Mh holds for τ and h = T/N (M
is a natural number). The explicit EM method for (3. 1) is given as follows [21]:

yn+1 = yn + f(yn,yn−M)h +
m∑

j=1

gj(yn,yn−M)4Wj. (3. 3)

Here, yn−M , n = 0, 1, . . . , M , are defined as Ψ(tn − τ), whereas they are defined by the
above formulation for n ≥ M + 1. In addition,

4Wj = 4Wj,n
def
= Wj(tn+1) − Wj(tn).

In what follows, for simplicity we will use the notation 4Wj without indicating the
dependence on n. The EM method is of strong order one half [10, 21].

When we consider strong approximations for (3. 1) by an explicit one-step method
with an increment function φ

yn+1 = yn + φ(yn, yn−M , h, {4Wj}m
j=1), (3. 4)

the following theorem is very useful [10].

Theorem 3.1 In addition to (3. 2), suppose that the following conditions hold:

(1) there exist positive constants C1, C2 (independent of h) such that∥∥E[φ(ζ,η, h, {4Wj}m
j=1) − φ(ν, ξ, h, {4Wj}m

j=1)]
∥∥

≤ C1h(‖ζ − ν‖ + ‖η − ξ‖), (3. 5)

E
[
‖φ(ζ,η, h, {4Wj}m

j=1) − φ(ν, ξ, h, {4Wj}m
j=1)‖2

]
≤ C2h(‖ζ − ν‖2 + ‖η − ξ‖2) (3. 6)

for all ζ, η, ν, ξ ∈ Rd and sufficiently small h > 0;

(2) there exist positive constants C1, C2 (independent of h) and δ0 such that

‖E[y(tn+1) − yn+1]‖ ≤ C1h
p1 , ∀h ∈ (0, δ0), (3. 7)(

E
[
‖y(tn+1) − yn+1‖2

])1/2 ≤ C2h
p2 , ∀h ∈ (0, δ0) (3. 8)

when y(tn) = yn, where p2 ≥ 1/2 and p1 ≥ p2 + 1/2.

Then, (3. 4) is of strong order p2 − 1/2 for (3. 1).

Buckwar [10] has proved a scalar version of this theorem, which means d = m = 1. The
proof can be obviously extended to the multidimensional case d,m ≥ 2.
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4 SROCK methods for SDDEs

We introduced (2. 5) as a stabilized explicit method for ODEs. Taking it into account,
we propose our new explicit method

K0 = yn, K1 = yn + h
ω1

ω0

f(K0, y
∗
n+1−M),

Kj = 2
Tj−1(ω0)

Tj(ω0)

(
hω1f(Kj−1,y

∗
n+1−M) + ω0Kj−1

)
−Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, 3, . . . , s,

y∗
n+1 = Ks, yn+1 = y∗

n+1 +
m∑

j=1

gj(y
∗
n+1, y

∗
n+1−M)4Wj

(4. 1)

for (3. 1). Here, note that y∗
n+1−M , n = −1, 0, . . . ,M − 1, are defined as Ψ(tn+1 − τ),

whereas they are defined by the above formulation for n ≥ M .

Theorem 4.1 Suppose that (3. 1) satisfies (3. 2). Then, (4. 1) is of strong order one
half for (3. 1).

Proof. For given yn and yn−M , let us denote by ỹn+1 the approximation obtained by the
EM method. Then, we have

‖E[y(tn+1) − yn+1]‖ ≤ ‖E[y(tn+1) − ỹn+1]‖ + ‖E[ỹn+1 − yn+1]‖,
E

[
‖y(tn+1) − yn+1‖2

]
≤ 2E

[
‖y(tn+1) − ỹn+1‖2

]
+ 2E

[
‖ỹn+1 − yn+1‖2

]
.

As it is known in [10] that the EM method satisfies (3. 7) and (3. 8) for p1 = 2 and
p2 = 1, we can concentrate on the estimates of the second terms in the right-hand side of
the above inequalities.

