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Abstract 

Hafnium (Hf) has attracted considerable attention as a component of biomedical titanium 

(Ti) alloys with low Young’s moduli and/or shape-memory functionalities, because its 

cytotoxicity is as low as that of Ti. The drawback of metals is that their bone-bonding 

ability is generally low. It is known that apatite formation in the body is a prerequisite for 

bone-bonding. Although several chemical treatments have been proposed for preparing 

Ti for bone-bonding, there have been no similar investigations for Hf. In the present study, 

NaOH- and heat-treatments were applied to pure Hf and Ti-Hf alloys and their 

bone-bonding ability was assessed in vitro with the use of simulated body fluid (SBF). 

After NaOH- and heat-treatments, anatase formed on alloys with low Hf content (20–

40% (atom%) Hf); mixtures of sodium titanate and hafnium titanate formed on alloys 

with similar Ti and Hf content (60% Hf); and hafnium oxide formed on alloys with high 

Hf content (80% Hf and pure Hf). Precipitates of apatite were observed on all the metals 

in SBF, except for the alloy with 60% Hf. We speculated that the hafnium titanate formed 

on this alloy had a low apatite-forming ability owing to its high negative surface charge, 

which inhibited P adsorption. The apatite-forming abilities of the Ti-Hf alloys strongly 
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depended on their Hf content. The present results indicate that Hf-based materials have 

good potential for bone-bonding.  

 

Keywords: Hafnium, Titanium-hafnium alloy, Bone-bonding, Surface treatment, 

Apatite 
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1. Introduction 

  Hafnium (Hf) belongs to the same group of elements as titanium (Ti) and zirconium 

(Zr), which are applied for clinical replacement of hard tissue and have similar chemical 

properties. It is known that the cytotoxicity of hafnium is as low as that of Ti and Zr [1]. 

Recently, addition of Hf to Ti has been found to reduce the Young’s modulus of the 

resulting alloy from 120 to 110 GPa [2,3]. In addition, Hf has attracted considerable 

attention as a component of nickel-free shape memory alloys for medical applications [4].  

  However, many metallic materials do not bind with bone easily and this property must 

be improved to enable their application to hard tissue reconstruction. An essential 

requirement for artificial materials to exhibit bone-bonding in the body is the formation 

of a bone-like apatite layer [5]. Chemical treatments based on aqueous solutions of 

sodium hydroxide (NaOH) [6] or hydrogen peroxide [7], followed by heat treatments, 

and anodic oxidation [8] are known to be effective techniques for enhancing the 

apatite-forming ability on Ti metal surfaces. Tantalum (Ta) [9] and Zr [10] can also 

exhibit bone-bonding properties following NaOH treatments. However, the effects of 

such surface treatments on Hf remain unclear. 
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  In this study, pure Hf metal and Ti-Hf alloys were subjected to NaOH- and 

heat-treatments and the apatite-forming abilities of the treated alloys were investigated in 

simulated body fluid (SBF). Differences in the apatite-forming ability are discussed in 

terms of the components of the alloy and the crystalline phase of the surface after the 

treatments. 

 

2. Materials and methods 

2.1. Materials 

  NaOH and the reagents used to prepare SBF were purchased from Nacalai Tesque 

Inc., Kyoto, Japan, hafnium oxide (HfO2) from Kojundo Chemical Laboratory Co., Ltd. 

Saitama, Japan, and anatase from Ishihara Sangyo Kaisha, Ltd., Osaka, Japan. 