Similarly to (2. 7), as ‖y∗
n+1 − yn − hf(yn, y

∗
n+1−M)‖ ≤ C1h

2 by the formulation of
(4. 1), we have

‖y∗
n+1 − yn − hf(yn, yn−M)‖ ≤ C2h

2, (4. 2)

where C1, C2 are (generic) constants independent of h. From this and (3. 2), we obtain

‖E[ỹn+1 − yn+1]‖ = ‖E[yn + hf(yn, yn−M) − y∗
n+1]‖ ≤ C2h

2

and

E
[
‖ỹn+1 − yn+1‖2

]
≤ 2E

[
‖yn + f(yn,yn−M)h − y∗

n+1‖2
]

+ 2E

[
‖

m∑
j=1

(
gj(yn, yn−M) − gj(y

∗
n+1, y

∗
n+1−M)

)
4Wj‖2

]

≤ 2C2
2h

4 + 2
m∑

j=1

∥∥gj(yn,yn−M) − gj(y
∗
n+1,y

∗
n+1−M)

∥∥2
h

≤ 2C2
2h

4 + 2L2
(∥∥yn − y∗

n+1

∥∥ +
∥∥yn−M − y∗

n+1−M

∥∥)2
h

≤ 2C2
2h

4 + 8L2C2
3h

3,
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where C2, C3 and L are positive constants. These imply that there exists a constant
C > 0 such that

‖E[ỹn+1 − yn+1]‖ ≤ Ch2,
(
E

[
‖ỹn+1 − yn+1‖2

])1/2 ≤ Ch3/2

for sufficient small h > 0. Thus, (4. 1) satisfies (3. 7) and (3. 8) for p1 = 2 and p2 = 1.
Incidentally, for (4. 1) we have

φ(yn,yn−M , h, {4Wj}m
j=1)

= Ks(yn,y∗
n+1−M(yn−M)) − yn

+
m∑

j=1

gj(Ks(yn,y∗
n+1−M(yn−M)),y∗

n+1−M(yn−M))4Wj,
(4. 3)

where Ks(yn,y∗
n+1−M(yn−M)) = Ks in (4. 1), which indicates that Ks depends on

yn and y∗
n+1−M , whereas y∗

n+1−M depends on yn−M . Let us denote Ks by η∗, ξ∗ for
K0 = η, ξ in (4. 1), respectively. From (3. 2), (4. 2) and (4. 3) we have∥∥E

[
φ(ζ,η, h, {4Wj}m

j=1) − φ(ν, ξ, h, {4Wj}m
j=1)

]∥∥
= ‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖
≤ ‖Ks(ζ, η∗) − ζ − hf(ζ, η)‖ + ‖Ks(ν, ξ∗) − ν − hf(ν, ξ)‖

+ ‖f(ζ,η) − f(ν, ξ)‖h

≤ 2C2h
2 + Lh (‖ζ − ν‖ + ‖η − ξ‖)

and

E
[
‖φ(ζ, η, h, {4Wj}m

j=1) − φ(ν, ξ, h, {4Wj}m
j=1)‖2

]
= E

[∥∥∥∥∥Ks(ζ, η∗) − ζ − (Ks(ν, ξ∗) − ν)

+
m∑

j=1

{
gj(Ks(ζ, η∗),η∗) − gj(Ks(ν, ξ∗), ξ∗)

}
4Wj

∥∥∥∥∥
2


= ‖Ks(ζ, η∗) − ζ − (Ks(ν, ξ∗) − ν)‖2

+
m∑

j=1

∥∥gj(Ks(ζ,η∗), η∗) − gj(Ks(ν, ξ∗), ξ∗)
∥∥2

h

≤ ‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖2

+ L2 (‖Ks(ζ, η∗) − Ks(ν, ξ∗)‖ + ‖η∗ − ξ∗‖)2 h

≤ ‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖2

+ 2L2 ‖Ks(ζ,η∗) − Ks(ν, ξ∗)‖2 h + 2L2 ‖η∗ − ξ∗‖2 h

≤ ‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖2

+ 2L2 (‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖ + ‖ζ − ν‖)2 h

+ 2L2 (‖η∗ − η‖ + ‖ξ∗ − ξ‖ + ‖η − ξ‖)2 h

≤ (4L2h + 1) ‖Ks(ζ,η∗) − ζ − (Ks(ν, ξ∗) − ν)‖2 + 4L2‖ζ − ν‖2h

+ 6L2
(
‖η∗ − η‖2 + ‖ξ∗ − ξ‖2 + ‖η − ξ‖2

)
h

≤ (4L2h + 1)
(
2C2h

2 + Lh (‖ζ − ν‖ + ‖η − ξ‖)
)2

+ 4L2‖ζ − ν‖2h + 6L2
(
2C2

3h
2 + ‖η − ξ‖2

)
h,
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where C2, C3 and L are positive constants. These imply that there exists a constant
C > 0 such that ∥∥E[φ(ζ, η, h, {4Wj}m

j=1) − φ(ν, ξ, h, {4Wj}m
j=1)]

∥∥
≤ Ch(‖ζ − ν‖ + ‖η − ξ‖),

E
[
‖φ(ζ,η, h, {4Wj}m

j=1) − φ(ν, ξ, h, {4Wj}m
j=1)‖2

]
≤ Ch(‖ζ − ν‖2 + ‖η − ξ‖2)

for sufficient small h > 0. Consequently, (4. 1) is of strong order one half by Theorem
3.1. 2

5 MS stability analysis

Taking a stochastic feedback control system into account, Guo, Qiu, and Mitsui [14] have
dealt with a multidimensional linear test SDDE with a scalar Wiener process (d ≥ 2, m =
1) in which the drift term depends on y(t) only and the diffusion term depends on y(t−τ)
only. In this section we shall deal with a similar test SDDE in the one dimensional case
(d = m = 1) to determine the value of η appropriately.

Let us consider the scalar linear test equation

dy(t) = λy(t)dt + σy(t − τ)dW (t), t ≥ 0,
y(0) = Ψ(t), t ∈ [−τ, 0],

(5. 1)

where E[|Ψ(t)|2] is continuous on [−τ, 0] and where λ, σ ∈ C satisfy

2<(λ) + |σ|2 < 0. (5. 2)

When we apply Itô’s theorem to |y(t)|2 and take expectations on both sides of the obtained
equation, we have

dv(t) = 2<(λ)v(t)dt + |σ|2v(t − τ)dt,

where v(t) = E[|y(t)|2]. Thus, the continuity of E[|Ψ(t)|2] and (5. 2) mean that
limt→∞ v(t) = 0 holds [5, 8], that is, the solution of (5. 1) is (asymptotically) MS-stable.

When applied to (5. 1), (4. 1) is expressed as

yn+1 = Ps(hλ)yn + σPs(hλ)yn−M4W

since y∗
n+1 = Ps(hλ)yn from (2. 5) and (2. 6). This yields

E
[
|yn+1|2

]
= |Ps(p)|2E

[
|yn|2

]
+ q|Ps(p)|2E

[
|yn−M |2

]
and its characteristic equation is given by

ξ = |Ps(p)|2 + q|Ps(p)|2ξ−M , (5. 3)

where p = hλ and q = h|σ|2. Thus, if we require that (4. 1) is MS-stable (limn→∞ E [|yn|2] =
0) when p, q and M are given, then all the roots of (5. 3) must satisfy |ξ| < 1.

If q|Ps(p)|2 = 0, then |Ps(p)| < 1 must be satisfied since (5. 3) has a solution ξ =
|Ps(p)|2. On the other hand, if q|Ps(p)|2 6= 0, we can rewrite (5. 3) as ϕ(ξ) = 0. Here,
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η = 0.0
pr

q

η = 0.6
pr

q

η = 2.13

Figure 2: Profile of the MS stability domain of the SROCK method with s = 3 when
pi = 0 and η = 0.0, 0.6, and 2.13

Table 1: Optimal values of η

s η l̃
(η)
s s η l̃

(η)
s s η l̃

(η)
s

2 1.36 4.74 3 2.13 8.85 6 3.61 27.2
13 5.62 101.40 26 7.84 342.17 53 10.56 1223.45
104 13.55 4156.32 150 15.35 8121.76 200 16.85 13781.80

ϕ(ξ)
def
= ξM+1−|Ps(p)|2ξM −q|Ps(p)|2. This function has a zero point on (0, 1) if ϕ(1) > 0,

whereas it has a zero point on [1,∞) if ϕ(1) ≤ 0. Thus, by Cauchy’s theorem all the
roots of (5. 3) satisfy |ξ| < 1 if and only if ϕ(1) > 0. Consequently, for any fixed M , the
MS stability region of (4. 1) is given by

{(p, q) | R̂(p, q) < 1},

where R̂(p, q) = (1 + q)|Ps(p)|2.
Let us denote <(p) and =(p) by pr and pi, respectively. When pi = 0 and η = 0, 0.6,

and 2.13, the profile of the MS stability domain of (4. 1) with s = 3 is given in Figure
2. In the figure the colored part indicates the profile of the MS stability domain when
pi = 0, whereas the area enclosed by the mesh indicates the region in which the solution
of the test SDDE is MS-stable. Let us consider l̃

(η)
s > 0 such that for all pr ≥ −l̃

(η)
s , the

profile of the MS stability domain of (4. 1) includes the region where (5. 2) is satisfied.

From the figure, since l̃
(0.0)
3 and l̃

(0.6)
3 are much smaller than l̃

(2.13)
3 , we can say that the

SROCK methods with η = 0.0 and 0.6 have poorer stability properties than the case of
η = 2.13. Thus, unless the value of η is determined appropriately, even SROCK methods
cannot be stabilized well. See also [14].