 

2.2. NaOH- and heat-treatments 

  Pure Hf substrates (Nilaco Co., Tokyo, Japan) 10 × 10 × 0.1 mm
3
 in size and Ti-Hf 

alloy substrates (Kindly prepared by arc melting in Institute for Materials Research, 

Tohoku University, Sendai, Japan) 5 × 5 × 7 mm
3
 in size were polished with #500 SiC 
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paper. Ti-Hf alloy containing x atom% of Hf is hereafter denoted as Ti-xHf. Each 

substrate was then soaked in 5 mL of 10 M-NaOH aqueous solution and mechanically 

agitated in a water bath (H-10, Taitec Co., Saitama, Japan) at 60 °C for 1 day. The 

agitating speed was fixed at 120 strokes/min. The substrates were then removed from 

solution, gently washed with ultrapure water, and dried at 60°C. The substrates were 

then heated to 400°C at 5 °C/min, maintained at 400°C for 1 h, and allowed to cool to 

room temperature in the furnace.  

  Hafnium oxide and hafnium titanate (HfTiO4) powders were used for zeta potential 

measurements as model compounds for the surface crystal phase of the chemically 

treated metals. The HfO2 reagent was used as received. HfTiO4 was prepared by 

calcinating a mixture of HfO2 and anatase at a molar ratio of 1:1 at 1300°C for 5 h. 

X-ray diffraction measurements confirmed that the obtained powder consisted of a 

single phase of HfTiO4 (JCPDS#40-794). 

 

2.3. Soaking in SBF 

  The treated substrates were soaked in 30 mL of SBF containing the following 
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inorganic ion concentrations (142.0 mM Na
+
, 5.0 mM K

+
, 1.5 mM Mg

2+
, 2.5 mM Ca

2+
, 

147.8 mM Cl
‒
, 4.2 mM HCO3

‒
, 1.0 mM HPO4

2‒
, and 0.5 mM SO4

2‒
) at 36.5 °C for 

various periods. The pH of the solution was buffered at 7.40 by 50 mM 

tris(hydroxymethyl)aminomethane and an appropriate amount of HCl. SBF was 

prepared according to the literature [11]. After soaking, the substrates were removed 

from the SBF and then immersed in ultrapure water for 30 min to remove excess 

water-soluble salts on their surfaces. 

 

2.4. Characterization 

  The surface structural changes of the substrates were characterized by scanning 

electron microscope imaging (SEM; Model S-3500N; Hitachi Co., Tokyo, Japan), 

energy dispersive X-ray spectroscopy (EDX; Model EX-400; Horiba Co., Kyoto, Japan), 

thin-film X-ray diffraction (TF-XRD; MXP3V; Mac Science Ltd., Yokohama, Japan), 

X-ray photoelectron spectroscopy (XPS, KRATOS AXIS-Nova, Shimadzu Co., Kyoto, 

Japan) and Fourier-transform infrared spectroscopy (FT-IR, FT/IR-6100, JASCO Co., 

Tokyo, Japan). Zeta potentials of the powder in 10 mM NaCl were measured with a 
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zeta-potential analyzer (ELS-Z, Otsuka Electronics Co., Osaka, Japan) in a connected 

box-like quartz cell. The obtained zeta potential was statistically analyzed by t-test. 

In TF-XRD experiments, the incident beam was fixed at 1° to the surface of each 

substrate, at a scan rate of 0.02°·s
−1

. In XPS experiments, the measured binding energies

were corrected against the C1s binding energy of hydrocarbon methylene groups (284.6 

eV) adsorbed on the substrate surface. In FT-IR measurements, an attenuated total 

reflection (ATR) attachment with a diamond crystal was used. 

3. Results

 Fig. 1 shows XPS spectra of NaOH- and heat-treated metal substrates. Peaks at 530 eV 

are assigned to M-O (M: Ti, Hf), those at 531 eV to acidic M-OH or physically adsorbed 

water, and those at 532.5 eV to basic M-OH or chemically adsorbed water [12]. The 

proportion of the peak attributed to basic M-OH groups or chemically adsorbed water 

increased as the Ti content in the alloy increased. This result indicates that the NaOH- and 

heat-treatments induced the largest proportion of M-OH groups on the surface of the 

alloys with high Ti content. 
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 Fig. 2 shows TF-XRD patterns of the NaOH- and heat-treated metal substrates before 

and after immersion in SBF for 7 days. Peaks assigned to the α′ phase of Ti-Hf with a 

hexagonal close-packed structure shifted to a lower diffraction angle as the Hf content in 

increased in the alloy. Peaks assigned to anatase (JCPDS#21-1272) were observed for 