As Ps(z) is explicitly given in (2. 6), we can arrange the value of η. When we determine

the values of l̃
(η)
s as large as possible, we obtain Table 1 by numerical calculations. For

some other stage numbers, see the appendix.
Incidentally, when (3. 3) is applied to (5. 1), we obtain

E
[
|yn+1|2

]
= |1 + p|2E

[
|yn|2

]
+ qE

[
|yn−M |2

]
as yn+1 = (1 + hλ)yn + σyn−M4W . Thus, the MS stability region of (3. 3) is given by
{(p, q) | R̂(p, q) < 1}, where R̂(p, q) = |1 + p|2 + q. In the end, we show the MS stability
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pr

pi

q

The EM method

pr

pi

q

s = 3, η = 2.13

pr

pi

q

s = 13, η = 5.62

Figure 3: MS stability domain of the EM method and the SROCK methods with s = 3
and s = 13

domain of (3. 3) and (4. 1). As the domain is symmetrical with respect to the plane
pi = 0, we plot it only for pi ≥ 0. In Figure 3, it is indicated with the colored part. The
other part enclosed by mesh indicates the domain in which the solution of the test SDDE
is MS-stable. We can see that the SROCK method has a much larger stability domain
than the explicit EM method even when s = 3, and it is extended along the negative axis
of pr as s increases.

6 Numerical experiments

In Section 4 we have proposed the formulation of our SROCK methods with a parameter
η, and in Section 5 we have determined its value appropriately. In order to confirm
the performance of the SROCK methods, we carry out numerical experiments. In the
sequel, we investigate the root mean square error (RMSE) by simulating 2000 independent
trajectories for a given h.

The first example is a linear scalar SDDE with a scalar Wiener process [21]:

dy(t) = (αy(t) + βy(t − 1))dt + γy(t)dW (t), y(s) = y0 (w.p.1), (6. 1)

where t ∈ [0, 3/2], s ∈ [−1, 0], and α, β, γ ∈ R are parameters. The solution is expressed
as

y(t) = Φ(0, t)y0 + β

∫ t

0

Φ(s, t)y(s − 1)ds

for t ∈ [0, 1], and

y(t) = Φ(1, t)y(1) + β

∫ t

1

Φ(s, t)y(s − 1)ds

for t ∈ [1, 3/2], where Φ(s, t) = exp[(α − (γ2/2))(t − s) + γ(W (t) − W (s))].
We set α = −1/2, β = −1/4, γ = 1/2, and y0 = 1 and investigate the RMSEs of the

EM method and the SROCK method with s = 2 at t = 3/2. The results are indicated
in Figure 4. The solid and dashed lines denote the SROCK method with s = 2 and the
EM method, respectively. Here and in what follows, the dotted line is a reference line
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Figure 4: RMSEs of y(3/2). Solid line: SROCK; dashed line: EM; dotted line: reference
line with slope 1/2.
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Figure 5: RMSEs of y(5/2). Solid line: SROCK; dashed line: EM; dotted line: reference
line with slope 1/2.

with slope 1/2. In the figure, we can confirm the theoretical order of convergence for both
methods, especially when h is sufficiently small.

The second example is the Mackey-Glass equation [15] with 2-dimensional multiplica-
tive noise

dy(t) =

{
−αy(t) +

βy(t − 1)

1 + (y(t − 1))2

}
dt + γ1y(t)dW1(t) + γ2y(t − 1)dW2(t),

y(s) = y0 (w.p.1),

(6. 2)

where t ∈ [0, 5/2], s ∈ [−1, 0], and α > 0, β, γ1, γ2 ∈ R are parameters. A similar SDDE
was considered in [27].

We set α = 3, β = 1, γ1 = γ2 = 1/2, and y0 = 1 and investigate the RMSEs of the EM
method and the SROCK method with s = 2 at t = 5/2. As we do not know the exact
solution of (6. 2), we seek a numerical solution by the EM method with h = 2−10 and
use it instead of the exact solution. The results are indicated in Figure 5. The solid and
dashed lines denote the SROCK method with s = 2 and the EM method, respectively.
Both methods show the theoretical order of convergence also for this non-linear SDDE
with multidimensional noise.