Ti-20Hf and Ti-40Hf; peaks assigned to Na2Ti5O11 (JCPDS#11-289) and HfTiO4 

(JCPDS#40-794) were found in Ti-60Hf; peaks assigned to HfO2 (JCPDS#34-104) were 

found in Ti-80Hf and Hf. Such crystalline phase was not observed except base metal just 

after NaOH treatment (data not shown), meaning that the above oxides were formed by 

the heating. The crystalline phases remained almost the same even after immersion in 

SBF. 

 Fig. 3 shows SEM images and EDX spectra of the NaOH- and heat-treated metal 

substrates after immersion in SBF for 7 days. Formation of spherical particles was 

observed on the surfaces of the alloys except for the Ti-60Hf substrate. The particles were 

confirmed to contain a high proportion of Ca and P by EDX. 

 Fig. 4 shows a high-magnification SEM image and FT-IR ATR spectrum of the 

spherical particles formed on the surface-treated Ti-80Hf after immersion in SBF for 7 
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days. A fine network morphology was observed, which was similar to that of the 

bone-like apatite formed in SBF [13]. In the FT-IR ATR spectrum, peaks assigned to 

PO4
3−

, HPO4
2−

 and CO3
2−

 were observed [14,15]. The peak of HPO4
2−

 and CO3
2− 

around

870 cm
-1

 was too close to distinguish from each other. The splitting of the PO4
3−

 peaks at

600 and 1000 cm
−1

 is characteristic of apatite, and the presence of CO3
2−

 suggested the

formation of carbonate-containing non-stoichiometric apatite in SBF [16]. Therefore, the 

spherical particles in Fig. 3 are considered to be bone-like apatite. 

 Table 1 shows the zeta potentials of HfO2 and HfTiO4, indicating that HfTiO4 had a 

more negative surface charge than that of HfO2. 

4. Discussion

We found that NaOH- and heat-treated Hf metal formed apatite on their surfaces in SBF. 

This result confirms that the Hf-OH group can act as a functional group that enables 

apatite formation, as previously reported for Si-OH and Ti-OH groups. 

The calcium phosphate precipitates formed on the substrates could not be identified 

as an apatite phase by TF-XRD, likely because of the small amount present. However, it 
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has been reported that pure Ti treated with 5 M-NaOH and heated at 400°C forms 

apatite over its whole surface in SBF within 7 days [17]. Therefore, we observe that the 

apatite-forming ability of the Ti-Hf alloy and Hf metal is lower than that of pure Ti. 

There are two possible reasons for this result: First, the apatite-forming ability of 

Hf-OH itself is lower than that of Ti-OH. Second, Ti has a higher corrosion rate (5.0 

mm / year in 40% NaOH at 121°C) in NaOH solution than that of Hf (0.15 mm / year in 

38% NaOH at 115°C) [18,19]. Therefore, it is likely that fewer Hf-OH groups were 

formed by the NaOH- and heat-treatments, in spite that we used more concentrated 

NaOH (10 M) than previous research on surface treatment of Ti (5 M) [17]. This 

assumption is supported by our XPS spectra, which showed a low proportion of OH 

groups on the treated metals with high Hf content in Fig. 1. It is reported that a lot of 

Na2Ti5O11 was mainly formed on Ti metal after 5 M-NaOH treatment and subsequent 

heating at 600°C [17], while amount of Na2Ti5O11 formed on the treated Ti-Hf alloy was 

very low (See Fig. 2). Therefore, this may also lead to low apatite formation on the 

present specimens in SBF. Chemical treatment of Hf metal with a more concentrated 

NaOH solution might be necessary in future studies. 
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It is noted that the formed apatite contained HPO4
2−

 (See Fig. 4). Although Kokubo et

al. developed bone-bonding Ti by 5 M-NaOH treatment and subsequent heat treatment at 

600°C, the apatite layer formed in SBF has not been characterized by FT-IR. On the other 

hand, other groups have reported that HPO4
2−

-containing apatite is detected on Ti and its

alloys treated with 10 M-NaOH and heated at 600°C after soaking in SBF [20,21]. Acidic 

dissociation of phosphoric acid is described as follows: 

H3PO4 H
+

+ H2PO4
-
  K1 = 7.5 X 10

-3
 (1) 

H2PO4
-

H
+

+ HPO4
2-

  K2 = 6.2 X 10
-8

 (2) 

HPO4
2-

H
+

+ PO4
3-

  K3 = 4.8 X 10
-13

 (3) 

It is assumed that approximately 60% of phosphate species takes a form of HPO4
2-

 at

pH7.40 based on these equilibria. Therefore, ion exchange would occur between HPO4
2− 

in SBF and CO3
2-

 in the apatite crystals which are equivalent anion.

Apatite was not formed on the Ti-60Hf, with an intermediate composition. The 

proportion of OH groups on the surface of this substrate was similar to those of Ti-80Hf 

and pure Hf, which both promoted apatite formation (See Fig. 1). Therefore, the low 

proportion of OH groups was unlikely to be the reason for the lack of apatite formation. 
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Our zeta potential measurements indicated that the surface of HfTiO4 was highly 

negatively charged (see Table 1). The surface charge was much lower than that of Ti 

metal subjected to the NaOH- and heat-treatments (approximately −10 mV), which 

formed apatite [22]. Apatite nucleation on negatively charged materials such as NaOH- 

and heat-treated Ti and Ta, and Na2O-SiO2 glass is triggered by initial Ca
2+

 adsorption

followed by PO4
3−

 adsorption [23,24,25]. Although Ca and P were detected on Ti-60Hf,

the amounts were smaller than those of the other samples (see Fig. 3). Hence, we 

assume that the negative surface charge was neutralized by Ca
2+

 adsorption onto HfTiO4

but further PO4
3−

 adsorption was limited.

5. Conclusion

 In this study, the apatite-forming abilities of pure Hf and Ti-Hf alloys subjected to 

NaOH- and heat-treatments were investigated in SBF. The following points were 

clarified. 

(1) Pure Hf metal subjected to the treatments enabled formation of apatite on its surfaces.

Therefore, Hf is a candidate metallic material, which exhibits bone-bonding potential. 
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(2) The apatite-forming ability of Ti-Hf alloys was low at intermediate compositions. 

Namely, apatite formation was not observed in Ti-60Hf. We speculate that highly 

negatively charged HfTiO4 inhibited PO4
3−

 adsorption. 
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Table 1 Zeta potentials of the samples (N=3) 

Sample Zeta potential (mV) 

HfO2 −15.5±1.79 

HfTiO4 −41.9±2.05* 

*p<0.001 in comparison with HfO2
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Figure captions 

Fig. 1  XPS spectra of NaOH- and heat-treated metal substrates. This shows that surface 

OH content is different by composition of the alloy. 

Fig. 2  TF-XRD patterns of NaOH- and heat-treated metal substrates before (left) and 

after (right) immersion in SBF for 7 days. This shows that surface crystalline phase is 

significantly different by composition of the alloy. 

Fig. 3  SEM images and EDX spectra of NaOH- and heat-treated metal substrates after 

immersion in SBF for 7 days. Star marks indicate the positions of EDX analysis. Apatite 

formation was not observed for intermediate composition of Ti-60Hf. 

Fig. 4  High-magnification SEM images and FT-IR ATR spectrum of the spherical 

particles formed on the surface of the treated Ti-80Hf substrate after immersion in SBF 

for 7 days. This shows that the formed apatite contains HPO4
2−

 and CO3
2−

.
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