An advantage of the SROCK methods over the EM method is the stability properties.
In order to see this, as a third example, let us consider the following stochastic partial
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Figure 6: RMSEs of y(3/2). Solid line: SROCK; dotted line: reference line with slope
1/2.

differential equation with delay:

du(t, x) =
∂2u

∂x2
(t, x)dt + γu(t − 1, x)dW (t), (t, x) ∈ [0, 3/2] × [0, π],

u(t, 0) = u(t, π) = 0 (w.p.1), t ∈ [0, 3/2], (6. 3)

u(t, x) = sin(x), (t, x) ∈ [−1, 0] × [0, π],

where γ ∈ R is a parameter and W (t) is a standard scalar Wiener process. This type of
stochastic partial differential equation was dealt with in [13]. The second moment of the
solution of (6. 3) is asymptotically stable if γ2 < 2. For details, see [13].

If we discretize the space interval by N + 2 equidistant points xi, i = 0, 1, . . . , N + 1,

and define a vector-valued function by y(t)
def
= [u(t, x1) u(t, x2), . . . , u(t, xN)]>, then the

application of the central difference scheme to (6. 3) yields the SDDE

dy(t) = Ay(t)dt + γy(t − 1)dW (t),

y(0) = [2 sin(x1) 2 sin(x1), . . . , 2 sin(xN)]> (w.p.1),
(6. 4)

where A
def
= (N + 1)2 tridiag(1,−2, 1). For example, when N = 127, the eigenvalues of A

are distributed in the interval (−6.6 × 103,−1.0). From (5. 2), thus, the solution of (6.
4) is (asymptotically) MS-stable if γ2 < 2.0.

We set N = 127 and γ = 1/2 and investigate the performance of the SROCK and
EM methods. The EM method requires a very small step size for stability. We can
solve the SDDE by the EM method with h = 2−12, but cannot with h = 2−i, i =
1, 2, . . . , 11. As we do not know the exact solution of (6. 4), we seek a numerical solution
by the EM method with h = 2−12 and use it instead of the exact solution. In order
to solve the SDDE numerically stably with reasonable cost by the SROCK method, we
set s = 95, 63, 45, 30, 20, 14, 9, and 6 when h = 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, and 2−8,
respectively.

Figure 6 indicates results over 2000 independent trajectories, whereas Figure 7 indi-
cates results from one trajectory for (6. 4). In Figure 6, the SROCK methods with several
values of s show the theoretical order of convergence even for relatively much larger step
size than h = 2−12, which is required by the EM method. Here, note that as a solution is
a vector, the Euclidean norm is used. In Figure 7, the left-hand plot shows an approxima-
tion to u(t, x) in (6. 3), which is obtained from one approximate trajectory to the solution
of (6. 4) that the SROCK method with s = 20 yields for h = 2−5. On the other hand,
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Figure 7: Approximations to u(t, x) in (6. 3). Thick line: SROCK (s = 20, h = 2−5);
dash-dotted line: EM (h = 2−12).

the right-hand plot shows the profile of the approximation to u(t, x) at x = π/2, as well
as the profile of another approximation by the EM method. The thick and dash-dotted
lines denote the SROCK method and the EM method, respectively. From this, we can
see that the SROCK method captures the behaviour of the reference solution by a large
step size.

7 Concluding remarks

For d-dimensional Itô SDDEs with an m-dimensional Wiener process and one fixed delay,
we have derived the SROCK methods of strong order one half. As the s-stage RKC
method with a damping parameter η is embedded in the SROCK method, an optimal
damping value of η has been chosen for each s. As a result, all SROCK methods derived
in this article have very large MS stability domain, compared with not only the EM
method but also another SROCK method proposed in [14].

In the numerical experiments we have confirmed our theoretical results and the advan-
tages of our SROCK methods. The first example was a linear SDDE whose solution can
be obtained sufficiently precisely by numerically integrating a term. The second exam-
ple was a non-linear SDDE with multidimensional noise. In both examples, the SROCK
methods clearly showed the theoretical order of convergence. The final example was a
high-dimensional stiff SDDE, which comes from a stochastic partial differential equation
with delay. This example highlighted the advantages of SROCK methods. The explicit
EM method suffered from step size restriction for stability. In general, although implicit
methods such as the implicit EM method might be considered as alternatives, they can
be computationally expensive for a large system of SDDEs.

Finally, we make the following remarks. In Section 5 we have dealt with (5. 1) as
a test equation and obtained a stability function R̂(p, q). Even if there is no delay, that
is, even if we replace σy(t − τ) with σy(t), we have the same stability function. This
fact gives us a question. As in [17], when a test equation has σ1y(t − τ) + σ2y(t) in
the diffusion term, how is its stability function expressed? Additional analysis to answer
it would substantially increase the length of the paper and be beyond the scope of the
paper’s original intention. However, we will consider this issue in future work.
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